Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626671

RESUMEN

Bovine herpesvirus 1 (BoHV-1) infects bovine species, causing respiratory infections, genital disorders and abortions. VP8 is the most abundant tegument protein of BoHV-1 and is critical for virus replication in cattle. In this study, the cellular transport of VP8 in BoHV-1-infected cells and its ability to alter the cellular lipid metabolism were investigated. A viral kinase, US3, was found to be involved in regulating these processes. In the early stages of infection VP8 was localized in the nucleus. Subsequently, presumably after completion of its role in the nucleus, VP8 was translocated to the cytoplasm. When US3 was deleted or the essential US3 phosphorylation site of VP8 was mutated in BoHV-1, the majority of VP8 was localized in the nuclei of infected cells. This suggests that phosphorylation by US3 may be critical for cytoplasmic localization of VP8. Eventually, the cytoplasmic VP8 was accumulated in the cis-Golgi apparatus but not in the trans-Golgi network, implying that VP8 was not involved in virion transport toward and budding from the cell membrane. VP8 caused lipid droplet (LD) formation in the nuclei of transfected cells and increased cellular cholesterol levels. Lipid droplets were not found in the nuclei of BoHV-1-infected cells when VP8 was cytoplasmic in the presence of US3. However, when US3 was deleted or phosphorylation residues in VP8 were mutated, nuclear VP8 and LDs appeared in BoHV-1-infected cells. The total cholesterol level was increased in BoHV-1-infected cells but not in ΔUL47-BoHV-1-infected cells, further supporting a role for VP8 in altering the cellular lipid metabolism during infection.IMPORTANCE Nuclear localization signals (NLSs) and nuclear export signals (NESs) are important elements directing VP8 to the desired locations in the BoHV-1-infected cell. In this study, a critical regulator that switches the nuclear and cytoplasmic localization of VP8 in BoHV-1-infected cells was identified. BoHV-1 used viral kinase US3 to regulate the cellular localization of VP8. Early during BoHV-1 infection VP8 was localized in the nucleus, where it performs various functions; once US3 was expressed, phosphorylated VP8 was cytoplasmic and ultimately accumulated in the cis-Golgi apparatus, presumably to be incorporated into virions. The Golgi localization of VP8 was only observed in virus-infected cells and not in US3-cotransfected cells, suggesting that this is mediated by other viral factors. Interestingly, VP8 was shown to cause increased cholesterol levels, which is a novel function for VP8 and a potential strategy to supply lipid for viral replication.


Asunto(s)
Proteínas de la Cápside/metabolismo , Infecciones por Herpesviridae/metabolismo , Herpesvirus Bovino 1/metabolismo , Metabolismo de los Lípidos/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/metabolismo , Animales , Células COS , Bovinos , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/virología , Núcleo Celular/metabolismo , Núcleo Celular/virología , Chlorocebus aethiops , Citoplasma/metabolismo , Citoplasma/virología , Aparato de Golgi/virología , Infecciones por Herpesviridae/virología , Humanos , Señales de Localización Nuclear/metabolismo , Fosforilación , Virión/metabolismo , Replicación Viral/fisiología
2.
J Proteome Res ; 18(3): 1145-1161, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30706717

RESUMEN

Respiratory syncytial virus (RSV) is a significant cause of mortality and morbidity in infants, the elderly, immunocompromised individuals, and patients with congenital heart diseases. Despite extensive efforts, a vaccine against RSV is still not available. We have previously reported the development of a subunit vaccine (ΔF/TriAdj) composed of a truncated version of the fusion protein (ΔF) and a polymer-based combination adjuvant (TriAdj). We compared inflammatory responses of ΔF/TriAdj-vaccinated and unvaccinated mice following intranasal challenge with RSV. Rapid and early inflammatory responses were observed in lung samples from both groups but modulated in the vaccinated group 7 days after the viral challenge. The underlying mechanism of action of ΔF/TriAdj was further studied through LC-MS-based metabolomic profiling by using 12C- or 13C-dansyl labeling for the amine/phenol submetabolome. RSV infection predominantly affected the amino acid biosynthesis pathways and urea cycle, whereas ΔF/TriAdj modulated the concentrations of almost all of the altered metabolites. Tryptophan metabolites were significantly affected, including indole, l-kynurenine, xanthurenic acid, serotonin, 5-hydroxyindoleacetic acid, and 6-hydroxymelatonin. The results from the present study provide further mechanistic insights into the mode of action of this RSV vaccine candidate and have important implications in the design of metabolic therapeutic interventions.


Asunto(s)
Inmunización/métodos , Metabolómica/métodos , Infecciones por Virus Sincitial Respiratorio/metabolismo , Vacunas de Subunidad/metabolismo , Adyuvantes Inmunológicos/metabolismo , Administración Intranasal , Animales , Anticuerpos Antivirales/inmunología , Humanos , Pulmón/efectos de los fármacos , Pulmón/virología , Ratones , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/metabolismo , Virus Sincitial Respiratorio Humano/patogenicidad , Vacunas de Subunidad/genética
3.
J Virol ; 92(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29769345

RESUMEN

VP8, the UL47 gene product in bovine herpesvirus-1 (BoHV-1), is a major tegument protein that is essential for virus replication in vivo The major DNA damage response protein, ataxia telangiectasia mutated (ATM), phosphorylates Nijmegen breakage syndrome (NBS1) and structural maintenance of chromosome-1 (SMC1) proteins during the DNA damage response. VP8 was found to interact with ATM and NBS1 during transfection and BoHV-1 infection. However, VP8 did not interfere with phosphorylation of ATM in transfected or BoHV-1-infected cells. In contrast, VP8 inhibited phosphorylation of both NBS1 and SMC1 in transfected cells, as well as in BoHV-1-infected cells, but not in cells infected with a VP8 deletion mutant (BoHV-1ΔUL47). Inhibition of NBS1 and SMC1 phosphorylation was observed at 4 h postinfection by nuclear VP8. Furthermore, UV light-induced cyclobutane pyrimidine dimer (CPD) repair was reduced in the presence of VP8, and VP8 in fact enhanced etoposide or UV-induced apoptosis. This suggests that VP8 blocks the ATM/NBS1/SMC1 pathway and inhibits DNA repair. VP8 induced apoptosis in VP8-transfected cells through caspase-3 activation. The fact that BoHV-1 is known to induce apoptosis through caspase-3 activation is in agreement with this observation. The role of VP8 was confirmed by the observation that BoHV-1 induced significantly more apoptosis than BoHV-1ΔUL47. These data reveal a potential role of VP8 in the modulation of the DNA damage response pathway and induction of apoptosis during BoHV-1 infection.IMPORTANCE To our knowledge, the effect of BoHV-1 infection on the DNA damage response has not been characterized. Since BoHV-1ΔUL47 was previously shown to be avirulent in vivo, VP8 is critical for the progression of viral infection. We demonstrated that VP8 interacts with DNA damage response proteins and disrupts the ATM-NBS1-SMC1 pathway by inhibiting phosphorylation of DNA repair proteins NBS1 and SMC1. Furthermore, interference of VP8 with DNA repair was correlated with decreased cell viability and increased DNA damage-induced apoptosis. These data show that BoHV-1 VP8 developed a novel strategy to interrupt the ATM signaling pathway and to promote apoptosis. These results further enhance our understanding of the functions of VP8 during BoHV-1 infection and provide an additional explanation for the reduced virulence of BoHV-1ΔUL47.


Asunto(s)
Apoptosis , Proteínas de la Cápside/metabolismo , Daño del ADN , Herpesvirus Bovino 1/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Cápside/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Bovinos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Células HEK293 , Células HeLa , Herpesvirus Bovino 1/genética , Humanos
4.
Immunology ; 153(4): 532-544, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29068058

RESUMEN

The concept of dendritic cell (DC) maturation generally refers to the changes in morphology and function of DCs. Conventionally, DC maturity is based on three criteria: loss of endocytic ability, gain of high-level capacity to present antigens and induce proliferation of T cells, and mobility of DCs toward high concentrations of CCL19. Impairment of DC maturation has been suggested as the main reason for infectivity or chronicity of several infectious agents. In the case of hepatitis C virus, this has been a matter of controversy for the last two decades. However, insufficient attention has been paid to the method of ex vivo maturation as the possible source of such controversies. We previously reported striking differences between DCs matured with different methods, so we propose the use of a standard quantitative index to determine the level of maturity in DCs as an approach to compare results from different studies. We designed and formulated a mathematically calculated index to numerically define the level of maturity based on experimental data from ex vivo assays. This introduces a standard maturation index (SMI) and weighted maturation index (WMI) based on strictly standardized mean differences between different methods of generating mature DCs. By calculating an SMI and a WMI, numerical values were assigned to the level of maturity achieved by DCs matured with different methods. SMI and WMI could be used as a standard tool to compare diversely generated mature DCs and so better interpret outcomes of ex vivo and in vivo studies with mature DCs.


Asunto(s)
Células Dendríticas/citología , Células Dendríticas/inmunología , Modelos Estadísticos , Citometría de Flujo , Voluntarios Sanos , Humanos
5.
J Gen Virol ; 98(5): 1089-1096, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28516841

RESUMEN

Bovine herpesvirus 1 (BHV-1) infection may lead to conjunctivitis, upper respiratory tract problems, pneumonia, genital disorders and abortion. BHV-1 is able to spread quickly in a plaque-wise manner and invade by breaching the basement membrane (BM) barrier in the respiratory mucosa. BHV-1 Us3, a serine/threonine kinase, induces a dramatic cytoskeletal reorganization and BHV-1 Us9, a tail-anchored membrane protein, is required for axonal transport of viruses in neurons. In this study, we investigated the role of Us3 and Us9 during BHV-1 infection in the respiratory mucosa. First, we constructed and characterized BHV-1 Us3 null, Us9 null and revertant viruses. Then, we analysed the viral replication and plaque size (latitude) in Madin-Darby bovine kidney (MDBK) cells and the respiratory mucosa as well as viral penetration depth underneath the BM of the respiratory mucosa when inoculated with these recombinant viruses. Knockout of Us3 resulted in a 1 log10 reduction in viral titre and plaque size (latitude) in MDBK cells and the trachea mucosa. There were no defects in the cell-to-cell spread observed for BHV-1 Us9 null virus. Both BHV-1 Us3 null and Us9 null viruses showed a significant reduction of plaque penetration underneath the BM; however, penetration was not completely inhibited. In conclusion, the current findings demonstrated that Us3 and Us9 play an important role in the invasion of BHV-1 through the BM of the respiratory mucosa, which shows the way forward for research-based attenuation of viruses in order to make safer and better-performing vaccines.

6.
J Virol ; 90(10): 4889-4904, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26889034

RESUMEN

UNLABELLED: The UL47 gene product, VP8, is the most abundant tegument protein of bovine herpesvirus 1 (BoHV-1). Previously, we demonstrated that a UL47-deleted BoHV-1 mutant (BoHV1-ΔUL47) exhibits 100-fold-reduced virulence in vitro and is avirulent in vivo In this study, we demonstrated that VP8 expression or BoHV-1 infection inhibits interferon beta (IFN-ß) signaling by using an IFN-α/ß-responsive plasmid in a luciferase assay. As transducer and activator of transcription (STAT) is an essential component in the IFN-signaling pathways, the effect of VP8 on STAT was investigated. An interaction between VP8 and STAT1 was established by coimmunoprecipitation assays in both VP8-transfected and BoHV-1-infected cells. Two domains of VP8, amino acids 259 to 482 and 632 to 686, were found to be responsible for its interaction with STAT1. The expression of VP8 did not induce STAT1 ubiquitination or degradation. Moreover, VP8 did not reduce STAT1 tyrosine phosphorylation to downregulate IFN-ß signaling. However, the expression of VP8 or a version of VP8 (amino acids 219 to 741) that contains the STAT1-interacting domains but not the nuclear localization signal prevented nuclear accumulation of STAT1. Inhibition of nuclear accumulation of STAT1 also occurred during BoHV-1 infection, while nuclear translocation of STAT1 was observed in BoHV1-ΔUL47-infected cells. During BoHV-1 infection, VP8 was detected in the cytoplasm at 2 h postinfection without any de novo protein synthesis, at which time STAT1 was already retained in the cytoplasm. These results suggest that viral VP8 downregulates IFN-ß signaling early during infection, thus playing a role in overcoming the antiviral response of BoHV-1-infected cells. IMPORTANCE: Since VP8 is the most abundant protein in BoHV-1 virions and thus may be released in large amounts into the host cell immediately upon infection, we proposed that it might have a function in the establishment of conditions suitable for viral replication. Indeed, while nonessential in vitro, it is critical for BoHV-1 replication in vivo In this study, we determined that VP8 plays a role in downregulation of the antiviral host response by inhibiting IFN-ß signaling. VP8 interacted with and prevented nuclear accumulation of STAT1 at 2 h postinfection in the absence of de novo viral protein synthesis. Two domains of VP8, amino acids 259 to 482 and 632 to 686, were found to be responsible for this interaction. These results provide a new functional role for VP8 in BoHV-1 infection and a potential explanation for the lack of viral replication of the UL47 deletion mutant in cattle.


Asunto(s)
Proteínas de la Cápside/inmunología , Proteínas de la Cápside/metabolismo , Herpesvirus Bovino 1/metabolismo , Interferón beta/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Animales , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Chlorocebus aethiops , Citoplasma/metabolismo , Regulación hacia Abajo , Interacciones Huésped-Patógeno , Humanos , Interferón beta/inmunología , Interferón beta/farmacología , Mutación , Señales de Localización Nuclear/metabolismo , Fosforilación , Factor de Transcripción STAT1/inmunología , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Ubiquitinación , Células Vero , Virión/metabolismo , Replicación Viral
7.
J Virol ; 90(9): 4427-4440, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26889039

RESUMEN

UNLABELLED: VP8 is a major tegument protein of bovine herpesvirus 1 (BoHV-1) and is essential for viral replication in cattle. The protein undergoes phosphorylation after transcription through cellular casein kinase 2 (CK2) and a viral kinase, US3. In this study, a virus containing a mutated VP8 protein that is not phosphorylated by CK2 and US3 (BoHV-1-YmVP8) was constructed by homologous recombination in mammalian cells. When BoHV-1-YmVP8-infected cells were observed by transmission electron microscopy, blocking phosphorylation of VP8 was found to impair viral DNA encapsidation, resulting in release of incomplete viral particles to the extracellular environment. Consequently, less infectious virus was produced by the mutant virus than by wild-type (WT) virus. A comparison of mutant and WT VP8 by confocal microscopy revealed that mutant VP8 is nuclear throughout infection while WT VP8 is nuclear early during infection and is associated with the Golgi apparatus at later stages. This, together with the observation that mutant VP8 is present in virions, albeit in smaller amounts, suggests that the incorporation of VP8 may occur at two stages. The first takes place without the need for phosphorylation and before or during nuclear egress of capsids, whereas the second occurs in the Golgi apparatus and requires phosphorylation of VP8. The results indicate that phosphorylated VP8 plays a role in viral DNA encapsidation and in the secondary virion incorporation of VP8. To perform these functions, the cellular localization of VP8 is adjusted based on the phosphorylation status. IMPORTANCE: In this study, phosphorylation of VP8 was shown to have a function in BoHV-1 replication. A virus containing a mutated VP8 protein that is not phosphorylated by CK2 and US3 (BoHV-1-YmVP8) produced smaller numbers of infectious virions than wild-type (WT) virus. The maturation and egress of WT and mutant BoHV-1 were studied, showing a process similar to that reported for other alphaherpesviruses. Interestingly, lack of phosphorylation of VP8 by CK2 and US3 resulted in reduced incorporation of viral DNA into capsids during mutant BoHV-1 infection, as well as lower numbers of extracellular virions. Furthermore, mutant VP8 remained nuclear throughout infection, in contrast to WT VP8, which is nuclear at early stages and Golgi apparatus associated late during infection. This correlates with smaller amounts of mutant VP8 in virions and suggests for the first time that VP8 may be assembled into the virions at two stages, with the latter dependent on phosphorylation.


Asunto(s)
Proteínas de la Cápside/metabolismo , ADN Viral , Infecciones por Herpesviridae/virología , Herpesvirus Bovino 1/fisiología , Ensamble de Virus , Replicación Viral , Animales , Proteínas de la Cápside/genética , Bovinos , Línea Celular , Herpesvirus Bovino 1/aislamiento & purificación , Herpesvirus Bovino 1/ultraestructura , Mutación , Fosforilación , Transporte de Proteínas , Recombinación Genética , Liberación del Virus
8.
J Virol ; 89(8): 4598-611, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25673708

RESUMEN

UNLABELLED: The major tegument protein of bovine herpesvirus 1 (BoHV-1), VP8, is essential for virus replication in cattle. VP8 is phosphorylated in vitro by casein kinase 2 (CK2) and BoHV-1 unique short protein 3 (US3). In this study, VP8 was found to be phosphorylated in both transfected and infected cells but was detected as a nonphosphorylated form in mature virions. This suggests that phosphorylation of VP8 is strictly controlled during different stages of the viral life cycle. The regulation and function of VP8 phosphorylation by US3 and CK2 were further analyzed. An in vitro kinase assay, site-directed mutagenesis, and liquid chromatography-mass spectrometry were used to identify the active sites for US3 and CK2. The two kinases phosphorylate VP8 at different sites, resulting in distinct phosphopeptide patterns. S(16) is a primary phosphoreceptor for US3, and it subsequently triggers phosphorylation at S(32). CK2 has multiple active sites, among which T(107) appears to be the preferred residue. Additionally, CK2 consensus motifs in the N terminus of VP8 are essential for phosphorylation. Based on these results, a nonphosphorylated VP8 mutant was constructed and used for further studies. In transfected cells phosphorylation was not required for nuclear localization of VP8. Phosphorylated VP8 appeared to recruit promyelocytic leukemia (PML) protein and to remodel the distribution of PML in the nucleus; however, PML protein did not show an association with nonphosphorylated VP8. This suggests that VP8 plays a role in resisting PML-related host antiviral defenses by redistributing PML protein and that this function depends on the phosphorylation of VP8. IMPORTANCE: The progression of VP8 phosphorylation over time and its function in BoHV-1 replication have not been characterized. This study demonstrates that activation of S(16) initiates further phosphorylation at S(32) by US3. Additionally, VP8 is phosphorylated by CK2 at several residues, with T(107) having the highest level of phosphorylation. Evidence for a difference in the phosphorylation status of VP8 in host cells and mature virus is presented for the first time. Phosphorylation was found to be a critical modification, which enables VP8 to attract and to redistribute PML protein in the nucleus. This might promote viral replication through interference with a PML-mediated antiviral defense. This study provides new insights into the regulation of VP8 phosphorylation and suggests a novel, phosphorylation-dependent function for VP8 in the life cycle of BoHV-1, which is important in view of the fact that VP8 is essential for virus replication in vivo.


Asunto(s)
Proteínas de la Cápside/metabolismo , Bovinos/virología , Herpesvirus Bovino 1/genética , Animales , Proteínas de la Cápside/genética , Quinasa de la Caseína II/metabolismo , Dominio Catalítico/genética , Cromatografía Liquida , Herpesvirus Bovino 1/metabolismo , Espectrometría de Masas , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Virión/metabolismo
9.
Can Vet J ; 56(10): 1075-83, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26483584

RESUMEN

Immunosuppressive effects of an intranasal challenge with non-cytopathic bovine viral diarrhea virus (BVDV) 2a (strain 1373) were assessed through acquired and innate immune system responses to ovalbumin (OVA). Concurrent BVDV infection was hypothesized to delay and reduce the humoral response to ovalbumin (administered on days 3 and 15 post-inoculation). Infected animals followed the expected clinical course. BVDV titers, and anti-BVDV antibodies confirmed the course of infection and were not affected by the administration of OVA. Both the T-helper (CD4(+)) and B-cell (CD20(+)) compartments were significantly (P < 0.05) reduced in infected animals, while the gamma-delta T-cell population (Workshop cluster 1+, WC1(+)) decreased slightly in numbers. Infection with BVDV delayed the increase in OVA IgG by approximately 3 d from day 12 through day 21 post-inoculation. Between days 25 and 37 post-inoculation following BVDV infection the IgM concentration in the BVDV- group decreased while the OVA IgM titer still was rising in the BVDV+ animals. Thus, active BVDV infection delays IgM and IgG responses to a novel, non-infectious antigen.


Une infection aiguë par le BVDV-2 chez les veaux retarde les réponses humorales face à un test à l'aide d'un antigène non infectieux. Les effets immunosuppressifs d'une inoculation défin intranasale à l'aide du virus non cytopathogène de la diarrhée virale bovine (VBVD) 2a (souche 1373) ont été évalués par les réactions acquises et innées du système immunitaire à l'ovalbumine (OVA). On a émis l'hypothèse que l'infection concomitante par le VBVD retardait et réduisait la réaction humorale à l'ovalbumine (administrée aux jours 3 et 15 après l'inoculation). Les animaux infectés ont suivi le cheminement clinique prévu. Les titres de BVDV et les anticorps anti-BVDV ont confirmé le déroulement de l'infection et ils n'ont pas été affectés par l'administration d'OVA. Les compartiments des lymphocytes T auxiliaires (CD4+) et des cellules B (CD20+) étaient significativement réduits (P < 0,05) chez les animaux infectés, tandis que la numération de la population de cellules T gamma-delta (WC1+) a diminué légèrement. L'infection par le VBVD a retardé l'augmentation de l'OVA IgG d'environ 3 jours, à compter du jour 12 jusqu'au jour 21 après l'inoculation. Entre les jours 25 et 37 après l'inoculation suivant l'infection par le BVDV, la concentration d'IgM dans le groupe VBVD a diminué tandis que le titre d'OVA IgM augmentait toujours chez les animaux positifs pour le VBVD. Par conséquent, l'infection active par le VBVD retarde les réactions IgM et IgG face à un antigène non infectieux nouveau.(Traduit par Isabelle Vallières).


Asunto(s)
Diarrea Mucosa Bovina Viral/inmunología , Enfermedades de los Bovinos/virología , Virus de la Diarrea Viral Bovina Tipo 2 , Ovalbúmina/inmunología , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Femenino , Leucocitos Mononucleares , Masculino , Distribución Aleatoria
10.
Vet Res ; 45: 111, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25359626

RESUMEN

The viral envelope glycoprotein D from bovine herpesviruses 1 and 5 (BoHV-1 and -5), two important pathogens of cattle, is a major component of the virion and plays a critical role in the pathogenesis of herpesviruses. Glycoprotein D is essential for virus penetration into permissive cells and thus is a major target for virus neutralizing antibodies during infection. In view of its role in the induction of protective immunity, gD has been tested in new vaccine development strategies against both viruses. Subunit, DNA and vectored vaccine candidates have been developed using this glycoprotein as the primary antigen, demonstrating that gD has the capacity to induce robust virus neutralizing antibodies and strong cell-mediated immune responses, as well as protection from clinical symptoms, in target species. This review highlights the structural and functional characteristics of BoHV-1, BoHV-5 and where appropriate, Human herpesvirus gD, as well as its role in viral entry and interactions with host cell receptors. Furthermore, the interactions of gD with the host immune system are discussed. Finally, the application of this glycoprotein in new vaccine design is reviewed, taking its structural and functional characteristics into consideration.


Asunto(s)
Herpesvirus Bovino 1/fisiología , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 2/fisiología , Herpesvirus Bovino 5/fisiología , Proteínas del Envoltorio Viral/genética , Vacunas Virales/inmunología , Secuencia de Aminoácidos , Animales , Herpesvirus Bovino 1/inmunología , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 2/inmunología , Herpesvirus Bovino 5/inmunología , Humanos , Proteínas del Envoltorio Viral/química
11.
Vet J ; 306: 106152, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821207

RESUMEN

Bovine alphaherpesvirus type 1 (BoAHV-1) infections lead to compromised herd health and significantly reduced productivity of affected cattle. While BoAHV-1 may cause rhinotracheitis, conjunctivitis, genital infections, and abortions, respiratory tract infections constitute the predominant clinical disease. Immune suppression induced by BoAHV-1 may contribute to co-infections initiating the bovine respiratory disease complex. In this review, the emphasis is to recapitulate the biology and the vaccine technologies currently in use and in development for BoAHV-1, and to discuss the major limitations. Studies on the life cycle and host interactions of BoAHV-1 have resulted in the identification of virulence factors. While several vaccine types, such as vectored vaccines and subunit vaccines, are under investigation, modified live and inactivated BoAHV-1 vaccines are still most frequently used in most areas of the world, whereas attenuated and inactivated marker vaccines are in use in Europe. The knowledge gained from studies on the biology of BoAHV-1 can form a basis for the rational design of future vaccines.

12.
Viruses ; 15(10)2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37896835

RESUMEN

Herpesviruses are enveloped and have an amorphous protein layer surrounding the capsid, which is termed the tegument. Tegument proteins perform critical functions throughout the viral life cycle. This review provides a comprehensive and comparative analysis of the roles of specific tegument proteins in capsid transport and virion morphogenesis of selected, well-studied prototypes of each of the three subfamilies of Herpesviridae i.e., human herpesvirus-1/herpes simplex virus-1 (Alphaherpesvirinae), human herpesvirus-5/cytomegalovirus (Betaherpesvirinae) and human herpesvirus -8/Kaposi's sarcomavirus (Gammaherpesvirinae). Most of the current knowledge is based on alpha herpesviruses, in particular HSV-1. While some tegument proteins are released into the cytoplasm after virus entry, several tegument proteins remain associated with the capsid and are responsible for transport to and docking at the nucleus. After replication and capsid formation, the capsid is enveloped at the nuclear membrane, which is referred to as primary envelopment, followed by de-envelopment and release into the cytoplasm. This requires involvement of at least three tegument proteins. Subsequently, multiple interactions between tegument proteins and capsid proteins, other tegument proteins and glycoproteins are required for assembly of the virus particles and envelopment at the Golgi, with certain tegument proteins acting as the central hub for these interactions. Some redundancy in these interactions ensures appropriate morphogenesis.


Asunto(s)
Herpesviridae , Herpesvirus Humano 1 , Herpesvirus Humano 8 , Humanos , Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Ensamble de Virus , Herpesviridae/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 8/metabolismo , Morfogénesis , Virión/metabolismo , Proteínas Estructurales Virales/metabolismo
13.
Viruses ; 14(9)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36146791

RESUMEN

VP8, the most abundant tegument protein of bovine herpesvirus-1 (BoHV-1), plays an important role in viral replication. According to our previous studies, VP8 localizes to the Golgi apparatus of BoHV-1-infected cells where it can be packaged into the virus; however, Golgi localization of VP8 does not occur outside of the context of infection. The goal of this study was to identify the viral factor(s) involved in the tropism of VP8 towards the Golgi. VP8 was found to interact with glycoprotein M (gM), and the VP8 and gM domains that are essential for this interaction were identified. VP8 and gM colocalized to the Golgi apparatus in BoHV-1-infected cells. In cells co-transfected with VP8- and gM-encoding plasmids, VP8 was also found to be localized to the Golgi, suggesting gM to be sufficient. The localization of VP8 to the Golgi was lost in cells infected with a gM deletion mutant, and the amount of VP8 incorporated into mature virus was significantly reduced. However, with the restoration of gM in a revertant virus, the localization to the Golgi and the amount of VP8 incorporated in the virions were restored. These results indicate that gM plays a critical role in VP8 subcellular localization to the Golgi and packaging into mature virions.


Asunto(s)
Herpesvirus Bovino 1 , Proteínas de la Cápside/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Aparato de Golgi/metabolismo , Herpesvirus Bovino 1/genética , Virión/metabolismo
14.
J Clin Immunol ; 31(5): 811-26, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21674137

RESUMEN

Both CD4(+) Th17-cells and CD8(+) cytotoxic T lymphocytes (CTLs) are involved in type 1 diabetes and experimental autoimmune encephalomyelitis (EAE). However, their relationship in pathogenesis of these autoimmune diseases is still elusive. We generated ovalbumin (OVA)- or myelin oligodendrocyte glycoprotein (MOG)-specific Th17 cells expressing RORγt and IL-17 by in vitro co-culturing OVA-pulsed and MOG(35-55) peptide-pulsed dendritic cells (DC(OVA) and DC(MOG)) with CD4(+) T cells derived from transgenic OTII and MOG-T cell receptor mice, respectively. We found that these Th17 cells when transferred into C57BL/6 mice stimulated OVA- and MOG-specific CTL responses, respectively. To assess the above question, we adoptively transferred OVA-specific Th17 cells into transgenic rat insulin promoter (RIP)-mOVA mice or RIP-mOVA mice treated with anti-CD8 antibody to deplete Th17-stimulated CD8(+) T cells. We demonstrated that OVA-specific Th17-stimulated CTLs, but not Th17 cells themselves, induced diabetes in RIP-mOVA. We also transferred MOG-specific Th17 cells into C57BL/6 mice and H-2K(b-/-) mice lacking of the ability to generate Th17-stimulated CTLs. We further found that MOG-specific Th17 cells, but not Th17-activated CTLs induced EAE in C57BL/6 mice. Taken together, our data indicate a distinct role of Th17 cells and Th17-stimulated CTLs in the pathogenesis of TID and EAE, which may have great impact on the overall understanding of Th17 cells in the pathogenesis of autoimmune diseases.


Asunto(s)
Células Dendríticas/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Linfocitos T Citotóxicos/metabolismo , Células Th17/metabolismo , Traslado Adoptivo , Animales , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/patología , Glicoproteínas/inmunología , Glicoproteínas/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de la Mielina/genética , Proteínas de la Mielina/inmunología , Proteínas de la Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Ovalbúmina/genética , Ovalbúmina/inmunología , Ovalbúmina/metabolismo , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Células Th17/inmunología , Células Th17/patología , Células Th17/trasplante
15.
J Virol ; 84(1): 445-58, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19864376

RESUMEN

Tegument protein VP8 encoded by the U(L)47 gene of bovine herpesvirus type 1 (BHV-1) is the most abundant constituent of mature virions. In the present report, we describe the characterization of U(L)47 gene-deleted BHV-1 in cultured cells and its natural host. The U(L)47 deletion mutant exhibited reduced plaque size and more than 100-fold decrease in intracellular and extracellular viral titers in cultured cells. Ultrastructural observations of infected cells showed normal maturation of BHV-1 virions in the absence of VP8. There was no evidence for a change in immediate-early gene activator function of VP16 in the U(L)47 deletion mutant virus-infected cells, since bovine ICP4 mRNA and protein levels were similar to those in the wild-type and revertant virus-infected cells throughout the course of infection. Whereas VP16, glycoprotein C (gC), gB, and VP5 were expressed to wild-type levels in the U(L)47 deletion mutant-infected cells, the gD and VP22 protein levels were significantly reduced. The reduction in gD protein was associated with increased turnover of the protein. Furthermore, some of the analyzed early and late proteins were expressed with earlier kinetics in the absence of VP8. Extracellular virions of the U(L)47 deletion mutant contained reduced amounts of gD, gB, gC, and VP22 but similar amounts of VP16 compared to those of wild-type or revertant virus particles. In addition, the U(L)47 gene product was indispensable for BHV-1 replication in vivo, since no clinical manifestations or viral shedding were detected in the U(L)47 deletion mutant-infected calves, and the virus failed to induce significant levels of humoral and cellular immunity.


Asunto(s)
Proteínas de la Cápside/genética , Eliminación de Gen , Herpesvirus Bovino 1/genética , Proteínas Virales/fisiología , Animales , Proteínas de la Cápside/fisiología , Bovinos , Regulación Viral de la Expresión Génica , Herpesvirus Bovino 1/crecimiento & desarrollo , Herpesvirus Bovino 1/patogenicidad , ARN Viral/análisis , Proteínas Virales/análisis , Proteínas Virales/genética
16.
Can Vet J ; 52(11): 1195-202, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22547839

RESUMEN

To determine if previous exposure to bovine viral diarrhea virus (BVDV) and bovine herpes virus 1 (BHV-1) type 2 affects the onset of disease caused by Mycoplasma bovis, 6- to 8-month-old beef calves were exposed to BVDV or BHV-1 4 d prior to challenge with a suspension of 3 clinical isolates of M. bovis. Animals were observed for clinical signs of disease and at necropsy, percent abnormal lung tissue and presence of M. bovis were determined. Most animals pre-exposed to BHV-1 type 2 but not BVDV developed M. bovis-related respiratory illness. In a second trial, we determined that a 100-fold reduction in the number of M. bovis bacteria administered to BHV-1 exposed animals reduced the percentage of abnormal lung tissue but not the severity of clinical signs. We conclude that previous exposure to BHV-1 but not BVDV type 2 was a necessary cause of M. bovis-related respiratory diseases in our disease model.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/virología , Coinfección/veterinaria , Herpesvirus Bovino 1/patogenicidad , Mycoplasma bovis/patogenicidad , Infecciones del Sistema Respiratorio/veterinaria , Animales , Bovinos , Coinfección/microbiología , Coinfección/virología , Virus de la Diarrea Viral Bovina Tipo 2/patogenicidad , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/virología
17.
Carbohydr Polym ; 271: 118417, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364558

RESUMEN

CpG oligodeoxynucleotides (CpG ODNs) which can induce innate immune responses and promote adaptive immune responses, are powerful tools in defeating diseases. Here, a novel chitosan nanoparticle (CS-NPs) based on host-guest interaction has been designed for encapsulation and delivery of CpG ODNs for the first time. The CS-NPs exhibited high encapsulation efficiency (98.3%) of CpG ODNs and remained stable in storage under room temperature for at least 7 days. CS-NPs can also prevent CpG ODN diffusion at pH 7. The results of confocal laser scanning microscope images and flow cytometry show that CS-NPs can also be efficiently delivered into living cells. Furthermore, CpG@CS-NPs can increase the immunostimulatory activity of CpG ODNs. Raw 264.7 cells treated with CpG@CS-NPs demonstrated upregulation of both TNF-α and IL-6 cytokines by 13% and 40%, respectively. The newly developed CpG@CS-NPs were thus identified as an efficient system to deliver CpG-ODNs to treat various diseases.


Asunto(s)
Quitosano/química , Portadores de Fármacos/química , Factores Inmunológicos/farmacología , Nanopartículas/química , Oligodesoxirribonucleótidos/farmacología , Adamantano/análogos & derivados , Adamantano/toxicidad , Animales , Quitosano/toxicidad , Portadores de Fármacos/toxicidad , Interleucina-6/metabolismo , Ratones , Nanopartículas/toxicidad , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , beta-Ciclodextrinas/química , beta-Ciclodextrinas/toxicidad
18.
Viruses ; 13(9)2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34578435

RESUMEN

Bovine herpesvirus-1 (BoHV-1) is a major cause of rhinotracheitis and vulvovaginitis in cattle. VP8, the major tegument protein of BoHV-1, is essential for viral replication in the host. VP8 is phosphorylated by the viral kinase US3, mediating its translocation to the cytoplasm. VP8 remains nuclear when not phosphorylated. Interestingly, VP8 has a significant presence in mature BoHV-1YmVP8, in which the VP8 phosphorylation sites are mutated. This suggests that VP8 might be packaged during primary envelopment of BoHV-1. This was investigated by mass spectrometry and Western blotting, which showed VP8, as well as VP22, to be constituents of the primary enveloped virions. VP8 and VP22 were shown to interact via co-immunoprecipitation experiments, in both BoHV-1-infected and VP8-transfected cells. VP8 and VP22 also co-localised with one another and with nuclear lamin-associated protein 2 in BoHV-1-infected cells, suggesting an interaction between VP8 and VP22 in the perinuclear region. In cells infected with VP22-deleted BoHV-1 (BoHV-1ΔUL49), VP8 was absent from the primary enveloped virions, implying that VP22 might be critical for the early packaging of VP8. In conclusion, a novel VP22-dependent mechanism for packaging of VP8 was identified, which may be responsible for a significant amount of VP8 in the viral particle.


Asunto(s)
Proteínas de la Cápside/metabolismo , Herpesvirus Bovino 1/fisiología , Proteínas Estructurales Virales/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Fosforilación , Replicación Viral
19.
J Gen Virol ; 91(Pt 5): 1117-26, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20016039

RESUMEN

The US3 gene product of bovine herpesvirus-1 (BoHV-1) is a protein kinase that is expressed early during infection and capable of autophosphorylation. By examining differentially labelled US3 moieties by co-immunoprecipitation, we demonstrated that the protein kinase interacts with itself in vitro, which supports autophosphorylation by US3. Based on its homology to other serine/threonine protein kinases, we defined two highly conserved lysines in US3, at position 195 within the ATP-binding pocket and at position 282 within the catalytic loop; altering either residue resulted in kinase-dead mutants, demonstrating that these two residues are critical for the catalytic activity of BoHV-1 US3. During immunoprecipitation experiments, US3 interacted weakly with VP22, another tegument protein of BoHV-1. Furthermore, VP22 co-localized with US3 inside the nucleus in BoHV-1-infected cells. In vitro kinase assays demonstrated that VP22 is phosphorylated not only by US3, but also by the cellular casein kinase 2 (CK2) protein. The selective CK2 protein kinase inhibitor, 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) and the less specific CK2 inhibitor Kenpaullone reduced VP22 phosphorylation, while CK1, protein kinase C or protein kinase A inhibitors did not affect phosphorylation. When US3 was included with VP22 in the kinase assay in the presence of DMAT, a low level of VP22 phosphorylation was observed. These data demonstrate that BoHV-1 VP22 interacts with both CK2 and US3, and that CK2 is the major kinase phosphorylating VP22, with US3 playing a minor role.


Asunto(s)
Herpesvirus Bovino 1/enzimología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Quinasa de la Caseína II/metabolismo , Bovinos , Línea Celular , Chlorocebus aethiops , Secuencia Conservada , Inmunoprecipitación , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Alineación de Secuencia
20.
Mol Immunol ; 46(5): 884-92, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19019441

RESUMEN

Toll-like receptors (TLRs), a family of highly conserved germline-encoded pattern-recognition receptors (PRRs), are essential for the host immune response. The cellular localization of TLR proteins determines the access to certain sources of ligands and thus the triggering of downstream cellular signaling. The TLR7/8/9 subfamily proteins are localized intracellularly but the molecular elements determining the cellular localization of these proteins are not fully understood. Here we demonstrated that the bovine TLR8 (bTLR8) protein is localized in the ER cellular compartment of transfected cells before and after cell activation. Using chimeric constructs, we showed that the bTLR8 transmembrane (TM) and cytoplasmic (CP) regions could direct the bovine herpesvirus 1 (BHV-1) glycoprotein D (gD) extracellular domain (ECD) to an intracellular localization. Furthermore, the bTLR8 TM, the linker region between the TM and TIR domains, and the TIR-tail region all partially contributed to the intracellular localization. However, truncation of the bTLR8 with the TM and CP regions removed did not alter its intracellular localization, suggesting that ectodomain (ECD) itself contains intracellular information. Indeed, the bTLR8 ECD also targeted the gD ECD to the intracellular localization. Our results suggest that multiple regions, including ECD, TM, linker and TIR-tail regions of bTLR8, are involved in determining the localization of cellular ER compartment.


Asunto(s)
Bovinos/metabolismo , Retículo Endoplásmico/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 8/metabolismo , Animales , Células COS , Bovinos/genética , Bovinos/inmunología , Chlorocebus aethiops , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Mapeo Peptídico/métodos , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Receptor Toll-Like 8/genética , Receptor Toll-Like 8/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA