Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Rep ; 10(1): 72, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919453

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of end-stage renal failure in humans and results from germline mutations in PKD1 or PKD2. Despite the recent approval of tolvaptan, safer and more effective alternative drugs are clearly needed to slow disease progression. As a first step in drug discovery, we conducted an unbiased chemical screen on zebrafish pkd2 mutant embryos using two publicly available compound libraries (Spectrum, PKIS) totalling 2,367 compounds to identify novel treatments for ADPKD. Using dorsal tail curvature as the assay readout, three major chemical classes (steroids, coumarins, flavonoids) were identified from the Spectrum library as the most promising candidates to be tested on human PKD1 cystic cells. Amongst these were an androgen, 5α-androstane 3,17-dione, detected as the strongest enhancer of the pkd2 phenotype but whose effect was found to be independent of the canonical androgen receptor pathway. From the PKIS library, we identified several ALK5 kinase inhibitors as strong suppressors of the pkd2 tail phenotype and in vitro cyst expansion. In summary, our results identify ALK5 and non-canonical androgen receptors as potential therapeutic targets for further evaluation in drug development for ADPKD.


Asunto(s)
Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Canales Catiónicos TRPP/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente/metabolismo , Apoptosis/efectos de los fármacos , Perros , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Células de Riñón Canino Madin Darby , Fenotipo , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptores Androgénicos/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Canales Catiónicos TRPP/deficiencia , Canales Catiónicos TRPP/metabolismo , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/metabolismo
2.
J Cell Biol ; 154(3): 511-23, 2001 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-11481346

RESUMEN

The localization of Oskar at the posterior pole of the Drosophila oocyte induces the assembly of the pole plasm and therefore defines where the abdomen and germ cells form in the embryo. This localization is achieved by the targeting of oskar mRNA to the posterior and the localized activation of its translation. oskar mRNA seems likely to be actively transported along microtubules, since its localization requires both an intact microtubule cytoskeleton and the plus end-directed motor kinesin I, but nothing is known about how the RNA is coupled to the motor. Here, we describe barentsz, a novel gene required for the localization of oskar mRNA. In contrast to all other mutations that disrupt this process, barentsz-null mutants completely block the posterior localization of oskar mRNA without affecting bicoid and gurken mRNA localization, the organization of the microtubules, or subsequent steps in pole plasm assembly. Surprisingly, most mutant embryos still form an abdomen, indicating that oskar mRNA localization is partially redundant with the translational control. Barentsz protein colocalizes to the posterior with oskar mRNA, and this localization is oskar mRNA dependent. Thus, Barentsz is essential for the posterior localization of oskar mRNA and behaves as a specific component of the oskar RNA transport complex.


Asunto(s)
Proteínas de Drosophila , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Polaridad Celular/fisiología , Clonación Molecular , Drosophila , Femenino , Proteínas de Insectos/análisis , Masculino , Microtúbulos/fisiología , Datos de Secuencia Molecular , Mutación/fisiología , Oocitos/citología , Oocitos/fisiología , Oogénesis/fisiología , Fenotipo , Polimorfismo de Longitud del Fragmento de Restricción , ARN Mensajero/metabolismo , Recombinación Genética/fisiología , Homología de Secuencia de Aminoácido
3.
Mech Dev ; 76(1-2): 101-15, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9767138

RESUMEN

The role of zebrafish hedgehog genes in branchiomotor neuron development was analyzed by examining mutations that affect the expression of the hedgehog genes and by overexpressing these genes in embryos. In cyclops mutants, reduction in sonic hedgehog (shh) expression, and elimination of tiggy-winkle hedgehog (twhh) expression, correlated with reductions in branchiomotor neuron populations. Furthermore, branchiomotor neurons were restored in cyclops mutants when shh or twhh was overexpressed. These results suggest that Shh and/or Twhh play an important role in the induction of branchiomotor neurons in vivo. In sonic-you (syu) mutants, where Shh activity was reduced or eliminated due to mutations in shh, branchiomotor neurons were reduced in number in a rhombomere-specific fashion, but never eliminated. Similarly, spinal motor neurons were reduced, but not eliminated, in syu mutants. These results demonstrate that Shh is not solely responsible for inducing branchiomotor and spinal motor neurons, and suggest that Shh and Twhh may function as partially redundant signals for motor neuron induction in zebrafish.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neuronas/fisiología , Proteínas/genética , Transactivadores , Pez Cebra/embriología , Animales , Región Branquial/inervación , Núcleo Celular/patología , Embrión no Mamífero , Inducción Embrionaria , Proteínas Hedgehog , Péptidos y Proteínas de Señalización Intracelular , Neuronas Motoras/fisiología , Mutación , Sistema Nervioso/embriología , Proteínas/metabolismo , Rombencéfalo/embriología , Rombencéfalo/patología , Médula Espinal , Factor de Crecimiento Transformador beta/genética , Proteínas de Pez Cebra
4.
Mol Gen Genet ; 240(1): 81-91, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8393514

RESUMEN

The genomes of several thermophilic members of the genus Methanobacterium were analyzed for homology to the related restriction-modification plasmids pFV1 and pFZ1 from M. thermoformicicum strains THF and Z-245, respectively. Two plasmid regions, designated FR-I and FR-II, could be identified with chromosomal counterparts in six Methanobacterium strains. Multiple copies of the pFV1-specific element FR-I were detected in the M. thermoformicicum strains CSM3, FF1, FF3 and M. thermoautotrophicum delta H. Sequence analysis showed that one FR-I element had been integrated in almost identical sequence contexts into the chromosomes of the strains CSM3 and delta H. Comparison of the FR-I elements from these strains with that from pFV1 revealed that they consisted of two subfragments, boxI (1118 bp) and boxII (383 bp), the order of which is variable. Each subfragment was identical on the sequence level with the corresponding plasmid-borne element and was flanked by terminal direct repeats with the consensus sequence A(A/T)ATTT. These results suggest that FR-I represents a mobile element. FR-II was located on both plasmids pFV1 and pFZ1, and on the chromosome of M. thermoformicicum strains THF, CSM3 and HN4. Comparison of the nucleotide sequences of the two plasmid FR-II copies and that from the chromosome of strain CSM3 showed that the FR-II segments were approximately 2.5-3.0 kb in size and contained large open reading frames (ORFs) that may encode highly related proteins with an as yet unknown function.


Asunto(s)
Elementos Transponibles de ADN/genética , ADN Bacteriano/genética , Methanobacterium/genética , Plásmidos/genética , Homología de Secuencia de Ácido Nucleico , Secuencia de Aminoácidos , Secuencia de Bases , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética
5.
Dev Genet ; 23(1): 65-76, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9706695

RESUMEN

Segmentation in the vertebrate embryo is evident within the paraxial mesoderm in the form of somites, which are repeated structures that give rise to the vertebrae and muscle of the trunk and tail. In the zebrafish, our genetic screen identified two groups of mutants that affect somite formation and pattern. Mutations of one class, the fss-type mutants, disrupt the formation of the anterior-posterior somite boundaries during somitogenesis. However, segmentation within the paraxial mesoderm is not completely eliminated in these mutants. Irregular somite boundaries form later during embryogenesis and, strikingly, the vertebrae are not fused. Here, we show that formation of the irregular somite boundaries in these mutants is dependent upon the activity of a second group of genes, the you-type genes, which include sonic you, the zebrafish homologue of the Drosophila segment polarity gene, sonic hedgehog. Further to characterize the defects caused by the fss-type mutations, we examined their effects on the expression of her1, a zebrafish homologue of the Drosophila pair-rule gene hairy. In wild-type embryos, her1 is expressed in a dynamic, repeating pattern, remarkably similar to that of its Drosophila and Tribolium counterparts, suggesting that a pair-rule mechanism also functions in the segmentation of the vertebrate paraxial mesoderm. We have found that the fss-type mutants have abnormal pair-rule patterning. Although a her1 mutant could not be identified, analysis of a double mutant that abolishes most her1 expression suggests that a her1 mutant may not display a pair-rule phenotype analogous to the hairy phenotype observed in Drosophila. Cumulatively, our data indicate that zebrafish homologues of both the Drosophila segment polarity genes and pair-rule genes are involved in segmenting the paraxial mesoderm. However, both the relationship between these two groups of genes within the genetic heirarchy governing segmentation and the precise roles that they play during segmentation likely differ significantly between the two organisms.


Asunto(s)
Tipificación del Cuerpo/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Drosophila/embriología , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Ligamiento Genético , Mutación , Fenotipo , Somitos/citología , Especificidad de la Especie
6.
Nucleic Acids Res ; 20(24): 6501-7, 1992 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-1336177

RESUMEN

Nucleotide sequence comparison of the related 13513-bp plasmid pFV1 and the 11014-bp plasmid pFZ1 from the thermophilic archaeon Methanobacterium thermoformicicum THF and Z-245, respectively, revealed a homologous, approximately 8.2 kb backbone structure that is interrupted by plasmid-specific elements. Various highly conserved palindromic structures and an ORF that could code for a NTP-binding protein were identified within the backbone structure and may be involved in plasmid maintenance and replication. Each plasmid contains at comparable locations a module which specifies components of different restriction-modification (R/M) systems. The R/M module of pFV1 contained, in addition to the genes of the GGCC-recognizing R/M system MthTI, an ORF which may be involved in repair of G-T mismatches generated by deamination of m5C at high temperatures.


Asunto(s)
Archaea/enzimología , Archaea/genética , Proteínas Bacterianas/genética , ADN Glicosilasas , Enzimas de Restricción del ADN/genética , ADN Bacteriano/genética , Endodesoxirribonucleasas/genética , Methanobacterium/enzimología , Methanobacterium/genética , N-Glicosil Hidrolasas/genética , Plásmidos , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Reparación del ADN , ADN Bacteriano/química , Desoxirribonucleasa (Dímero de Pirimidina) , Escherichia coli/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos , Sistemas de Lectura Abierta , Reacción en Cadena de la Polimerasa/métodos , Homología de Secuencia de Aminoácido
7.
Dev Biol ; 219(2): 350-63, 2000 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-10694427

RESUMEN

The floor plate is a morphologically distinct structure of epithelial cells situated along the midline of the ventral spinal cord in vertebrates. It is a source of guidance molecules directing the growth of axons along and across the midline of the neural tube. In the zebrafish, the floor plate is about three cells wide and composed of cuboidal cells. Two cell populations can be distinguished by the expression patterns of several marker genes, including sonic hedgehog (shh) and the fork head-domain gene fkd4: a single row of medial floor plate (MFP) cells, expressing both shh and fkd4, is flanked by rows of lateral floor plate (LFP) cells that express fkd4 but not shh. Systematic mutant searches in zebrafish embryos have identified a number of genes, mutations in which visibly reduce the floor plate. In these mutants either the MFP or the LFP cells are absent, as revealed by the analysis of the shh and fkd4 expression patterns. MFP cells are absent, but LFP cells are present, in mutants of cyclops, one-eyed pinhead, and schmalspur, whose development of midline structures is affected. LFP cells are absent, but MFP cells are present, in mutants of four genes, sonic you, you, you-too, and chameleon, collectively called the you-type genes. This group of mutants also shows defects in patterning of the paraxial mesoderm, causing U- instead of V-shaped somites. One of the you-type genes, sonic you, was recently shown to encode the zebrafish Shh protein, suggesting that the you-type genes encode components of the Shh signaling pathway. It has been shown previously that in the zebrafish shh is required for the induction of LFP cells, but not for the development of MFP cells. This conclusion is supported by the finding that injection of shh RNA causes an increase in the number of LFP, but not MFP cells. Embryos mutant for iguana, detour, and umleitung share the lack of LFP cells with you-type mutants while somite patterning is not severely affected. In mutants that fail to develop a notochord, MFP cells may be present, but are always surrounded by LFP cells. These data indicate that shh, expressed in the notochord and/or the MFP cells, induces the formation of LFP cells. In embryos doubly mutant for cyclops (cyc) and sonic you (syu) both LFP and MFP cells are deleted. The number of primary motor neurons is strongly reduced in cyc;syu double mutants, while almost normal in single mutants, suggesting that the two different pathways have overlapping functions in the induction of primary motor neurons.


Asunto(s)
Médula Espinal/citología , Médula Espinal/embriología , Transactivadores , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Hibridación in Situ , Ratones , Neuronas Motoras/citología , Mutación , Notocorda/citología , Notocorda/embriología , Proteínas/genética , Especificidad de la Especie , Pez Cebra/genética
8.
Development ; 120(4): 1009-15, 1994 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-7600949

RESUMEN

The mouse T (Brachyury) gene is required for normal mesoderm development and the extension of the body axis. Recently, two mutant alleles of a zebrafish gene, no tail (ntl), have been isolated (Halpern, M. E., Ho., R. K., Walker, C. and Kimmel, C. B. (1993) Cell 75, 99-111). ntl mutant embryos resemble mouse T/T mutant embryos in that they lack a differentiated notochord and the caudal region of their bodies. We report here that this phenotype is caused by mutation of the zebrafish homologue of the T gene. While ntl embryos express mutant mRNA, they show no nuclear protein product. Later, expression of mRNA in mutants, but not in wild types, is greatly reduced along the dorsal midline where the notochord normally forms. This suggests that the protein is required for maintaining transcription of its own gene.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas Fetales/genética , Mesodermo/fisiología , Proteínas de Dominio T Box , Proteínas de Pez Cebra , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Southern Blotting , Western Blotting , Genoma , Inmunohistoquímica , Hibridación in Situ , Ratones , Datos de Secuencia Molecular , Mutación , Notocorda/citología , Notocorda/fisiología
9.
Development ; 125(15): 2983-93, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9655820

RESUMEN

Sonic hedgehog (Shh) is a secreted protein that is involved in the organization and patterning of several tissues in vertebrates. We show that the zebrafish sonic-you (syu) gene, a member of a group of five genes required for somite patterning, is encoding Shh. Embryos mutant for a deletion of syu display defects in patterning of the somites, the lateral floor plate cells, the pectoral fins, the axons of motorneurons and the retinal ganglion cells. In contrast to mouse embryos lacking Shh activity, syu mutant embryos do form medial floor plate cells and motorneurons. Since ectopic overexpression of shh in zebrafish embryos does not induce ectopic medial floor plate cells, we conclude that shh is neither required nor sufficient to induce this cell type in the zebrafish.


Asunto(s)
Inducción Embrionaria , Sistema Nervioso/embriología , Proteínas/metabolismo , Somitos , Transactivadores , Pez Cebra/embriología , Animales , Axones , Tipificación del Cuerpo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/biosíntesis , Ojo/embriología , Proteínas del Ojo , Prueba de Complementación Genética , Proteínas Hedgehog , Proteínas de Homeodominio/biosíntesis , Músculos/citología , Mutación , Malformaciones del Sistema Nervioso , Factor de Transcripción PAX2 , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box , Señales de Clasificación de Proteína/genética , Empalme del ARN , Proteínas Represoras , Células Ganglionares de la Retina , Análisis de Secuencia de ADN , Transducción de Señal , Células Madre , Factores de Transcripción/biosíntesis , Proteínas de Pez Cebra
10.
Development ; 124(21): 4373-82, 1997 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9334285

RESUMEN

The first evident break in left-right symmetry of the primitive zebrafish heart tube is the shift in pattern of BMP4 expression from radially symmetric to left-predominant. The midline heart tube then 'jogs' to the left and subsequently loops to the right. We examined 279 mutations, affecting more than 200 genes, and found 21 mutations that perturb this process. Some cause BMP4 to remain radially symmetric. Others randomize the asymmetric BMP4 pattern. Retention of BMP4 symmetry is associated with failure to jog: right-predominance of the BMP4 pattern is associated with reversal of the direction of jogging and looping. Raising BMP4 diffusely throughout the heart, via sonic hedgehog injection, or the blocking of its action by injection of a dominant negative BMP4 receptor, prevent directional jogging or looping. The genes crucial to directing cardiac asymmetry include a subset of those needed for patterning the dorsoventral axis and for notochord and ventral spinal cord development. Thus, the pattern of cardiac BMP4 appears to be in the pathway by which the heart interprets lateralizing signals from the midline.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Corazón/embriología , Pez Cebra/embriología , Animales , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Mutación , Miocardio/metabolismo , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra
11.
Mol Cell Neurosci ; 11(4): 194-205, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9675051

RESUMEN

Netrins, a family of growth cone guidance molecules, are expressed both in the ventral neural tube and in subsets of mesodermal cells. In an effort to better understand the regulation of netrins, we examined the expression of netrin-1a in mutant cyclops, no tail, and floating head zebrafish embryos, in which axial midline structures are perturbed. Netrin-1a expression requires signals present in notochord and floor plate cells. In the myotome, but not the neural tube, netrin-1a expression requires sonic hedgehog. In embryos lacking sonic hedgehog, the sonic-you locus, netrin-1a expression is reduced or absent in the myotomes but present in the neural tube. Embryos lacking sonic hedgehog express tiggy-winkle hedgehog in the floor plate, suggesting that, in the neural tube, tiggy-winkle hedgehog can compensate for the lack of sonic hedgehog in inducing netrin-1a expression. Ectopic expression of sonic hedgehog, tiggy-winkle hedgehog, or echidna hedgehog induces ectopic netrin-1a expression in the neural tube, and ectopic expression of sonic hedgehog or tiggy-winkle hedgehog, but not echidna hedgehog, induces ectopic netrin-1a expression in somites. These data demonstrate that in vertebrates netrin expression is regulated by Hedgehog signaling.


Asunto(s)
Sistema Nervioso Central/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Crecimiento Nervioso/biosíntesis , Factores de Crecimiento Nervioso/fisiología , Somitos/metabolismo , Transactivadores , Animales , Blastómeros/metabolismo , Sistema Nervioso Central/embriología , Embrión no Mamífero/anomalías , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Desarrollo Embrionario , Cabeza/anomalías , Cabeza/embriología , Proteínas Hedgehog , Hibridación in Situ , Morfogénesis/genética , Factores de Crecimiento Nervioso/genética , Netrina-1 , Notocorda/fisiología , Proteínas/genética , Proteínas/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Cola (estructura animal)/anomalías , Cola (estructura animal)/embriología , Proteínas Supresoras de Tumor , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra
12.
Development ; 123: 81-93, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9007231

RESUMEN

We identified 6 genes that are essential for specifying ventral regions of the early zebrafish embryo. Mutations in these genes cause an expansion of structures normally derived from dorsal-lateral regions of the blastula at the expense of ventrally derived structures. A series of phenotypes of varied strengths is observed with different alleles of these mutants. The weakest phenotype is a reduction in the ventral tail fin, observed as a dominant phenotype of swirl, piggytail, and somitabun and a recessive phenotype of mini fin, lost-a-fin and some piggytail alleles. With increasing phenotypic strength, the blood and pronephric anlagen are also reduced or absent, while the paraxial mesoderm and anterior neuroectoderm is progressively expanded. In the strong phenotypes, displayed hy homozygous embryos of snailhouse, swirl and somitabun, the somites circle around the embryo and the midbrain region is expanded laterally. Several mutations in this group of genes are semidominant as well as recessive indicating a strong dosage sensitivity of the processes involved. Mutations in the piggytail gene display an unusual dominance that depends on both a maternal and zygotic heterozygous genotype, while somitabun is a fully penetrant dominant maternal-effect mutation. The similar and overlapping phenotypes of mutants of the 6 genes identified suggest that they function in a common pathway, which begins in oogenesis, but also depends on factors provided after the onset of zygotic transcription, presumably during blastula stages. This pathway provides ventral positional information, counteracting the dorsalizing instructions of the organizer, which is localized in the dorsal shield.


Asunto(s)
Tipificación del Cuerpo/genética , Genes , Pez Cebra/embriología , Pez Cebra/genética , Animales , Ectodermo/fisiología , Embrión no Mamífero/anatomía & histología , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Dominantes , Variación Genética , Masculino , Mesodermo/metabolismo , Mutación , Fenotipo , Pez Cebra/anatomía & histología , Cigoto/crecimiento & desarrollo
13.
Development ; 123: 1-36, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9007226

RESUMEN

In a large-scale screen, we isolated mutants displaying a specific visible phenotype in embryos or early larvae of the zebrafish, Danio rerio. Males were mutagenized with ethylnitrosourea (ENU) and F2 families of single pair matings between sibling F1 fish, heterozygous for a mutagenized genome, were raised. Egg lays were obtained from several crosses between F2 siblings, resulting in scoring of 3857 mutagenized genomes. F3 progeny were scored at the second, third and sixth day of development, using a stereomicroscope. In a subsequent screen, fixed embryos were analyzed for correct retinotectal projection. A total of 4264 mutants were identified. Two thirds of the mutants displaying rather general abnormalities were eventually discarded. We kept and characterized 1163 mutants. In complementation crosses performed between mutants with similar phenotypes, 894 mutants have been assigned to 372 genes. The average allele frequency is 2.4. We identified genes involved in early development, notochord, brain, spinal cord, somites, muscles, heart, circulation, blood, skin, fin, eye, otic vesicle, jaw and branchial arches, pigment pattern, pigment formation, gut, liver, motility and touch response. Our collection contains alleles of almost all previously described zebrafish mutants. From the allele frequencies and other considerations we estimate that the 372 genes defined by the mutants probably represent more than half of all genes that could have been discovered using the criteria of our screen. Here we give an overview of the spectrum of mutant phenotypes obtained, and discuss the limits and the potentials of a genetic saturation screen in the zebrafish.


Asunto(s)
Genes , Pez Cebra/embriología , Pez Cebra/genética , Animales , Cruzamientos Genéticos , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Prueba de Complementación Genética , Masculino , Mutagénesis , Fenotipo , Pez Cebra/crecimiento & desarrollo
14.
Development ; 123: 47-55, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9007228

RESUMEN

Epiboly, the enveloping of the yolk cell by the blastoderm, is the first zebrafish morphogenetic movement. We isolated four mutations that affect epiboly: half baked, avalanche, lawine and weg. Homozygous mutant embryos arrest the vegetal progress of the deep cells of the blastoderm; only the yolk syncytial layer of the yolk cell and the enveloping layer of the blastoderm reach the vegetal pole of the embryo. The mutations half baked, avalanche and lawine produce a novel dominant effect, termed a zygotic-maternal dominant effect: heterozygous embryos produced from heterozygous females slow down epiboly and accumulate detached cells over the neural tube; a small fraction of these mutant individuals are viable. Heterozygous embryos produced from heterozygous males crossed to homozygous wild-type females complete epiboly normally and are completely viable. Additionally, embryos heterozygous for half baked have an enlarged hatching gland, a partial dominant phenotype. The phenotypes of these mutants demonstrate that, for the spreading of cells during epiboly, the movement of the deep cells of the blastoderm require the function of genes that are not necessary for the movement of the enveloping layer or the yolk cell. Furthermore, the dominant zygotic-maternal effect phenotypes illustrate the maternal and zygotic interplay of genes that orchestrate the early cell movements of the zebrafish.


Asunto(s)
Fase de Segmentación del Huevo/fisiología , Mutación , Pez Cebra/embriología , Pez Cebra/genética , Animales , Movimiento Celular/genética , Supervivencia Celular/genética , Fase de Segmentación del Huevo/citología , Fase de Segmentación del Huevo/trasplante , Yema de Huevo/fisiología , Femenino , Prueba de Complementación Genética , Homocigoto , Fenotipo , Cigoto/fisiología
15.
Development ; 123: 57-66, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9007229

RESUMEN

This report describes mutants of the zebrafish having phenotypes causing a general arrest in early morphogenesis. These mutants identify a group of loci making up about 20% of the loci identified by mutants with visible morphological phenotypes within the first day of development. There are 12 Class I mutants, which fall into 5 complementation groups and have cells that lyse before morphological defects are observed. Mutants at three loci, speed bump, ogre and zombie, display abnormal nuclei. The 8 Class II mutants, which fall into 6 complementation groups, arrest development before cell lysis is observed. These mutants seemingly stop development in the late segmentation stages, and maintain a body shape similar to a 20 hour embryo. Mutations in speed bump, ogre, zombie, specter, poltergeist and troll were tested for cell lethality by transplanting mutant cells into wild-type hosts. With poltergeist, transplanted mutant cells all survive. The remainder of the mutants tested were autonomously but conditionally lethal: mutant cells, most of which lyse, sometimes survive to become notochord, muscles, or, in rare cases, large neurons, all cell types which become postmitotic in the gastrula. Some of the genes of the early arrest group may be necessary for progression though the cell cycle; if so, the survival of early differentiating cells may be based on having their terminal mitosis before the zygotic requirement for these genes.


Asunto(s)
Ciclo Celular/genética , Mutagénesis , Pez Cebra/embriología , Pez Cebra/genética , Animales , Embrión no Mamífero/citología , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Genes , Masculino , Mitosis/genética , Fenotipo
16.
Development ; 123: 95-102, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9007232

RESUMEN

We describe two genes, dino and mercedes, which are required for the organization of the zebrafish body plan. In dino mutant embryos, the tail is enlarged at the expense of the head and the anterior region of the trunk. The altered expression patterns of various marker genes reveal that, with the exception of the dorsal most marginal zone, all regions of the early dino mutant embryo acquire more ventral fates. These alterations are already apparent before the onset of gastrulation. mercedes mutant embryos show a similar but weaker phenotype, suggesting a role in the same patterning processes. The phenotypes suggests that dino and mercedes are required for the establishment of dorsal fates in both the marginal and the animal zone of the early gastrula embryo. Their function in the patterning of the ventrolateral mesoderm and the induction of the neuroectoderm is similar to the function of the Spemann organizer in the amphibian embryo.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Animales , Desarrollo Embrionario , Gástrula/fisiología , Mesodermo/fisiología , Mutagénesis , Pez Cebra/embriología
17.
Development ; 123: 103-15, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9007233

RESUMEN

In a large scale screen for mutants with defects in the embryonic development of the zebrafish we identified mutations in four genes,floating head (flh), momo (mom), no tail (ntl), and doc, that are required for early notochord formation. Mutations in flh and ntl have been described previously, while mom and doc are newly identified genes. Mutant mom embryos lack a notochord in the trunk, and trunk somites from the right and left side of the embryo fuse underneath the neural tube. In this respect mom appears similar to flh. In contrast, notochord precursor cells are present in both ntl and doc embryos. In order to gain a greater understanding of the phenotypes, we have analysed the expression of several axial mesoderm markers in mutant embryos of all four genes. In flh and mom, Ntl expression is normal in the germ ring and tailbud, while the expression of Ntl and other notochord markers in the axial mesodermal region is disrupted. Ntl expression is normal in doc embryos until early somitic stages, when there is a reduction in expression which is first seen in anterior regions of the embryo. This suggests a function for doc in the maintenance of ntl expression. Other notochord markers such as twist, sonic hedgehog and axial are not expressed in the axial mesoderm of ntl embryos, their expression parallels the expression of ntl in the axial mesoderm of mutant doc, flh and mom embryos, indicating that ntl is required for the expression of these markers. The role of doc in the expression of the notochord markers appears indirect via ntl. Floor plate formation is disrupted in most regions in flh and mom mutant embryos but is present in mutant ntl and doc embryos. In mutant embryos with strong ntl alleles the band of cells expressing floor plate markers is broadened. A similar broadening is also observed in the axial mesoderm underlying the floor plate of ntl embryos, suggesting a direct involvement of the notochord precursor cells in floor plate induction. Mutations in all of these four genes result in embryos lacking a horizontal myoseptum and muscle pioneer cells, both of which are thought to be induced by the notochord. These somite defects can be traced back to an impairment of the specification of the adaxial cells during early stages of development. Transplantation of wild-type cells into mutant doc embryos reveals that wild-type notochord cells are sufficient to induce horizontal myoseptum formation in the flanking mutant tissue. Thus doc, like flh and ntl, acts cell autonomously in the notochord. In addition to the four mutants with defects in early notochord formation, we have isolated 84 mutants, defining at least 15 genes, with defects in later stages of notochord development. These are listed in an appendix to this study.


Asunto(s)
Mutación , Notocorda/embriología , Pez Cebra/embriología , Pez Cebra/genética , Animales , Diferenciación Celular/genética , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes , Marcadores Genéticos , Mesodermo/fisiología , Notocorda/patología , Notocorda/fisiología , Pez Cebra/anatomía & histología
18.
Development ; 123: 129-42, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9007235

RESUMEN

Tissues of the dorsal midline of vertebrate embryos, such as notochord and floor plate, have been implicated in inductive interactions that pattern the neural tube and somites. In our screen for embryonic visible mutations in the zebrafish we found 113 mutations in more than 27 genes with altered body shape, often with additional defects in CNS development. We concentrated on a subgroup of mutations in ten genes (the midline-group) that cause defective development of the floor plate. By using floor plate markers, such as the signaling molecule sonic hedgehog, we show that the schmalspur (sur) gene is needed for early floor plate development, similar to one-eyed-pinhead (oep) and the previously described cyclops (cyc) gene. In contrast to oep and cyc, sur embryos show deletions of ventral CNS tissue restricted to the mid- and hindbrain, whereas the forebrain appears largely unaffected. In the underlying mesendodermal tissue of the head, sur is needed only for development of the posterior prechordal plate, whereas oep and cyc are required for both anterior and posterior prechordal plate development. Our analysis of sur mutants suggests that defects within the posterior prechordal plate may cause aberrant development of ventral CNS structures in the mid- and hindbrain. Later development of the floor plate is affected in mutant chameleon, you-too, sonic-you, iguana, detour, schmalhans and monorail embryos; these mutants often show additional defects in tissues that are known to depend on signals from notochord and floor plate. For example, sur, con and yot mutants show reduction of motor neurons; median deletions of brain tissue are seen in sur, con and yot embryos; and cyc, con, yot, igu and dtr mutants often show no or abnormal formation of the optic chiasm. We also find fusions of the ventral neurocranium for all midline mutants tested, which may reveal a hitherto unrecognized function of the midline in influencing differentiation of neural crest cells at their destination. As a working hypothesis, we propose that midline-group genes may act to maintain proper structure and inductive function of zebrafish midline tissues.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Mutación , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Animales , Axones/fisiología , Encéfalo/embriología , Encéfalo/patología , Embrión no Mamífero/anatomía & histología , Desarrollo Embrionario , Prueba de Complementación Genética , Mesodermo/patología , Neuronas Motoras/patología , Sistema Nervioso/embriología , Pez Cebra/genética
19.
Development ; 123: 143-51, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9007236

RESUMEN

We have identified several genes that are required for various morphogenetic processes during gastrulation and tail formation. Two genes are required in the anterior region of the body axis: one eyed pinhead (oep) and dirty nose (dns).oep mutant embryos are defective in prechordal plate formation and the specification of anterior and ventral structures of the central nervous system. In dns mutants, cells of the prechordal plate, such as the prospective hatching gland cells, fail to specify. Two genes are required for convergence and extension movements. In mutant trilobite embryos, extension movements on the dorsal side of the embryo are affected, whereas in the formerly described spadetail mutants, for which two new alleles have been isolated, convergent movements of ventrolateral cells to the dorsal side are blocked. Two genes are required for the development of the posterior end of the body axis. In pipetail mutants, the tailbud fails to move ventrally on the yolk sac after germ ring closure, and the tip of the tail fails to detach from the yolk tube. Mutants in kugelig (kgg) do not form the yolk tube at the posterior side of the yolk sac.


Asunto(s)
Gástrula/fisiología , Mutación , Cola (estructura animal)/embriología , Pez Cebra/embriología , Pez Cebra/genética , Animales , Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes , Mesodermo/metabolismo , Morfogénesis/genética , Movimiento , Sistema Nervioso/embriología
20.
Development ; 123: 153-64, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9007237

RESUMEN

Somitogenesis is the basis of segmentation of the mesoderm in the trunk and tail of vertebrate embryos. Two groups of mutants with defects in this patterning process have been isolated in our screen for zygotic mutations affecting the embryonic development of the zebrafish (Danio rerio). In mutants of the first group, boundaries between individual somites are invisible early on, although the paraxial mesoderm is present. Later, irregular boundaries between somites are present. Mutations in fused somites (fss) and beamter (bea) affect all somites, whereas mutations in deadly seven (des), after eight (aei) and white tail (wit) only affect the more posterior somites. Mutants of all genes but wit are homozygous viable and fertile. Skeletal stainings and the expression pattern of myoD and snail1 suggest that anteroposterior patterning within individual somites is abnormal. In the second group of mutants, formation of the horizontal myoseptum, which separates the dorsal and ventral part of the myotome, is reduced. Six genes have been defined in this group (you-type genes). you-too mutants show the most severe phenotype; in these the adaxial cells, muscle pioneers and the primary motoneurons are affected, in addition to the horizontal myoseptum. The horizontal myoseptum is also missing in mutants that lack a notochord. The similarity of the somite phenotype in mutants lacking the notochord and in the you-type mutants suggests that the genes mutated in these two groups are involved in a signaling pathway from the notochord, important for patterning of the somites.


Asunto(s)
Tipificación del Cuerpo/genética , Mutación , Somitos/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Mesodermo/fisiología , Neuronas Motoras/patología , Músculos/citología , Músculos/embriología , Somitos/citología , Pez Cebra/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA