Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurooncol ; 166(3): 523-533, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38308803

RESUMEN

PURPOSE: Glioma is associated with pathologically high (peri)tumoral brain activity, which relates to faster progression. Functional connectivity is disturbed locally and throughout the entire brain, associating with symptomatology. We, therefore, investigated how local activity and network measures relate to better understand how the intricate relationship between the tumor and the rest of the brain may impact disease and symptom progression. METHODS: We obtained magnetoencephalography in 84 de novo glioma patients and 61 matched healthy controls. The offset of the power spectrum, a proxy of neuronal activity, was calculated for 210 cortical regions. We calculated patients' regional deviations in delta, theta and lower alpha network connectivity as compared to controls, using two network measures: clustering coefficient (local connectivity) and eigenvector centrality (integrative connectivity). We then tested group differences in activity and connectivity between (peri)tumoral, contralateral homologue regions, and the rest of the brain. We also correlated regional offset to connectivity. RESULTS: As expected, patients' (peri)tumoral activity was pathologically high, and patients showed higher clustering and lower centrality than controls. At the group-level, regionally high activity related to high clustering in controls and patients alike. However, within-patient analyses revealed negative associations between regional deviations in brain activity and clustering, such that pathologically high activity coincided with low network clustering, while regions with 'normal' activity levels showed high network clustering. CONCLUSION: Our results indicate that pathological activity and connectivity co-localize in a complex manner in glioma. This insight is relevant to our understanding of disease progression and cognitive symptomatology.


Asunto(s)
Mapeo Encefálico , Glioma , Humanos , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Magnetoencefalografía , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética
2.
Brain Commun ; 5(3): fcad140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180993

RESUMEN

Cognitive impairment occurs in 40-65% of persons with multiple sclerosis and may be related to alterations in glutamatergic and GABAergic neurotransmission. Therefore, the aim of this study was to determine how glutamatergic and GABAergic changes relate to cognitive functioning in multiple sclerosis in vivo. Sixty persons with multiple sclerosis (mean age 45.5 ± 9.6 years, 48 females, 51 relapsing-remitting multiple sclerosis) and 22 age-matched healthy controls (45.6 ± 22.0 years, 17 females) underwent neuropsychological testing and MRI. Persons with multiple sclerosis were classified as cognitively impaired when scoring at least 1.5 standard deviations below normative scores on ≥30% of tests. Glutamate and GABA concentrations were determined in the right hippocampus and bilateral thalamus using magnetic resonance spectroscopy. GABA-receptor density was assessed using quantitative [11C]flumazenil positron emission tomography in a subset of participants. Positron emission tomography outcome measures were the influx rate constant (a measure predominantly reflecting perfusion) and volume of distribution, which is a measure of GABA-receptor density. Twenty persons with multiple sclerosis (33%) fulfilled the criteria for cognitive impairment. No differences were observed in glutamate or GABA concentrations between persons with multiple sclerosis and healthy controls, or between cognitively preserved, impaired and healthy control groups. Twenty-two persons with multiple sclerosis (12 cognitively preserved and 10 impaired) and 10 healthy controls successfully underwent [11C]flumazenil positron emission tomography. Persons with multiple sclerosis showed a lower influx rate constant in the thalamus, indicating lower perfusion. For the volume of distribution, persons with multiple sclerosis showed higher values than controls in deep grey matter, reflecting increased GABA-receptor density. When comparing cognitively impaired and preserved patients to controls, the preserved group showed a significantly higher volume of distribution in cortical and deep grey matter and hippocampus. Positive correlations were observed between both positron emission tomography measures and information processing speed in the multiple sclerosis group only. Whereas concentrations of glutamate and GABA did not differ between multiple sclerosis and control nor between cognitively impaired, preserved and control groups, increased GABA-receptor density was observed in preserved persons with multiple sclerosis that was not seen in cognitively impaired patients. In addition, GABA-receptor density correlated to cognition, in particular with information processing speed. This could indicate that GABA-receptor density is upregulated in the cognitively preserved phase of multiple sclerosis as a means to regulate neurotransmission and potentially preserve cognitive functioning.

3.
Brain Imaging Behav ; 17(4): 425-435, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37067658

RESUMEN

Many patients with glioma, primary brain tumors, suffer from poorly understood executive functioning deficits before and/or after tumor resection. We aimed to test whether frontoparietal network centrality of multilayer networks, allowing for integration across multiple frequencies, relates to and predicts executive functioning in glioma. Patients with glioma (n = 37) underwent resting-state magnetoencephalography and neuropsychological tests assessing word fluency, inhibition, and set shifting before (T1) and one year after tumor resection (T2). We constructed binary multilayer networks comprising six layers, with each layer representing frequency-specific functional connectivity between source-localized time series of 78 cortical regions. Average frontoparietal network multilayer eigenvector centrality, a measure for network integration, was calculated at both time points. Regression analyses were used to investigate associations with executive functioning. At T1, lower multilayer integration (p = 0.017) and epilepsy (p = 0.006) associated with poorer set shifting (adj. R2 = 0.269). Decreasing multilayer integration (p = 0.022) and not undergoing chemotherapy at T2 (p = 0.004) related to deteriorating set shifting over time (adj. R2 = 0.283). No significant associations were found for word fluency or inhibition, nor did T1 multilayer integration predict changes in executive functioning. As expected, our results establish multilayer integration of the frontoparietal network as a cross-sectional and longitudinal correlate of executive functioning in glioma patients. However, multilayer integration did not predict postoperative changes in executive functioning, which together with the fact that this correlate is also found in health and other diseases, limits its specific clinical relevance in glioma.


Asunto(s)
Disfunción Cognitiva , Glioma , Humanos , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Glioma/patología , Función Ejecutiva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA