Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 76(3): 437-452.e6, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31521505

RESUMEN

Polycomb repressive complex 2 (PRC2) is composed of EED, SUZ12, and EZH1/2 and mediates mono-, di-, and trimethylation of histone H3 at lysine 27. At least two independent subcomplexes exist, defined by their specific accessory proteins: PRC2.1 (PCL1-3, EPOP, and PALI1/2) and PRC2.2 (AEBP2 and JARID2). We show that PRC2.1 and PRC2.2 share the majority of target genes in mouse embryonic stem cells. The loss of PCL1-3 is sufficient to evict PRC2.1 from Polycomb target genes but only leads to a partial reduction of PRC2.2 and H3K27me3. Conversely, disruption of PRC2.2 function through the loss of either JARID2 or RING1A/B is insufficient to completely disrupt targeting of SUZ12 by PCLs. Instead, the combined loss of both PRC2.1 and PRC2.2 is required, leading to the global mislocalization of SUZ12. This supports a model in which the specific accessory proteins within PRC2.1 and PRC2.2 cooperate to direct H3K27me3 via both synergistic and independent mechanisms.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Sitios de Unión , Línea Celular Tumoral , Cromatina/genética , Humanos , Metilación , Ratones , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/genética , Unión Proteica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Trends Genet ; 39(2): 140-153, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36549923

RESUMEN

Regulation of gene expression is a complex but highly guided process. While genomic technologies and computational approaches have allowed high-throughput mapping of cis-regulatory elements (CREs) and their interactions in 3D, their precise role in regulating gene expression remains obscure. Recent complementary observations revealed that interactions between CREs frequently result in the formation of small-scale functional modules within topologically associating domains. Such chromatin modules likely emerge from a complex interplay between regulatory machineries assembled at CREs, including site-specific binding of transcription factors. Here, we review the methods that allow identifying chromatin modules, summarize possible mechanisms that steer CRE interactions within these modules, and discuss outstanding challenges to uncover how chromatin modules fit in our current understanding of the functional 3D genome.


Asunto(s)
Cromatina , Regulación de la Expresión Génica , Cromatina/genética , Regulación de la Expresión Génica/genética , Genoma/genética , Genómica , Secuencias Reguladoras de Ácidos Nucleicos/genética
4.
Nat Methods ; 17(4): 380-389, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32152500

RESUMEN

Understanding how chromatin is regulated is essential to fully grasp genome biology, and establishing the locus-specific protein composition is a major step toward this goal. Here we explain why the isolation and analysis of a specific chromatin segment are technically challenging, independently of the method. We then describe the published strategies and discuss their advantages and limitations. We conclude by discussing why significant technology developments are required to unambiguously describe the composition of small single loci.


Asunto(s)
Cromatina , Mapeo Cromosómico , Cromosomas/genética , Sitios Genéticos , Genoma/fisiología , Inmunoprecipitación de Cromatina , Humanos
5.
Mol Cell Proteomics ; 20: 100056, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33556626

RESUMEN

Regulation of gene expression is essential for the functioning of all eukaryotic organisms. Understanding gene expression regulation requires determining which proteins interact with regulatory elements in chromatin. MS-based analysis of chromatin has emerged as a powerful tool to identify proteins associated with gene regulation, as it allows studying protein function and protein complex formation in their in vivo chromatin-bound context. Total chromatin isolated from cells can be directly analyzed using MS or further fractionated into transcriptionally active and inactive chromatin prior to MS-based analysis. Newly formed chromatin that is assembled during DNA replication can also be specifically isolated and analyzed. Furthermore, capturing specific chromatin domains facilitates the identification of previously unknown transcription factors interacting with these domains. Finally, in recent years, advances have been made toward identifying proteins that interact with a single genomic locus of interest. In this review, we highlight the power of chromatin proteomics approaches and how these provide complementary alternatives compared with conventional affinity purification methods. Furthermore, we discuss the biochemical challenges that should be addressed to consolidate and expand the role of chromatin proteomics as a key technology in the context of gene expression regulation and epigenetics research in health and disease.


Asunto(s)
Cromatina/química , Proteómica/métodos , Animales , Epigénesis Genética , Humanos , Espectrometría de Masas
6.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613637

RESUMEN

Many patients with primary focal segmental glomerulosclerosis (FSGS) develop recurrence of proteinuria after kidney transplantation. Several circulating permeability factors (CPFs) responsible for recurrence have been suggested, but were never validated. We aimed to find proteins involved in the mechanism of action of CPF(s) and/or potential biomarkers for the presence of CPF(s). Cultured human podocytes were exposed to plasma from patients with FSGS with presumed CPF(s) or healthy and disease controls. Podocyte proteomes were analyzed by LC-MS. Results were validated using flow cytometry, RT-PCR, and immunofluorescence. Podocyte granularity was examined using flow cytometry, electron microscopy imaging, and BODIPY staining. Perilipin-2 protein expression was increased in podocytes exposed to presumed CPF-containing plasmas, and correlated with the capacity of plasma to induce podocyte granularity, identified as lipid droplet accumulation. Elevated podocyte perilipin-2 was confirmed at protein and mRNA level and was also detected in glomeruli of FSGS patients whose active disease plasmas induced podocyte perilipin-2 and lipid droplets. Our study demonstrates that presumably, CPF-containing plasmas from FSGS patients induce podocyte lipid droplet accumulation and perilipin-2 expression, identifying perilipin-2 as a potential biomarker. Future research should address the mechanism underlying CPF-induced alterations in podocyte lipid metabolism, which ultimately may result in novel leads for treatment.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Humanos , Podocitos/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo , Gotas Lipídicas/metabolismo , Glomérulos Renales/metabolismo , Biomarcadores/metabolismo
7.
Proteomics ; 19(14): e1900047, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31219242

RESUMEN

Pluripotency can be captured in vitro in the form of Embryonic Stem Cells (ESCs). These ESCs can be either maintained in the unrestricted "naïve" state of pluripotency, adapted to developmentally more constrained "primed" pluripotency or differentiated towards each of the three germ layers. Epigenetic protein complexes and transcription factors have been shown to specify and instruct transitions from ESCs to distinct cell states. In this study, proteomic profiling of the chromatin landscape by chromatin enrichment for proteomics (ChEP) is used in mouse naive pluripotent ESCs, primed pluripotent Epiblast stem cells (EpiSCs), and cells in early stages of differentiation. A comprehensive overview of epigenetic protein complexes associated with the chromatin is provided and proteins associated with the maintenance and loss of pluripotency are identified. The data reveal major compositional alterations of epigenetic complexes during priming and differentiation of naïve pluripotent ESCs. These results contribute to the understanding of ESC differentiation and provide a framework for future studies of lineage commitment of ESCs.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Espectrometría de Masas/métodos , Animales , Humanos , Células Madre Pluripotentes/metabolismo , Proteómica/métodos , Factores de Transcripción/metabolismo
8.
Genome Biol ; 25(1): 190, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026229

RESUMEN

BACKGROUND: Interactions among cis-regulatory elements (CREs) play a crucial role in gene regulation. Various approaches have been developed to map these interactions genome-wide, including those relying on interindividual epigenomic variation to identify groups of covariable regulatory elements, referred to as chromatin modules (CMs). While CM mapping allows to investigate the relationship between chromatin modularity and gene expression, the computational principles used for CM identification vary in their application and outcomes. RESULTS: We comprehensively evaluate and streamline existing CM mapping tools and present guidelines for optimal utilization of epigenome data from a diverse population of individuals to assess regulatory coordination across the human genome. We showcase the effectiveness of our recommended practices by analyzing distinct cell types and demonstrate cell type specificity of CRE interactions in CMs and their relevance for gene expression. Integration of genotype information revealed that many non-coding disease-associated variants affect the activity of CMs in a cell type-specific manner by affecting the binding of cell type-specific transcription factors. We provide example cases that illustrate in detail how CMs can be used to deconstruct GWAS loci, assess variable expression of cell surface receptors in immune cells, and reveal how genetic variation can impact the expression of prognostic markers in chronic lymphocytic leukemia. CONCLUSIONS: Our study presents an optimal strategy for CM mapping and reveals how CMs capture the coordination of CREs and its impact on gene expression. Non-coding genetic variants can disrupt this coordination, and we highlight how this may lead to disease predisposition in a cell type-specific manner.


Asunto(s)
Cromatina , Humanos , Cromatina/genética , Cromatina/metabolismo , Genoma Humano , Estudio de Asociación del Genoma Completo , Secuencias Reguladoras de Ácidos Nucleicos , Regulación de la Expresión Génica , Variación Genética
9.
Nat Genet ; 56(10): 2199-2212, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39363017

RESUMEN

Many enhancers control gene expression by assembling regulatory factor clusters, also referred to as condensates. This process is vital for facilitating enhancer communication and establishing cellular identity. However, how DNA sequence and transcription factor (TF) binding instruct the formation of high regulatory factor environments remains poorly understood. Here we developed a new approach leveraging enhancer-centric chromatin accessibility quantitative trait loci (caQTLs) to nominate regulatory factor clusters genome-wide. By analyzing TF-binding signatures within the context of caQTLs and comparing episomal versus endogenous enhancer activities, we discovered a class of regulators, 'context-only' TFs, that amplify the activity of cell type-specific caQTL-binding TFs, that is, 'context-initiator' TFs. Similar to super-enhancers, enhancers enriched for context-only TF-binding sites display high coactivator binding and sensitivity to bromodomain-inhibiting molecules. We further show that binding sites for context-only and context-initiator TFs underlie enhancer coordination, providing a mechanistic rationale for how a loose TF syntax confers regulatory specificity.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Sitios de Carácter Cuantitativo , Factores de Transcripción , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Humanos , Sitios de Unión/genética , Cromatina/genética , Cromatina/metabolismo , Unión Proteica , Animales , Regulación de la Expresión Génica , Ratones
10.
Cell Metab ; 36(7): 1566-1585.e9, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38729152

RESUMEN

Adipose tissue plasticity is orchestrated by molecularly and functionally diverse cells within the stromal vascular fraction (SVF). Although several mouse and human adipose SVF cellular subpopulations have by now been identified, we still lack an understanding of the cellular and functional variability of adipose stem and progenitor cell (ASPC) populations across human fat depots. To address this, we performed single-cell and bulk RNA sequencing (RNA-seq) analyses of >30 SVF/Lin- samples across four human adipose depots, revealing two ubiquitous human ASPC (hASPC) subpopulations with distinct proliferative and adipogenic properties but also depot- and BMI-dependent proportions. Furthermore, we identified an omental-specific, high IGFBP2-expressing stromal population that transitions between mesothelial and mesenchymal cell states and inhibits hASPC adipogenesis through IGFBP2 secretion. Our analyses highlight the molecular and cellular uniqueness of different adipose niches, while our discovery of an anti-adipogenic IGFBP2+ omental-specific population provides a new rationale for the biomedically relevant, limited adipogenic capacity of omental hASPCs.


Asunto(s)
Adipogénesis , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Epiplón , Células del Estroma , Humanos , Epiplón/metabolismo , Epiplón/citología , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Células del Estroma/metabolismo , Células del Estroma/citología , Femenino , Masculino , Persona de Mediana Edad , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Adulto , Epitelio/metabolismo , Células Madre/metabolismo , Células Madre/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Anciano , Animales
11.
Nat Protoc ; 18(1): 36-57, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36224470

RESUMEN

Proximity biotinylation is a commonly used method to identify the in vivo proximal proteome for proteins of interest. This technology typically relies on fusing a bait protein to a biotin ligase using overexpression or clustered regularly interspaced short palindromic repeats (CRISPR)-based tagging, thus prohibiting the use of such assays in cell types that are difficult to transfect or transduce. We recently developed an 'off-the-shelf' proximity biotinylation method that makes use of a recombinant enzyme consisting of the biotin ligase TurboID fused to the antibody-recognizing moiety Protein A. In this method, a bait-specific antibody and the ProteinA-Turbo enzyme are consecutively added to permeabilized fixed or unfixed cells. Following incubation, during which ProteinA-Turbo antibody-antigen complexes are formed, unbound molecules are washed away, after which bait-proximal biotinylation is triggered by the addition of exogenous biotin. Finally, biotinylated proteins are enriched from crude lysates using streptavidin beads followed by mass spectrometry-based protein identification. In principle, any scientist can perform this protocol within 3 days, although generating the proteomics data requires access to a high-end liquid chromatography-mass spectrometry setup. Data analysis and data visualization are relatively straightforward and can be performed using any type of software that converts raw mass spectrometry spectra files into identified and quantified proteins. The protocol has been optimized for nuclear targets but may also be adapted to other subcellular regions of interest.


Asunto(s)
Biotina , Proteoma , Biotina/química , Biotinilación , Estreptavidina/química , Proteoma/metabolismo , Ligasas/metabolismo
12.
Nat Commun ; 14(1): 6316, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813838

RESUMEN

Cell cycle transitions result from global changes in protein phosphorylation states triggered by cyclin-dependent kinases (CDKs). To understand how this complexity produces an ordered and rapid cellular reorganisation, we generated a high-resolution map of changing phosphosites throughout unperturbed early cell cycles in single Xenopus embryos, derived the emergent principles through systems biology analysis, and tested them by biophysical modelling and biochemical experiments. We found that most dynamic phosphosites share two key characteristics: they occur on highly disordered proteins that localise to membraneless organelles, and are CDK targets. Furthermore, CDK-mediated multisite phosphorylation can switch homotypic interactions of such proteins between favourable and inhibitory modes for biomolecular condensate formation. These results provide insight into the molecular mechanisms and kinetics of mitotic cellular reorganisation.


Asunto(s)
Proteínas de Ciclo Celular , Quinasas Ciclina-Dependientes , Quinasas Ciclina-Dependientes/metabolismo , Fosforilación , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Quinasa 2 Dependiente de la Ciclina/metabolismo
13.
ACS Nano ; 17(13): 12101-12117, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37338806

RESUMEN

Adoptive T cell therapy has successfully been implemented for the treatment of cancer. Nevertheless, ex vivo expansion of T cells by artificial antigen-presenting cells (aAPCs) remains cumbersome and can compromise T cell functionality, thereby limiting their therapeutic potential. We propose a radically different approach aimed at direct expansion of T cells in vivo, thereby omitting the need for large-scale ex vivo T cell production. We engineered nanosized immunofilaments (IFs), with a soluble semiflexible polyisocyanopeptide backbone that presents peptide-loaded major histocompatibility complexes and costimulatory molecules multivalently. IFs readily activated and expanded antigen-specific T cells like natural APCs, as evidenced by transcriptomic analyses of T cells. Upon intravenous injection, IFs reach the spleen and lymph nodes and induce antigen-specific T cell responses in vivo. Moreover, IFs display strong antitumor efficacy resulting in inhibition of the formation of melanoma metastases and reduction of primary tumor growth in synergy with immune checkpoint blockade. In conclusion, nanosized IFs represent a powerful modular platform for direct activation and expansion of antigen-specific T cells in vivo, which can greatly contribute to cancer immunotherapy.


Asunto(s)
Melanoma , Linfocitos T , Humanos , Células Presentadoras de Antígenos , Melanoma/terapia , Inmunoterapia , Inmunoterapia Adoptiva
14.
Nat Commun ; 13(1): 7227, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36433946

RESUMEN

Gut-draining mesenteric lymph nodes (LN) provide the framework to shape intestinal adaptive immune responses. Based on the transcriptional signatures established by our previous work, the composition and immunomodulatory function of LN stromal cells (SC) vary according to location. Here, we describe the single-cell composition and development of the SC compartment within mesenteric LNs derived from postnatal to aged mice. We identify CD34+ SC and fibroblastic reticular stromal cell (FRC) progenitors as putative progenitors, both supplying the typical rapid postnatal mesenteric LN expansion. We further establish the location-specific chromatin accessibility and DNA methylation landscape of non-endothelial SCs and identify a microbiota-independent core epigenomic signature, showing characteristic differences between SCs from mesenteric and skin-draining peripheral LNs. The epigenomic landscape of SCs points to dynamic expression of Irf3 along the differentiation trajectories of FRCs. Accordingly, a mesenchymal stem cell line acquires a Cxcl9+ FRC molecular phenotype upon lentiviral overexpression of Irf3, and the relevance of Irf3 for SC biology is further underscored by the diminished proportion of Ccl19+ and Cxcl9+ FRCs in LNs of Irf3-/- mice. Together, our data constitute a comprehensive transcriptional and epigenomic map of mesenteric LNSC development in early life and dissect location-specific, microbiota-independent properties of non-endothelial SCs.


Asunto(s)
Ganglios Linfáticos , Células del Estroma , Ratones , Animales , Ratones Endogámicos C57BL , Células del Estroma/metabolismo , Ganglios Linfáticos/patología , Moléculas de Adhesión Celular/metabolismo , Antígenos CD34/metabolismo
15.
Nat Commun ; 12(1): 5015, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34408139

RESUMEN

Proximity biotinylation workflows typically require CRISPR-based genetic manipulation of target cells. To overcome this bottleneck, we fused the TurboID proximity biotinylation enzyme to Protein A. Upon target cell permeabilization, the ProtA-Turbo enzyme can be targeted to proteins or post-translational modifications of interest using bait-specific antibodies. Addition of biotin then triggers bait-proximal protein biotinylation. Biotinylated proteins can subsequently be enriched from crude lysates and identified by mass spectrometry. We demonstrate this workflow by targeting Emerin, H3K9me3 and BRG1. Amongst the main findings, our experiments reveal that the essential protein FLYWCH1 interacts with a subset of H3K9me3-marked (peri)centromeres in human cells. The ProtA-Turbo enzyme represents an off-the-shelf proximity biotinylation enzyme that facilitates proximity biotinylation experiments in primary cells and can be used to understand how proteins cooperate in vivo and how this contributes to cellular homeostasis and disease.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo , Biotina/metabolismo , Biotinilación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Espectrometría de Masas , Unión Proteica , Proteínas/química , Proteómica
16.
Cell Rep ; 34(5): 108705, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33535034

RESUMEN

Membraneless organelles are liquid condensates, which form through liquid-liquid phase separation. Recent advances show that phase separation is essential for cellular homeostasis by regulating basic cellular processes, including transcription and signal transduction. The reported number of proteins with the capacity to mediate protein phase separation (PPS) is continuously growing. While computational tools for predicting PPS have been developed, obtaining a proteome-wide overview of PPS probabilities has remained challenging. Here, we present a phase separation analysis and prediction (PSAP) machine-learning classifier that, based solely on the amino acid content of a training set of known PPS proteins, can determine the phase separation likelihood for each protein in a given proteome. Through comparison with PPS databases, existing predictors, and experimental evidence, we demonstrate the validity and advantages of the PSAP classifier. We anticipate that the PSAP predictor provides a useful tool for future research aimed at identifying phase separating proteins in health and disease.


Asunto(s)
Condensados Biomoleculares/genética , Aprendizaje Automático/normas , Biosíntesis de Proteínas/genética , Humanos
17.
Gut Microbes ; 13(1): 1966278, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34455931

RESUMEN

The human gut microbiota plays a central role in intestinal health and disease. Yet, many of its bacterial constituents are functionally still largely unexplored. A crucial prerequisite for bacterial survival and proliferation is the creation and/or exploitation of an own niche. For many bacterial species that are linked to human disease, the inner mucus layer was found to be an important niche. Allobaculum mucolyticum is a newly identified, IBD-associated species that is thought be closely associated with the host epithelium. To explore how this bacterium is able to effectively colonize this niche, we screened its genome for factors that may contribute to mucosal colonization. Up to 60 genes encoding putative Carbohydrate Active Enzymes (CAZymes) were identified in the genome of A. mucolyticum. Mass spectrometry revealed 49 CAZymes of which 26 were significantly enriched in its secretome. Functional assays demonstrated the presence of CAZyme activity in A. mucolyticum conditioned medium, degradation of human mucin O-glycans, and utilization of liberated non-terminal monosaccharides for bacterial growth. The results support a model in which sialidases and fucosidases remove terminal O-glycan sugars enabling subsequent degradation and utilization of carbohydrates for A. mucolyticum growth. A. mucolyticum CAZyme secretion may thus facilitate bacterial colonization and degradation of the mucus layer and may pose an interesting target for future therapeutic intervention.


Asunto(s)
Firmicutes/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Mucinas/metabolismo , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Firmicutes/clasificación , Firmicutes/genética , Microbioma Gastrointestinal/fisiología , Genoma Bacteriano/genética , Humanos , Intestinos/metabolismo , Intestinos/microbiología , Neuraminidasa/metabolismo , alfa-L-Fucosidasa/metabolismo
18.
Stem Cell Reports ; 15(6): 1287-1300, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-32763159

RESUMEN

Polycomb Repressive Complex 2 (PRC2) plays an essential role in gene repression during development, catalyzing H3 lysine 27 trimethylation (H3K27me3). MTF2 in the PRC2.1 sub-complex, and JARID2 in PRC2.2, are central in core PRC2 recruitment to target genes in mouse embryonic stem cells (mESCs). To investigate how PRC2.1 and PRC2.2 cooperate, we combined Polycomb mutant mESCs with chemical inhibition of binding to H3K27me3. We find that PRC2.1 and PRC2.2 mediate two distinct paths for recruitment, which are mutually reinforced. Whereas PRC2.1 recruitment is mediated by MTF2 binding to DNA, JARID2-containing PRC2.2 recruitment is more dependent on PRC1. Both recruitment axes are supported by core subunit EED binding to H3K27me3, but EED inhibition exhibits a more pronounced effect in Jarid2 null cells. Finally, we show that PRC1 and PRC2 enhance reciprocal binding. Together, these data disentangle the interdependent interactions that are important for PRC2 recruitment.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Histonas/genética , Histonas/metabolismo , Ratones , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/genética
19.
Stem Cell Reports ; 14(2): 175-183, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32004494

RESUMEN

Mouse embryonic stem cells (ESCs) grown in serum-supplemented conditions are characterized by an extremely short G1 phase due to the lack of G1-phase control. Concordantly, the G1-phase-specific P53-P21 pathway is compromised in serum ESCs. Here, we provide evidence that P53 is activated upon transition of serum ESCs to their pluripotent ground state using serum-free 2i conditions and that is required for the elongated G1 phase characteristic of ground state ESCs. RNA sequencing and chromatin immunoprecipitation sequencing analyses reveal that P53 directly regulates the expression of the retinoblastoma (RB) protein and that the hypo-phosphorylated, active RB protein plays a key role in G1-phase control. Our findings suggest that the P53-P21 pathway is active in ground state 2i ESCs and that its role in the G1-checkpoint is abolished in serum ESCs. Taken together, the data reveal a mechanism by which inactivation of P53 can lead to loss of RB and uncontrolled cell proliferation.


Asunto(s)
Ciclo Celular , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Fase G1 , Regulación de la Expresión Génica , Ratones , Proteína de Retinoblastoma/metabolismo
20.
Nat Cell Biol ; 22(5): 534-545, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32367046

RESUMEN

Following implantation, the naive pluripotent epiblast of the mouse blastocyst generates a rosette, undergoes lumenogenesis and forms the primed pluripotent egg cylinder, which is able to generate the embryonic tissues. How pluripotency progression and morphogenesis are linked and whether intermediate pluripotent states exist remain controversial. We identify here a rosette pluripotent state defined by the co-expression of naive factors with the transcription factor OTX2. Downregulation of blastocyst WNT signals drives the transition into rosette pluripotency by inducing OTX2. The rosette then activates MEK signals that induce lumenogenesis and drive progression to primed pluripotency. Consequently, combined WNT and MEK inhibition supports rosette-like stem cells, a self-renewing naive-primed intermediate. Rosette-like stem cells erase constitutive heterochromatin marks and display a primed chromatin landscape, with bivalently marked primed pluripotency genes. Nonetheless, WNT induces reversion to naive pluripotency. The rosette is therefore a reversible pluripotent intermediate whereby control over both pluripotency progression and morphogenesis pivots from WNT to MEK signals.


Asunto(s)
Células Madre Embrionarias/fisiología , Células Madre Pluripotentes/fisiología , Animales , Blastocisto/metabolismo , Blastocisto/fisiología , Diferenciación Celular/fisiología , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Estratos Germinativos/metabolismo , Estratos Germinativos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Morfogénesis/fisiología , Factores de Transcripción Otx/metabolismo , Células Madre Pluripotentes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA