Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
RNA Biol ; 18(6): 914-931, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33043783

RESUMEN

Previous high-throughput studies in Gram-negative bacteria identified a large number of 3'UTR fragments that potentially function as sRNAs. Here we extensively characterize the MalH sRNA. We show that MalH is a stable degradation intermediate derived from the 3' end of malG, which is part of the maltose uptake operon transcript malEFG. Unlike the majority of bacterial sRNAs, MalH is transiently expressed during the transition from the exponential to the stationary growth phase, suggesting that it contributes to adaptation to changes in nutrient availability. Over-expression of MalH reduces expression of general outer membrane porins and MicA, a repressor of the high-affinity maltose/maltodextrin transporter LamB. Disrupting MalH production and function significantly reduces lamB accumulation when maltose is the only available carbon source, presumably due to the accumulation of the MicA repressor. We propose that MalH is part of a regulatory network that, during the transition phase, directly or indirectly promotes accumulation of high-affinity maltose transporters in the outer membrane by dampening competing pathways.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Carbono/metabolismo , Proteínas de Escherichia coli/genética , Porinas/genética , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Pequeño no Traducido/genética , Receptores Virales/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica , Maltosa/metabolismo , Operón/genética , Porinas/metabolismo , Unión Proteica , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , RNA-Seq/métodos , Receptores Virales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
2.
Nucleic Acids Res ; 44(6): 2577-92, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26609136

RESUMEN

Coupled transcription and translation in bacteria are tightly regulated. Some small RNAs (sRNAs) control aspects of this coupling by modifying ribosome access or inducing degradation of the message. Here, we show that sRNA IsrA (IS61 or McaS) specifically associates with core enzyme of RNAP in vivo and in vitro, independently of σ factor and away from the main nucleic-acids-binding channel of RNAP. We also show that, in the cells, IsrA exists as ribonucleoprotein particles (sRNPs), which involve a defined set of proteins including Hfq, S1, CsrA, ProQ and PNPase. Our findings suggest that IsrA might be directly involved in transcription or can participate in regulation of gene expression by delivering proteins associated with it to target mRNAs through its interactions with transcribing RNAP and through regions of sequence-complementarity with the target. In this eukaryotic-like model only in the context of a complex with its target, IsrA and its associated proteins become active. In this manner, in the form of sRNPs, bacterial sRNAs could regulate a number of targets with various outcomes, depending on the set of associated proteins.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Ribonucleoproteínas/genética , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Biosíntesis de Proteínas , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleoproteínas/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Transcripción Genética
3.
J Mol Biol ; 368(3): 677-90, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17368481

RESUMEN

The conserved signal recognition particle targets ribosomes synthesizing presecretory proteins to the endoplasmic reticulum membrane. Key to the activity of SRP is its ability to bind the ribosome at distant locations, the signal sequence exit and elongation factor-binding sites. These contacts are made by the S and Alu domains of SRP, respectively. We tested earlier secondary structure predictions of the Saccharomyces cerevisiae SRP RNA, scR1, and provide and test a consensus structure. The structure contains four non-conserved insertions, helices 9-12, into the core SRP RNA fold, and an extended helix 7. Using a series of scR1 mutants lacking part or all of these structural elements, we find that they are important for the RNA in both function and assembly of the RNP. About 20% of the RNA, corresponding to the outer regions of these helices, is dispensable for function. Further, we examined the role of several features within the S-domain section of the core, helix 5, and find that its length and flexibility are important for proper SRP function and become essential in the absence of helix 10, 11 and/or 7 regions. Overall, the genetic data indicate that regions of scR1 distant in both primary sequence and secondary structure have interrelated roles in the function of the complex, and possibly mediate communication between Alu and S domains during targeting.


Asunto(s)
N-Glicosil Hidrolasas/química , Conformación de Ácido Nucleico , ARN de Hongos/química , Proteínas de Saccharomyces cerevisiae/química , Partícula de Reconocimiento de Señal/química , Secuencia de Bases , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Datos de Secuencia Molecular , Mutación , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/fisiología , ARN de Hongos/genética , ARN de Hongos/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/fisiología
4.
RNA Biol ; 5(2): 73-83, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18418087

RESUMEN

Co-translational protein targeting to the endoplasmic reticulum is catalysed by the signal recognition particle, a conserved ribonucleoprotein. Key activities of SRP--signal sequence binding, and inhibition of ribosomal translation elongation--require interactions of SRP with distant locations on the ribosome. A heterodimer of Srp72p and Srp68p localise to the central portion of the SRP complex, and may co-ordinate its activities. A series of mutations within Srp72p were examined individually, in combination and in the presence of mutations within SRP RNA. In this analysis mutations within Srp72p fell into two groups, identifying separate interactions/functions of the protein. Much of Srp72p is predicted to be alpha helical tetratricopeptide repeat motifs, with the C-terminus forming a separate unstructured region. Mutations towards the C-terminal end of the alpha helical region reveal a specific genetic interaction with a conserved motif in the central helix of SRP RNA. In contrast, mutations within the C-terminal region of Srp72p have genetic interactions across the RNA. Many mutant combinations impaired function rather than inhibiting assembly of SRP. However, one specific combination of Srp72p and SRP RNA mutations led to accumulation of pre-SRP in the nucleus. We conclude that Srp72p has at least two functions that are individually redundant and that the conformation of the complex is critical for efficient completion of its biogenesis.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Transporte Activo de Núcleo Celular , Alelos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia Conservada , Análisis Mutacional de ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , N-Glicosil Hidrolasas/metabolismo , Conformación de Ácido Nucleico , Transporte de Proteínas , ARN de Hongos/química , ARN de Hongos/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Partícula de Reconocimiento de Señal/química
5.
Mol Cell Biol ; 31(2): 365-74, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21041475

RESUMEN

Box C/D ribonucleoprotein particles guide the 2'-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C'/D' motifs in the box C/D RNA. The C/D and C'/D' RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2'-O-methylation when the C'/D' motif was either mutated or ablated. In contrast, the C'/D' RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C'/D' RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C'/D' motifs. Therefore, the spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes.


Asunto(s)
Evolución Molecular , Ribonucleoproteínas Nucleolares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , Eucariontes/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Metilación , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Nucleótidos/genética , Nucleótidos/metabolismo , ARN de Archaea/genética , ARN de Archaea/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , ARN Pequeño no Traducido
6.
RNA ; 11(1): 7-13, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15611297

RESUMEN

The signal recognition particle (SRP) is a cytosolic ribonucleoprotein complex that guides secretory proteins to biological membranes in all organisms. The SRP RNA is at the center of the structure and function of the SRP. The comparison of the growing number of SRP RNA sequences provides a rich source for gaining valuable insight into the composition, assembly, and phylogeny of the SRP. In order to assist in the continuation of these studies, we propose an SRP RNA nomenclature applicable to the three divisions of life.


Asunto(s)
ARN/química , ARN/genética , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética , Terminología como Asunto , Animales , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , ARN de Archaea/química , ARN de Archaea/genética , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Protozoario/química , ARN Protozoario/genética , Homología de Secuencia de Ácido Nucleico
7.
RNA ; 10(1): 75-89, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14681587

RESUMEN

The contribution made by the RNA component of signal recognition particle (SRP) to its function in protein targeting is poorly understood. We have generated a complete secondary structure for Saccharomyces cerevisiae SRP RNA, scR1. The structure conforms to that of other eukaryotic SRP RNAs. It is rod-shaped with, at opposite ends, binding sites for proteins required for the SRP functions of signal sequence recognition (S-domain) and translational elongation arrest (Alu-domain). Micrococcal nuclease digestion of purified S. cerevisiae SRP separated the S-domain of the RNA from the Alu-domain as a discrete fragment. The Alu-domain resolved into several stable fragments indicating a compact structure. Comparison of scR1 with SRP RNAs of five yeast species related to S. cerevisiae revealed the S-domain to be the most conserved region of the RNA. Extending data from nuclease digestion with phylogenetic comparison, we built the secondary structure model for scR1. The Alu-domain contains large extensions, including a sequence with hallmarks of an expansion segment. Evolutionarily conserved bases are placed in the Alu- and S-domains as in other SRP RNAs, the exception being an unusual GU(4)A loop closing the helix onto which the signal sequence binding Srp54p assembles (domain IV). Surprisingly, several mutations within the predicted Srp54p binding site failed to disrupt SRP function in vivo. However, the strength of the Srp54p-scR1 and, to a lesser extent, Sec65p-scR1 interaction was decreased in these mutant particles. The availability of a secondary structure for scR1 will facilitate interpretation of data from genetic analysis of the RNA.


Asunto(s)
Elementos Alu , Conformación de Ácido Nucleico , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo , Emparejamiento Base , Secuencia de Bases , Secuencia Conservada , Evolución Molecular , Nucleasa Microcócica/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN de Hongos/genética , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA