Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hum Genomics ; 17(1): 102, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37968704

RESUMEN

BACKGROUND: Next-generation sequencing has had a significant impact on genetic disease diagnosis, but the interpretation of the vast amount of genomic data it generates can be challenging. To address this, the American College of Medical Genetics and Genomics and the Association for Molecular Pathology have established guidelines for standardized variant interpretation. In this manuscript, we present the updated Hospital Israelita Albert Einstein Standards for Constitutional Sequence Variants Classification, incorporating modifications from leading genetics societies and the ClinGen initiative. RESULTS: First, we standardized the scientific publications, documents, and other reliable sources for this document to ensure an evidence-based approach. Next, we defined the databases that would provide variant information for the classification process, established the terminology for molecular findings, set standards for disease-gene associations, and determined the nomenclature for classification criteria. Subsequently, we defined the general rules for variant classification and the Bayesian statistical reasoning principles to enhance this process. We also defined bioinformatics standards for automated classification. Our workgroup adhered to gene-specific rules and workflows curated by the ClinGen Variant Curation Expert Panels whenever available. Additionally, a distinct set of specifications for criteria modulation was created for cancer genes, recognizing their unique characteristics. CONCLUSIONS: The development of an internal consensus and standards for constitutional sequence variant classification, specifically adapted to the Brazilian population, further contributes to the continuous refinement of variant classification practices. The aim of these efforts from the workgroup is to enhance the reliability and uniformity of variant classification.


Asunto(s)
Pruebas Genéticas , Variación Genética , Humanos , Estados Unidos , Mutación , Reproducibilidad de los Resultados , Teorema de Bayes , Genoma Humano
2.
Curr Genet ; 67(4): 663-672, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33751147

RESUMEN

The CRISPR-Cas are adaptive immune systems found in archaea and bacteria, responsible for providing sequence-specific resistance against foreign DNA. Strains of Pseudomonas aeruginosa may carry CRISPR/Cas system types I-F, I-E and/or I-C; however, several aspects related to the epidemiology and functionality of these systems have not yet been revealed. Here, we report 13 genomes of clinical strains of P. aeruginosa from Brazil that were positive for CRISPR/Cas system types I-F and I-E, a rare feature in this species. The phylogenetic tree, which was constructed with 161 other publicly available genomes, suggested no direct relationship between positive strains, and the various types of CRISPR/Cas systems were spread throughout the tree. Comparative analysis of the genetic locations of type I-F and a specific orphan CRISPR array (without cas genes), named the LES locus, showed sequence similarities between this orphan locus and type I-F, but these LES loci were inserted in a different genomic location. We also report the presence of prophages, the presence of anti-CRISPR genes, and possibly the presence of self-targeting spacers. Here, we conclude that CRISPR/Cas is highly associated with certain lineages and is spread throughout the phylogenetic tree, showing no clear pattern of evolutionary distribution. Moreover, the LES locus might be a CRISPR1 locus related to type I-F that may have been misplaced and maintained over time. Furthermore, strains carrying I-F and I-E are rare, and not all of them are closely related. Further functional work is needed to better comprehend if aspects reported in this study are functional, including the LES locus, self-targeting spacers, anti-CRISPR protection, and I-F/I-E-carrying lineages.


Asunto(s)
Sistemas CRISPR-Cas/genética , Genoma Bacteriano/genética , Genómica , Pseudomonas aeruginosa/genética , Bacterias/genética , Brasil , Humanos , Filogenia , Pseudomonas aeruginosa/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA