Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Am Soc Nephrol ; 25(7): 1474-85, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24511123

RESUMEN

Activation of Rap1 by exchange protein activated by cAMP (Epac) promotes cell adhesion and actin cytoskeletal polarization. Pharmacologic activation of Epac-Rap signaling by the Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP during ischemia-reperfusion (IR) injury reduces renal failure and application of 8-pCPT-2'-O-Me-cAMP promotes renal cell survival during exposure to the nephrotoxicant cisplatin. Here, we found that activation of Epac by 8-pCPT-2'-O-Me-cAMP reduced production of reactive oxygen species during reoxygenation after hypoxia by decreasing mitochondrial superoxide production. Epac activation prevented disruption of tubular morphology during diethyl maleate-induced oxidative stress in an organotypic three-dimensional culture assay. In vivo renal targeting of 8-pCPT-2'-O-Me-cAMP to proximal tubules using a kidney-selective drug carrier approach resulted in prolonged activation of Rap1 compared with nonconjugated 8-pCPT-2'-O-Me-cAMP. Activation of Epac reduced antioxidant signaling during IR injury and prevented tubular epithelial injury, apoptosis, and renal failure. Our data suggest that Epac1 decreases reactive oxygen species production by preventing mitochondrial superoxide formation during IR injury, thus limiting the degree of oxidative stress. These findings indicate a new role for activation of Epac as a therapeutic application in renal injury associated with oxidative stress.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/fisiología , Túbulos Renales Proximales/metabolismo , Estrés Oxidativo , Urotelio/metabolismo , Animales , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Factores de Intercambio de Guanina Nucleótido/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Urotelio/efectos de los fármacos
2.
Biofabrication ; 10(3): 034101, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29693552

RESUMEN

Lithography-based three-dimensional (3D) printing technologies allow high spatial resolution that exceeds that of typical extrusion-based bioprinting approaches, allowing to better mimic the complex architecture of biological tissues. Additionally, lithographic printing via digital light processing (DLP) enables fabrication of free-form lattice and patterned structures which cannot be easily produced with other 3D printing approaches. While significant progress has been dedicated to the development of cell-laden bioinks for extrusion-based bioprinting, less attention has been directed towards the development of cyto-compatible bio-resins and their application in lithography-based biofabrication, limiting the advancement of this promising technology. In this study, we developed a new bio-resin based on methacrylated poly(vinyl alcohol) (PVA-MA), gelatin-methacryloyl (Gel-MA) and a transition metal-based visible light photoinitiator. The utilization of a visible light photo-initiating system displaying high molar absorptivity allowed the bioprinting of constructs with high resolution features, in the range of 25-50 µm. Biofunctionalization of the resin with 1 wt% Gel-MA allowed long term survival (>90%) of encapsulated cells up to 21 d, and enabled attachment and spreading of endothelial cells seeded on the printed hydrogels. Cell-laden hydrogel constructs of high resolution with complex and ordered architecture were successfully bioprinted, where the encapsulated cells remained viable, homogenously distributed and functional. Bone and cartilage tissue synthesis was confirmed by encapsulated stem cells, underlining the potential of these DLP-bioprinted hydrogels for tissue engineering and biofabrication. Overall, the PVA-MA/Gel-MA bio-resin is a promising material for biofabrication and provides important cues for the further development of lithography-based bioprinting of complex, free-form living tissue analogues.


Asunto(s)
Resinas Acrílicas/química , Bioimpresión/métodos , Técnicas de Cultivo de Célula/métodos , Andamios del Tejido/química , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Gelatina/química , Humanos , Hidrogeles/química , Luz , Metacrilatos/química , Alcohol Polivinílico/química , Ingeniería de Tejidos/métodos
3.
Antioxid Redox Signal ; 22(1): 15-28, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25069953

RESUMEN

UNLABELLED: Reduction-oxidation (redox) signaling, the translation of an oxidative intracellular environment into a cellular response, is mediated by the reversible oxidation of specific cysteine thiols. The latter can result in disulfide formation between protein hetero- or homodimers that alter protein function until the local cellular redox environment has returned to the basal state. We have previously shown that this mechanism promotes the nuclear localization and activity of the Forkhead Box O4 (FOXO4) transcription factor. AIMS: In this study, we sought to investigate whether redox signaling differentially controls the human FOXO3 and FOXO4 paralogs. RESULTS: We present evidence that FOXO3 and FOXO4 have acquired paralog-specific cysteines throughout vertebrate evolution. Using a proteome-wide screen, we identified previously unknown redox-dependent FOXO3 interaction partners. The nuclear import receptors Importin-7 (IPO7) and Importin-8 (IPO8) form a disulfide-dependent heterodimer with FOXO3, which is required for its reactive oxygen species-induced nuclear translocation. FOXO4 does not interact with IPO7 or IPO8. INNOVATION AND CONCLUSION: IPO7 and IPO8 control the nuclear import of FOXO3, but not FOXO4, in a redox-sensitive and disulfide-dependent manner. Our findings suggest that evolutionary acquisition of cysteines has contributed to regulatory divergence of FOXO paralogs, and that phylogenetic analysis can aid in the identification of cysteines involved in redox signaling.


Asunto(s)
Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , beta Carioferinas/metabolismo , Western Blotting , Proteínas de Ciclo Celular , Línea Celular Tumoral , Cisteína/metabolismo , Factores de Transcripción Forkhead , Humanos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Espectrometría de Masas en Tándem
4.
Macromol Biosci ; 12(1): 93-103, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21998092

RESUMEN

The development of a macromolecular conjugate of a multitargeted tyrosine kinase inhibitor is described that can be used for renal-specific delivery into proximal tubular cells. A novel sunitinib analogue, that is, 17864, is conjugated to a NH(2) -PAMAM-G3 dendrimer via the platinum (II)-based Universal Linkage System (ULS™). The activity of 17864 is retained after coordination to the ULS linker alone or when coupled to NH(2) -PAMAM-G3. 17864-UlS-NH(2) -PAMAM-G3 is non-toxic to proximal tubular cells in vitro. After intravenous administration to mice, 17864-UlS-NH(2) -PAMAM-G3 rapidly and efficiently accumulates in the kidneys. These results are encouraging for future studies focusing on the development of novel therapeutics for the treatment of renal diseases.


Asunto(s)
Dendrímeros/administración & dosificación , Dendrímeros/análisis , Portadores de Fármacos/administración & dosificación , Riñón/química , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/análisis , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Dendrímeros/química , Portadores de Fármacos/análisis , Humanos , Inyecciones Intravenosas , Riñón/efectos de los fármacos , Túbulos Renales Proximales/química , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Ratones , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA