Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 114(10): 1012-9, 2006 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16908766

RESUMEN

BACKGROUND: Four distinct mutations in the human cardiac calsequestrin gene (CASQ2) have been linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). The mechanisms leading to the clinical phenotype are still poorly understood because only 1 CASQ2 mutation has been characterized in vitro. METHODS AND RESULTS: We identified a homozygous 16-bp deletion at position 339 to 354 leading to a frame shift and a stop codon after 5aa (CASQ2(G112+5X)) in a child with stress-induced ventricular tachycardia and cardiac arrest. The same deletion was also identified in association with a novel point mutation (CASQ2(L167H)) in a highly symptomatic CPVT child who is the first CPVT patient carrier of compound heterozygous CASQ2 mutations. We characterized in vitro the properties of CASQ2 mutants: CASQ2(G112+5X) did not bind Ca2+, whereas CASQ2(L167H) had normal calcium-binding properties. When expressed in rat myocytes, both mutants decreased the sarcoplasmic reticulum Ca2+-storing capacity and reduced the amplitude of I(Ca)-induced Ca2+ transients and of spontaneous Ca2+ sparks in permeabilized myocytes. Exposure of myocytes to isoproterenol caused the development of delayed afterdepolarizations in CASQ2(G112+5X). CONCLUSIONS: CASQ2(L167H) and CASQ2(G112+5X) alter CASQ2 function in cardiac myocytes, which leads to reduction of active sarcoplasmic reticulum Ca2+ release and calcium content. In addition, CASQ2(G112+5X) displays altered calcium-binding properties and leads to delayed afterdepolarizations. We conclude that the 2 CASQ2 mutations identified in CPVT create distinct abnormalities that lead to abnormal intracellular calcium regulation, thus facilitating the development of tachyarrhythmias.


Asunto(s)
Calsecuestrina/genética , Síncope/genética , Taquicardia Ventricular/genética , Sustitución de Aminoácidos , Animales , Niño , Femenino , Técnicas de Transferencia de Gen , Tamización de Portadores Genéticos , Humanos , Masculino , Células Musculares/fisiología , Mutagénesis Sitio-Dirigida , Mutación , Linaje , Mutación Puntual , Ratas , Taquicardia Ventricular/fisiopatología , Transfección
2.
Circ Res ; 96(10): e77-82, 2005 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-15890976

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disease characterized by adrenergically mediated polymorphic ventricular tachycardia leading to syncope and sudden cardiac death. The autosomal dominant form of CPVT is caused by mutations in the RyR2 gene encoding the cardiac isoform of the ryanodine receptor. In vitro functional characterization of mutant RyR2 channels showed altered behavior on adrenergic stimulation and caffeine administration with enhanced calcium release from the sarcoplasmic reticulum. As of today no experimental evidence is available to demonstrate that RyR2 mutations can reproduce the arrhythmias observed in CPVT patients. We developed a conditional knock-in mouse model carrier of the R4496C mutation, the mouse equivalent to the R4497C mutations identified in CPVT families, to evaluate if the animals would develop a CPVT phenotype and if beta blockers would prevent arrhythmias. Twenty-six mice (12 wild-type (WT) and 14RyR(R4496C)) underwent exercise stress testing followed by epinephrine administration: none of the WT developed ventricular tachycardia (VT) versus 5/14 RyR(R4496C) mice (P=0.02). Twenty-one mice (8 WT, 8 RyR(R4496C), and 5 RyR(R4496C) pretreated with beta-blockers) received epinephrine and caffeine: 4/8 (50%) RyR(R4496C) mice but none of the WT developed VT (P=0.02); 4/5 RyR(R4496C) mice pretreated with propranolol developed VT (P=0.56 nonsignificant versus RyR(R4496C) mice). These data provide the first experimental demonstration that the R4496C RyR2 mutation predisposes the murine heart to VT and VF in response caffeine and/or adrenergic stimulation. Furthermore, the results show that analogous to what is observed in patients, beta adrenergic stimulation seems ineffective in preventing life-threatening arrhythmias.


Asunto(s)
Modelos Animales de Enfermedad , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Fibrilación Ventricular/genética , Animales , Cafeína/farmacología , Electrocardiografía , Epinefrina/farmacología , Ratones , Taquicardia Ventricular/prevención & control , Fibrilación Ventricular/prevención & control
3.
Circ Res ; 96(7): 800-7, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15761194

RESUMEN

Short QT syndrome (SQTS) leads to an abbreviated QTc interval and predisposes patients to life-threatening arrhythmias. To date, two forms of the disease have been identified: SQT1, caused by a gain of function substitution in the HERG (I(Kr)) channel, and SQT2, caused by a gain of function substitution in the KvLQT1 (I(Ks)) channel. Here we identify a new variant, "SQT3", which has a unique ECG phenotype characterized by asymmetrical T waves, and a defect in the gene coding for the inwardly rectifying Kir2.1 (I(K1)) channel. The affected members of a single family had a G514A substitution in the KCNJ2 gene that resulted in a change from aspartic acid to asparagine at position 172 (D172N). Whole-cell patch-clamp studies of the heterologously expressed human D172N channel demonstrated a larger outward I(K1) than the wild-type (P<0.05) at potentials between -75 mV and -45 mV, with the peak current being shifted in the former with respect to the latter (WT, -75 mV; D172N, -65 mV). Coexpression of WT and mutant channels to mimic the heterozygous condition of the proband yielded an outward current that was intermediate between WT and D172N. In computer simulations using a human ventricular myocyte model the increased outward I(K1) greatly accelerated the final phase of repolarization, and shortened the action potential duration. Hence, unlike the known mutations in the two other SQTS forms (N588K in HERG and V307L in KvLQT1), simulations using the D172N and WT/D172N mutations fully accounted for the ECG phenotype of tall and asymmetrically shaped T waves. Although we were unable to test for inducibility of arrhythmia susceptibility due to lack of patients' consent, our computer simulations predict a steeper steady-state restitution curve for the D172N and WT/D172N mutation, compared with WT or to HERG or KvLQT1 mutations, which may predispose SQT3 patients to a greater risk of reentrant arrhythmias.


Asunto(s)
Electrocardiografía , Mutación , Canales de Potasio de Rectificación Interna/genética , Taquicardia/etiología , Potenciales de Acción , Animales , Células CHO , Preescolar , Cricetinae , Femenino , Humanos , Canales de Potasio de Rectificación Interna/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA