RESUMEN
Polycyclic aromatic hydrocarbons (PAHs), released from petrogenic, pyrogenic or diagenetic sources (degradation of wood materials), are of global concern due to their adverse effects, and potential for long-range transport. While dissolved PAHs have been frequently reported in the literature, there has been no consistent approach of sampling across water bodies. Passive samplers from the AQUA/GAPS-MONET initiative were deployed at 46 sites (28 marine and 18 freshwater), and analyzed for 28 PAHs and six polycyclic musks (PCMs) centrally. Freely dissolved PAH concentrations were dominated by phenanthrene (mean concentration 1500 pg L-1; median 530 pg L-1) and other low molecular weight compounds. Greatest concentrations of phenanthrene, fluoranthene, and pyrene were typically from the same sites, mostly in Europe and North America. Of the PCMs, only galaxolide (72% of samples) and tonalide (61%) were regularly detected, and were significantly cross-correlated. Benchmarking of PAHs relative to penta- and hexachlorobenzene confirmed that the most remote sites (Arctic, Antarctic, and mountain lakes) displayed below average PAH concentrations. Concentrations of 11 of 28 PAHs, galaxolide and tonalide were positively correlated (P < 0.05) with population density within a radius of 5 km of the sampling site. Characteristic PAH ratios gave conflicting results, likely reflecting multiple PAH sources and postemission changes.
RESUMEN
Persistent organic pollutants (POPs) are recognized as pollutants of global concern, but so far, information on the trends of legacy POPs in the waters of the world has been missing due to logistical, analytical, and financial reasons. Passive samplers have emerged as an attractive alternative to active water sampling methods as they accumulate POPs, represent time-weighted average concentrations, and can easily be shipped and deployed. As part of the AQUA-GAPS/MONET, passive samplers were deployed at 40 globally distributed sites between 2016 and 2020, for a total of 21 freshwater and 40 marine deployments. Results from silicone passive samplers showed α-hexachlorocyclohexane (HCH) and γ-HCH displaying the greatest concentrations in the northern latitudes/Arctic Ocean, in stark contrast to the more persistent penta (PeCB)- and hexachlorobenzene (HCB), which approached equilibrium across sampling sites. Geospatial patterns of polychlorinated biphenyl (PCB) aqueous concentrations closely matched original estimates of production and use, implying limited global transport. Positive correlations between log-transformed concentrations of Σ7PCB, ΣDDTs, Σendosulfan, and Σchlordane, but not ΣHCH, and the log of population density (p < 0.05) within 5 and 10 km of the sampling sites also supported limited transport from used sites. These results help to understand the extent of global distribution, and eventually time-trends, of organic pollutants in aquatic systems, such as across freshwaters and oceans. Future deployments will aim to establish time-trends at selected sites while adding to the geographical coverage.
Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , Bifenilos Policlorados/análisis , Monitoreo del Ambiente/métodos , Hexaclorobenceno/análisis , Agua Dulce , Contaminantes Atmosféricos/análisis , Plaguicidas/análisis , Hidrocarburos Clorados/análisisRESUMEN
A method based on the use of GC coupled to Q-exactive Orbitrap mass spectrometry (GC-Orbitrap-MS) has been developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) at sub-picogram levels. Outdoor ambient air particulate matter (PM2.5) and standard reference materials (SRM2260a) were analyzed in full scan mode showing low instrumental uncertainties (1-22%) and high linearity over a wide concentration range (0.5 pg and 500 pg/µL). Good reproducibility was obtained compared to the use of conventional single quadrupole GC-MS of PM samples. The quantification limit of the GC-Orbitrap-MS method for full scan analysis of PAHs in outdoor ambient air PM samples was 0.5 pg/µL. This low limit allowed the analysis of PAHs in samples collected with low volumes (< 0.5 m3), such as punch samples from whole filters or filter strips from personal exposure monitoring equipment. PAHs were successfully analyzed in filter strips from real-time Aethalometer AE51 equivalent black carbon (eBC) analyzers used in urban and rural sites, and in personal exposure monitors of firefighters during prescribed burns. The correlations between PAHs and eBC in these analyses were very strong (r2 ≥ 0.93). However, the equations obtained reflected the dominance of different emission sources, such as traffic in urban areas, wood burning for domestic heating, or wildfires. The method reported here affords the analyses of PAHs in high precision studies of atmospheric PM samples, e.g., high frequency sampling of low volumes, affording personal exposure monitoring assessments.
Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Reproducibilidad de los Resultados , Material Particulado/análisisRESUMEN
We performed a systematic sampling and analysis of airborne SARS-CoV-2 RNA in different hospital areas to assess viral spread. Systematic air filtration was performed in rooms with COVID-19 infected patients, in corridors adjacent to these rooms, to rooms of intensive care units, and to rooms with infected and uninfected patients, and in open spaces. RNA was extracted from the filters and real-time reverse transcription polymerase chain reaction was performed using the LightMix Modular SARS-CoV-2 E-gene. The highest occurrence of RNA was found in the rooms with COVID-19 patients (mean 2600 c/m3) and the adjacent corridor (mean 4000 c/m3) which was statistically significant more exposed (p < 0.01). This difference was related to the ventilation systems. As is commonly found in many hospitals, each of the rooms had an individual air inlet and outlet, while in the corridors these devices were located at the distance of every four rooms. There was a significant transfer of viruses from the COVID-19 patients' rooms to the corridors. The airborne SARS-CoV-2 RNA in the corridors of ICUs with COVID-19 patients or care rooms of uninfected patients were ten times lower, averages 190 c/m3 and 180 c/m3, respectively, without presenting significant differences. In all COVID-19 ICU rooms, patients were intubated and connected to respirators that filtered all exhaled air and prevented virus release, resulting in significantly lower viral concentrations in adjacent corridors. The results show that the greatest risk of nosocomial infection may also occur in hospital areas not directly exposed to the exhaled breath of infected patients. Hospitals should evaluate the ventilation systems of all units to minimize possible contagion and, most importantly, direct monitoring of SARS-CoV-2 in the air should be carried out to prevent unexpected viral exposures.
Asunto(s)
COVID-19 , SARS-CoV-2 , Hospitales , Humanos , ARN ViralRESUMEN
Polycyclic aromatic hydrocarbons are air pollutants that affect the human health and the environment, and their accurate determination in outdoor and indoor environments is important. This study presents a methodology for sampling and analysis of semi-volatile compounds in ambient air with emphasis on the polycyclic aromatic hydrocarbons, collected with low-volume pumps (4.8 m3) in unconditioned solid phase extraction cartridges (Isolute ENV+). Sampling in SPE cartridges with low-volume pumps allows the collection of both gas and particulate phase compounds in indoor as well as outdoor environments, and reduces the number of extraction steps required as well as the solvent volume used for extraction. Analysis of the 16 US-EPA priority PAHs after extraction was conducted by GC-MS/MS with recoveries of the PAHs 40-118 %. No breakthrough was detected during sampling. Moreover, the methodology includes storage test to assess the conservation of PAHs in the SPE cartridges in heat-sealable Kapac bags; simulating transport from sampling sites to laboratory, and storage under room, cold and frozen conditions at different time-intervals, up to 3 months after sampling. The results showed that concentration levels remained constant across various storage time intervals and temperatures, with naphthalene and acenaphthylene being the only exceptions, showing high blank levels for the first and losses at room temperature for the later. The method quantification limits, including sampling, storage and GC-MS/MS analysis ranged from 2000 pg m-3 for naphthalene and 300 pg m-3 for phenanthrene to less than 20.0 pg m-3 for higher molecular and less volatile PAHs, such as benzo[a]pyrene (LOQ = 8.0 pg m-3). The feasibility of the method was tested by sampling indoors under urban background air conditions, showing individual PAH concentrations 4 to 10 times higher than their method quantification limits.
Asunto(s)
Contaminantes Atmosféricos , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Policíclicos Aromáticos , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Compuestos Orgánicos Volátiles , Hidrocarburos Policíclicos Aromáticos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Espectrometría de Masas en Tándem/métodos , Extracción en Fase Sólida/métodos , Límite de Detección , Reproducibilidad de los ResultadosRESUMEN
Understanding the chemical composition of volatile organic compounds (VOCs) near emission sources and in the background atmosphere above the mixing layer height (MLH) provides insight into the fate of VOCs and is essential for developing effective air pollution control strategies. Unfortunately, knowledge of the qualitative and quantitative changes of VOCs and their vertical transport in the atmosphere is limited due to challenging experimental setups. In this study, an innovative method using tethered balloons was tested and implemented to sample 40 VOCs and O3 below and above the MLH at an industrial site in Spain. VOC and O3 samples were collected with different types of sorbent cartridges and analyzed using chromatographic techniques. Overall, a decrease in VOC concentration with altitude was observed along with a homogeneous chemical composition up to 300 m AGL. This decrease with altitude denoted the primary origin of these VOCs, which were strongly influenced by industrial processes and the traffic emissions in the area. Conversely, O3 concentrations were notably higher at balloon level and increased during nighttime temperature inversion episodes in those samples collected above the mixing layer. Ground samples contained freshly emitted pollutants of industrial origin, while balloon samples consisted of aged pollutants from traffic, other combustion sources, or from a secondary origin. This study is the first to assess the vertical composition of VOCs at a site of these characteristics and demonstrates that tethered balloons are a cost-effective method for studying air pollution dynamics from the ground to higher altitudes in the low troposphere.
RESUMEN
The introduction of invasive fish species to aquatic ecosystems has been demonstrated to cause disastrous ecological effects. Current conservation strategies regard rotenone-containing piscicide formulations, such as commercial product CFT Legumine, as a potentially viable alternative to the cumbersome traditional approaches to fish eradication. This consideration relies on the fast degradation of rotenone and its relatively rapid dissipation from the environment. Piscicide treatments in fragile aquatic ecosystems should thus monitor not only rotenone concentrations following application, but also other byproducts and degradation products. We present a methodology for the analysis of rotenoids in fresh and brackish waters that addresses two main challenges: the accurate determination of applied concentrations in different salinity concentrations by performing a simplified on-site solid-phase extraction, overcoming the fast degradation of rotenone in sample storage conditions, and the selective analysis of rotenoid byproducts and degradation products by gas chromatography coupled to mass spectrometry. Limits of quantification were below the ecological no-effect concentration of rotenone (2 µg/L) and average recoveries exceeded 80%. Accuracy (compared to expected values) and precision (deviation of replicates) ranged from 78 to 103% and 3 to 14%, respectively, across various rotenoid concentrations. These metrics are more than satisfactory for the intended application of this simplified procedure. The method was applied to piscicide-treated samples, revealing significant and fast degradation of parent rotenoids in storage conditions, as well as a non-negligible accumulation of rotenone in the particulate fraction of water that could impact the effectivity of eradication efforts.
Asunto(s)
Peces , Cromatografía de Gases y Espectrometría de Masas , Rotenona , Extracción en Fase Sólida , Contaminantes Químicos del Agua , Rotenona/análisis , Rotenona/química , Animales , Cromatografía de Gases y Espectrometría de Masas/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Extracción en Fase Sólida/métodos , Aguas Salinas/química , Agua Dulce/química , Límite de Detección , Monitoreo del Ambiente/métodos , Reproducibilidad de los ResultadosRESUMEN
The concentrations of legacy and currently emitted organic pollutants were determined in the freely dissolved phase of water from six high-mountain lakes in the Pyrenees (1619-2453 m) by passive water sampling. Low-density polyethylene (LDPE) and silicone rubber (SR) sheets were exposed for three consecutive periods lasting each one year between 2017 and 2020 for the study of polychlorinated biphenyls (PCBs), organophosphate esters (OPEs), polycyclic aromatic hydrocarbons (PAHs), and other organochlorine compounds (e.g., hexachlorobenzene, HCB). HCB concentrations (1.0-14 pg L-1) remained essentially the same as those measured with pumping systems over two decades ago in the same area. Æ©PAHs (35-920 pg L-1) were around half of those observed in the past, which agrees with reductions in European atmospheric emissions. Æ©PCB concentrations (1.2-2.2 pg L-1) were substantially lower, although unexpectedly large differences could be due to comparing yearly averages from the present study to seasonally variable (i.e., affected by snowmelt, stratification, and colloidal organic matter) episodic pumping measurements from previous studies. Æ©OPEs (139-2849 pg L-1) were measured for the first time in this area and were found at high concentrations in some sites. Concentrations of most compounds obtained with LDPE and SR samplers agreed with each other by ratios generally lower than three or four times, except for a few PAHs and OPEs. Diffusive exchange flux calculations between the atmospheric gas phase and the freely dissolved water phase revealed net deposition of pollutants from air to water, except for some OPEs and PCBs presenting equilibrium conditions, and HCB with volatilization fluxes. Atmospheric degradation fluxes of PAHs and OPEs pointed at competing removal mechanisms that support the air-to-water direction of their diffusive exchange, while PCBs and organochlorines were not affected by photodegradation. In their current state, these remote lakes accumulate many emerging and legacy pollutants subject to long-range atmospheric transport.
Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Hidrocarburos Clorados , Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Contaminantes Ambientales/análisis , Bifenilos Policlorados/análisis , Agua , Hexaclorobenceno/análisis , Lagos , Polietileno , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Hidrocarburos Policíclicos Aromáticos/análisisRESUMEN
High-altitude mountain areas are sentinel ecosystems for global environmental changes such as anthropogenic pollution. In this study, we report a source apportionment of particulate material with an aerodynamic diameter smaller than 10 µm (PM10) in a high-altitude site in southern Europe (Sierra Nevada Station; SNS (2500 m a.s.l.)) during summer 2021. The emission sources and atmospheric secondary processes that determine the composition of aerosol particles in Sierra Nevada National Park (Spain) are identified from the concentrations of organic carbon (OC), elemental carbon (EC), 12 major inorganic compounds, 18 trace elements and 44 organic molecular tracer compounds in PM10 filter samples collected during day- and nighttime. The multivariate analysis of the joint dataset resolved five main PM10 sources: 1) Saharan dust, 2) advection from the urbanized valley, 3) local combustion, 4) smoke from a fire-event, and 5) aerosol from regional recirculation with high contribution of particles from secondary inorganic and organic aerosol formation processes. PM sources were clearly associated with synoptic meteorological conditions, and day- and nighttime circulation patterns typical of mountainous areas. Although a local pollution source was identified, the contribution of this source to PM10, OC and EC was small. Our results evidence the strong influence of middle- and long-range transport of aerosols, mainly from anthropogenic origin, on the aerosol chemical composition at this remote site.
RESUMEN
In highly industrialized areas, abating particulate matter (PM) is complex owing to the variety of emission sources with different chemical profiles that may mix in the atmosphere. Gijón-an industrial city in northern Spain-was selected as a case study to better understand the key emission sources and improve air quality in highly industrialized areas. Accordingly, the trends of various air quality indicators (PM10, PM2.5, SO2, NO2, and O3) during the past decade (2010-2019) were analyzed. Additionally, the inorganic and organic PM10 compositions were analyzed for source apportionment studies and to assess the impact of COVID-19 restrictions on PM10 levels. The results revealed that over the past decade, PM10 concentrations decreased, whereas PM2.5 concentrations dominated by secondary inorganic aerosols (SIA) remained relatively constant. Notably, during the COVID-19 lockdown, the PM10 concentration increased by 9.1%, primarily owing to an increase in regional SIA (>65%) due to specific meteorological conditions that favor the formation of secondary PM from gaseous precursors. Overall, eight key PM10 sources were identified: "industrial fugitive PM resuspension" (FPM, 28% of mean PM10 concentration), "aged sea spray" (SSp, 16%), "secondary nitrate" (SN, 15%), "local diffuse source" (LPM, 12%), "solid fuel combustion" (SFC, 7.8%), "biomass burning" (BB, 7.4%), "secondary sulphate" (SSu, 6.0%), and "sinter" (SIN, 4.5%). The PM10 concentration in Gijón is significantly influenced by the integrated steel industry (FPM, SFC, and SIN; 41% of PM10) and fugitive primary PM emissions were the main source (FPM and LPM; 40%). To reduce PM10 and PM2.5 concentrations, industrial fugitive emissions, which are currently poorly regulated, and SIA precursors must be abated. This study provides a methodological approach that combines trend analysis, chemical speciation, and source apportionment for assessing pollution abatement strategies in industrialized areas with a complex mix of emission sources.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Anciano , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , España , Monitoreo del Ambiente/métodos , Control de Enfermedades Transmisibles , Aerosoles y Gotitas Respiratorias , Contaminación del Aire/análisis , Emisiones de Vehículos/análisisRESUMEN
Urban aerosol samples collected in Barcelona between 2008 and 2009 were toxicologically characterised by means of two complementary methodologies allowing evaluation of their Reactive Oxidative Stress (ROS)-generating capacity: the plasmid scission assay (PSA) and the dichlorodihydrofluorescin assay (DCFH). The PSA determined the PM dose able to damage 50% of a plasmid DNA molecule (TD(50) values), an indication of the ability of the sample to exert potential oxidative stress, most likely by formation of ·OH. This toxicity indicator did not show dependency on different air mass origins (African dust, Atlantic advection), indicating that local pollutant sources within or near the city are most likely to be mainly responsible for PM health effect variations. The average TD(50) values show PM(2.5-0.1) samples to be more toxic than the PM(10-2.5) fraction, with doses similar to those reported in previous studies in polluted urban areas. In addition, the samples were also evaluated using the oxidant-sensitive probe DCFH confirming the positive association between the amount of DNA damage and the generation of reactive oxidant species capable of inducing DNA strand break. Results provided by the PSA were compared with those from two other different methodologies to evaluate human health risk: (1) the toxicity of particulate PAHs expressed as the calculated toxicity equivalent of benzo[a]pyrene (BaPteq) after application of the EPA toxicity factors, and (2) the cancer risk assessment of the different PM sources detected in Barcelona with the receptor model Positive Matrix Factorisation (PMF) and the computer programme Multilinear Engine 2 (ME-2) using the organic and inorganic chemical compositions of particles. No positive associations were found between PSA and the toxicity of PAHs, probably due to the inefficiency of water in extracting organic compounds. On the other hand, the sum of cancer risk estimates calculated for each of the selected days for the PSA was found to correlate with TD(50) values in the fine fraction, with fuel oil combustion and industrial emissions therefore being most implicated in negative health effects. Further studies are necessary to determine whether toxicity is related to PM chemical composition and sources, or rather to its size distribution.
Asunto(s)
Aerosoles/toxicidad , Contaminantes Atmosféricos/toxicidad , Exposición a Riesgos Ambientales/estadística & datos numéricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Ciudades , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Humanos , Modelos Químicos , Neoplasias/epidemiología , Estrés Oxidativo , Tamaño de la Partícula , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Medición de RiesgoRESUMEN
The air concentrations of organophosphate esters (OPEs) were studied in a network of six remote high-mountain areas of the Pyrenees located along an altitudinal profile between 1619 m and 2453 m above sea level on a restricted planar surface to assess their vertical distribution based on long-range atmospheric transport and temperature gradients. Polyurethane foam passive samplers were used in five periods spanning over three years (September 2017-October 2020). The sum of concentrations of five OPEs were between 5.3 and 100 pg m-3, averaging 16-53 pg m-3 across campaigns at the different locations. These concentrations were much lower than those observed in areas under anthropogenic influence but also than those found in low altitude remote continental sites. A significant progressive change in predominant compounds was observed along the altitudinal gradient, with prevalence of tris(1-chloro-2-propyl) phosphate (TCIPP) or tris(2-chloroethyl) phosphate (TCEP) below or above 2300 m above sea level, respectively. This trend was consistent with the higher volatility of TCEP, which was retained at greater extent at lower environmental temperatures (higher altitude). A significant temperature dependence of the gas phase concentrations was observed for TCEP, TCIPP and triphenyl phosphate (TPHP), which could be explained by retention in the cold periods, predominantly adsorbed in snow, and their release to the atmosphere during snowmelt. This mechanism was consistent with the good agreement found between the vaporization enthalpies measured under laboratory conditions and the experimental values obtained from the slopes of the significant linear regressions when representing the vertical gradients.
Asunto(s)
Retardadores de Llama , Monitoreo del Ambiente , Ésteres , Retardadores de Llama/análisis , Organofosfatos , TemperaturaRESUMEN
Air pollution constitutes an environmental problem that it is known to cause many serious adverse effects on the cardiovascular and respiratory systems. The chemical characterization of particulate matter (PM) is key for a better understanding of the associations between chemistry and toxicological effects. In this work, the chemical composition and biological effects of fifteen PM10 air filter samples from three air quality stations in Catalonia with contrasting air quality backgrounds were investigated. Three-dimensional (3D) lung cancer cell cultures were exposed to these sample extracts, and cytotoxicity, reactive oxygen species (ROS) induction, metabolomics, and lipidomics were explored. The factor analysis method Multivariate Curve Resolution-Alternating Least-Squares (MCR-ALS) was employed for an integrated interpretation of the associations between chemical composition and biological effects, which could be related to urban traffic emission, biomass burning smoke, and secondary aerosols. In this pilot study, a novel strategy combining new approach methodologies and chemometrics provided new insights into the biomolecular changes in lung cells associated with different sources of air pollution. This approach can be applied in further research on air pollution toxicity to improve our understanding of the causality between chemistry and its effects.
RESUMEN
Polyurethane foam passive air samplers (PUF-PAS) are good candidates for the determination of gas-phase semi-volatile organic compound (SVOC) air concentrations in high-mountain areas over long periods because they do not require an energy supply. However, the harsh meteorological conditions present in such locations can increase the uncertainties inherently associated to PAS sampling rates due to the many variables involved in their calculation and to the assumptions made regarding PUF diffusive uptake mechanics, which can considerably bias the resulting concentrations. Therefore, we studied the performance of PUF-PASs in a remote location in the Pyrenees mountain range for the analysis of several SVOCs in air, including polychlorobiphenyls (PCBs), hexachlorobenzene, pentachlorobenzene, polycyclic aromatic hydrocarbons (PAHs), and the less studied emerging organophosphate flame retardants (OPFRs). An in-situ PUF-PAS calibration using Performance Reference Compounds (PRCs) provided compound- and sampler-specific sampling rates, showing mean experimental errors (12%) that adequately conformed to an estimate of their expanded theoretical uncertainties (15%). This showcases the suitability of this calibration strategy in an area with conditions beyond those typically considered in calibration efforts available to date. Moreover, gas-phase concentrations of the studied pollutants from PUF-PAS samples showed very good agreement (R2 up to 0.91, p < 0.01) when compared to those obtained using a conventional high-volume active air sampler (PUF-AAS), with some minor deviations observed for PAHs caused by the seasonality in their atmospheric concentrations. No relevant levels of pollutants preferentially bound to the particle phase were detected in the PUF-PASs, the particle infiltration efficiency of the sampler configuration used was found to be low, and compounds typically distributed between the gas and particle phases of AAS samples revealed profiles consistent with their vapor pressures, except for some OPFRs.
Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Poliuretanos , Compuestos Orgánicos Volátiles/análisisRESUMEN
The atmospheric gas-phase concentrations of several polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), hexachlorobenzene (HCB), and pentachlorobenzene (PeCB) were measured in six high-mountain sites in the Pyrenees (1619-2453 m). Polyurethane foam passive air samplers were used for this purpose, providing continuous records spanning over three years (2017-2020). The mean concentrations of ∑PCBs, HCB, and PeCB, 13 ± 4 pg m-3, 44 ± 18 pg m-3, and 23 ± 20 pg m-3, respectively, were of the order of those reported in other mountain sites and similar to those measured 20 years ago in the same area, evidencing the persistence of these compounds despite the international regulatory actions. The mean concentration of ∑PAHs was 631 ± 238 pg m-3, representing between two- and three-times lower values than 20 years ago in the same area, but still in the range of other mountain regions. Statistically significant increases in gas-phase concentrations at higher temperatures were observed for most compounds. The experimental phase-change pseudo-enthalpies calculated from the slopes of the regressions between the natural logarithm of the concentrations and the reciprocal of temperature were lower than the reference values for nearly all compounds. This difference suggested a main contribution of long-range atmospheric transport of the gas-phase PAH and organochlorine concentrations in this mountain area. However, the less volatile compounds such as benz[a]anthracene, PCB138, and PCB180 showed a closer similarity between experimental and laboratory enthalpies, indicating that a significant portion of the variations in concentration of these compounds originated from temperature-dependent diffusive exchange by re-volatilization from local surfaces. The concentrations found in these sentinel ecosystems demonstrate that long-range transport of organic pollutants remains a risk in remote continental environments.
Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Clorados , Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Ecosistema , Monitoreo del Ambiente , Hexaclorobenceno/análisis , Hidrocarburos Clorados/análisis , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisisRESUMEN
PM10 was collected during an EMEP winter campaign of 2017-2018 in two urban background sites in Barcelona (BCN) and Granada (GRA), two Mediterranean cities in the coast and inland, respectively. The concentrations of PM10, organic carbon (OC), elemental carbon (EC), and organic molecular tracer compounds such as hopanes, anhydro-saccharides, polycyclic aromatic hydrocarbon, and several biogenic and anthropogenic markers of secondary organic aerosols (SOA) were two times higher in GRA compared to BCN and related to the atmospheric mixing heights in the areas. Multivariate curve resolution (MCR-ALS) source apportionment analysis identified primary emissions sources (traffic + biomass burning) that were responsible for the 50% and 20% of the organic aerosol contributions in Granada and Barcelona, respectively. The contribution of biomass burning was higher in the holidays than in the working days in GRA while all primary combustion emissions decreased in holidays in BCN. The MCR-ALS identified that oxidative species and SOA formation processes contributed to 40% and 80% in Granada and Barcelona, respectively. Aged SOA was dominant in Granada and Barcelona under stagnant atmospheric conditions and in presence of air pollution. On the other hand, fresh SOA contributions from α-pinene oxidation (cis-pinonic acid) were three times higher in Barcelona than Granada and could be related to new particle formation, essentially due to overall cleaner air conditions and elevated air temperatures.
Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Ciudades , Monitoreo del Ambiente , Compuestos Orgánicos/análisis , Material Particulado/análisis , Estaciones del AñoRESUMEN
Bulk atmospheric deposition samples, including wet and dry deposition, were collected during 2004-2006 in four high mountain European lakes: Skalnate Pleso (Tatra mountains, Slovakia), Gossenköllesee (Alps, Austria), Redon (Pyrenees, Spain), and Lochnagar (Grampian Mountains, Scotland). Samples were analysed for polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), endosulfans, and polybromodiphenyl ethers (PBDEs). The deposition of PCBs, HCHs, and low brominated BDEs reflected baseline contributions from long range atmospheric transport. This was also the case for PAHs in Redon and Gossenköllesee, endosulfans in Lochnagar and Gossenköllesee and HCB in these three lakes. However, Skalnate received PAHs, endosulfans, and HCB from regional sources as it was the case for endosulfans in Redon. The distinct origin of these pollutants was reflected in the relative composition of some metabolites such as the proportion of endosulfan sulfate vs α- and ß-endosulfans or the relative composition of BDE47 and BDE99. Wet deposition was the main process for atmospheric removal of PAHs, HCHs, and HCB. In addition, warm season revolatilization from soils and melting snow with subsequent condensation at low temperature were significant for volatile PAHs, HCB, low chlorinated PCBs, and endosulfans. Reaction with OH radicals was not a significant loss process of HCHs and HCB in remote areas, dominated by wet deposition, whereas PCBs and PAHs were significantly removed by both wet deposition and OH radical oxidation, the latter dominating in the highest altitude sites. Photolysis was the main atmospheric removal process of PBDEs, dominating over atmospheric deposition and OH depletion in all sites.
RESUMEN
A sampling and analysis scheme was implemented to discriminate between inputs of polychlorodibenzo-p-dioxins and polychlorodibenzofurans (PCDD/Fs) at low concentrations in urban areas. Ambient air and soils were sampled and analyzed in five stations in the Metropolitan area of Barcelona (2018-2019); one located in a reference urban traffic site and four in the area of influence of an integrated waste management facility (IWMF) that included a solid waste incinerator. Seasonality was the main factor determining the PCDD/F composition, and involved lower values in the warmer months. This seasonal effect was related to enhanced photooxidation of PCDDs compared to PCDFs and faster depletion of the less chlorinated congeners due to volatility at higher ambient temperature; consistent with the compounds' octanol-air partition coefficients. The ratio 2,3,7,8-tetrachlorobenzofuran/1,2,3,4,6,7,8-heptachlorobenzofuran allowed, for the first time, identifying cases of preferential contributions of IWMF and traffic inputs, i.e. values of 0.06 and 0.32, respectively. Combination of this ratio with the airborne PCDD/F levels illustrated that the quantitative PCDD/F levels were not a useful criterion for elucidation between IWMF and traffic inputs. PCDD/Fs levels in soils ranged between 9.0 and 22 pg WHO-TEQ/g in the two sites closest to the IWMF, while the other sites, including the traffic site, showed values between 0.8 and 1.9 pg WHO-TEQ/g. The levels in the former group were higher than those observed in other urban areas and above 5 pg WHO-TEQ/g, which is a limit reference value in several European countries. The C7 and C8 observed congener distributions in all soils examined were different from those in the air samples and similar to those reported in sewage sludge from waste water treatment plants, not showing influences from IWMF or traffic PCDD/F inputs.
RESUMEN
Airborne particulate matter with an aerodynamic diameter smaller than 2.5 µg, PM2.5 was regularly sampled in classrooms (indoor) and playgrounds (outdoor) of primary schools from Barcelona. Three of these schools were located downtown and three in the periphery, representing areas with high and low traffic intensities. These aerosols were analyzed for organic molecular tracers and polycyclic aromatic hydrocarbons (PAHs) to identify the main sources of these airborne particles and evaluate the air quality in the urban location of the schools. Traffic emissions were the main contributors of PAHs to the atmospheres in all schools, with higher average concentrations in those located downtown (1800-2700 pg/m3) than in the periphery (760-1000 pg/m3). The similarity of the indoor and outdoor concentrations of the PAH is consistent with a transfer of outdoor traffic emissions to the indoor classrooms. This observation was supported by the hopane and elemental carbon concentrations in PM2.5, markers of motorized vehicles, that were correlated with PAHs. The concentrations of food-related markers, such as glucoses, sucrose, malic, azelaic and fatty acids, were correlated and were higher in the indoor atmospheres. These compounds were also correlated with plastic additives, such as phthalic acid and diisobutyl, dibutyl and dicyclohexyl phthalates. Clothing constituents, e.g., adipic acid, and fragrances, galaxolide and methyl dihydrojasmonate were also correlated with these indoor air compounds. All these organic tracers were correlated with the organic carbon of PM2.5, which was present in higher concentrations in the indoor than in the outdoor atmospheres.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Hidrocarburos Policíclicos Aromáticos , Instituciones Académicas , Aerosoles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , España , Emisiones de Vehículos/análisisRESUMEN
Potential adverse consequences of exposure to air pollutants during exercise include decreased lung function, and exacerbation of asthma and exercise-induced bronchoconstriction. These effects are especially relevant for athletes and during international competitions, as they may impact athletic performance. Thus, assessing and mitigating exposure to air pollutants during exercising should be encouraged in sports venues. A comprehensive air quality assessment was carried out during the World Relays Yokohama 2019, in the stadium and the warm-up track. The pilot included on-line and off-line instrumentation for gaseous and particulate pollutants and meteorological parameters, and the comparison with local reference data. Air quality perception and exacerbation of symptoms of already-diagnosed diseases (mainly respiratory and cardiovascular) were assessed by athletes by means of questionnaires during training sessions. Median NO2 concentrations inside the stadium (25.6-31.9 µgm-3) were in the range of the Yokohama urban background, evidencing the impact of urban sources (e.g., traffic) on athletes' exposure during training and competition. The assessment of hourly air pollutant trends was identified as a valuable tool to provide guidance to reduce atheletes' exposure, by identifying the periods of the day with lowest ambient concentrations. This strategy could be adopted to define training and competition schedules, and would have special added value for athletes with respiratory conditions. Personal exposure to polycyclic aromatic hydrocarbons was quantified through wearable silicone wristbands, and showed highly variability across volunteers. The wristbands are a simple approach to assess personal exposure to potentially toxic organic compounds. Further research would be necessary with regard to specific air pollutants that may trigger or exacerbate respiratory conditions typical of the athlete community. The availability of high time-resolved exposure data in the stadiums opens up the possibility to calculate doses of specific pollutants for individual athletes in future athletics events, to understand the impact of environmental factors on athletic performance.