Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 21(1): 569, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32819293

RESUMEN

BACKGROUND: Members of the bacterial family Flavobacteriaceae are widely distributed in the marine environment and often found associated with algae, fish, detritus or marine invertebrates. Yet, little is known about the characteristics that drive their ubiquity in diverse ecological niches. Here, we provide an overview of functional traits common to taxonomically diverse members of the family Flavobacteriaceae from different environmental sources, with a focus on the Marine clade. We include seven newly sequenced marine sponge-derived strains that were also tested for gliding motility and antimicrobial activity. RESULTS: Comparative genomics revealed that genome similarities appeared to be correlated to 16S rRNA gene- and genome-based phylogeny, while differences were mostly associated with nutrient acquisition, such as carbohydrate metabolism and gliding motility. The high frequency and diversity of genes encoding polymer-degrading enzymes, often arranged in polysaccharide utilization loci (PULs), support the capacity of marine Flavobacteriaceae to utilize diverse carbon sources. Homologs of gliding proteins were widespread among all studied Flavobacteriaceae in contrast to members of other phyla, highlighting the particular presence of this feature within the Bacteroidetes. Notably, not all bacteria predicted to glide formed spreading colonies. Genome mining uncovered a diverse secondary metabolite biosynthesis arsenal of Flavobacteriaceae with high prevalence of gene clusters encoding pathways for the production of antimicrobial, antioxidant and cytotoxic compounds. Antimicrobial activity tests showed, however, that the phenotype differed from the genome-derived predictions for the seven tested strains. CONCLUSIONS: Our study elucidates the functional repertoire of marine Flavobacteriaceae and highlights the need to combine genomic and experimental data while using the appropriate stimuli to unlock their uncharted metabolic potential.


Asunto(s)
Flavobacteriaceae , Animales , Metabolismo de los Hidratos de Carbono , ADN Bacteriano , Flavobacteriaceae/genética , Genómica , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
2.
J Water Health ; 15(2): 175-184, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28362299

RESUMEN

Clinically relevant antimicrobial resistant bacteria, genetic resistance elements, and antibiotic residues (so-called AMR) from human and animal waste are abundantly present in environmental samples. This presence could lead to human exposure to AMR. In 2015, the World Health Organization (WHO) developed a Global Action Plan for Antimicrobial Resistance with one of its strategic objectives being to strengthen knowledge through surveillance and research. With respect to a strategic research agenda on water, sanitation and hygiene and AMR, WHO organized a workshop to solicit input by scientists and other stakeholders. The workshop resulted in three main conclusions. The first conclusion was that guidance is needed on how to reduce the spread of AMR to humans via the environment and to introduce effective intervention measures. Second, human exposure to AMR via water and its health impact should be investigated and quantified, in order to compare with other human exposure routes, such as direct transmission or via food consumption. Finally, a uniform and global surveillance strategy that complements existing strategies and includes analytical methods that can be used in low-income countries too, is needed to monitor the magnitude and dissemination of AMR.


Asunto(s)
Antiinfecciosos/farmacología , Farmacorresistencia Microbiana , Saneamiento , Microbiología del Agua , Humanos , Saneamiento/normas , Microbiología del Agua/normas , Organización Mundial de la Salud
3.
J Antimicrob Chemother ; 69(8): 2215-23, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24710024

RESUMEN

OBJECTIVES: Selective digestive decontamination (SDD) is an infection prevention measure for critically ill patients in intensive care units (ICUs) that aims to eradicate opportunistic pathogens from the oropharynx and intestines, while sparing the anaerobic flora, by the application of non-absorbable antibiotics. Selection for antibiotic-resistant bacteria is still a major concern for SDD. We therefore studied the impact of SDD on the reservoir of antibiotic resistance genes (i.e. the resistome) by culture-independent approaches. METHODS: We evaluated the impact of SDD on the gut microbiota and resistome in a single ICU patient during and after an ICU stay by several metagenomic approaches. We also determined by quantitative PCR the relative abundance of two common aminoglycoside resistance genes in longitudinally collected samples from 12 additional ICU patients who received SDD. RESULTS: The patient microbiota was highly dynamic during the hospital stay. The abundance of antibiotic resistance genes more than doubled during SDD use, mainly due to a 6.7-fold increase in aminoglycoside resistance genes, in particular aph(2″)-Ib and an aadE-like gene. We show that aph(2″)-Ib is harboured by anaerobic gut commensals and is associated with mobile genetic elements. In longitudinal samples of 12 ICU patients, the dynamics of these two genes ranged from a ∼10(4) fold increase to a ∼10(-10) fold decrease in relative abundance during SDD. CONCLUSIONS: ICU hospitalization and the simultaneous application of SDD has large, but highly individualized, effects on the gut resistome of ICU patients. Selection for transferable antibiotic resistance genes in anaerobic commensal bacteria could impact the risk of transfer of antibiotic resistance genes to opportunistic pathogens.


Asunto(s)
Antibacterianos/uso terapéutico , Descontaminación/métodos , Farmacorresistencia Bacteriana/genética , Intestinos/microbiología , Orofaringe/microbiología , Antibacterianos/administración & dosificación , Técnicas de Tipificación Bacteriana , Secuencia de Bases , Clostridium/efectos de los fármacos , Clostridium/aislamiento & purificación , Cuidados Críticos , ADN Bacteriano/genética , Heces/microbiología , Humanos , Masculino , Microbiota/efectos de los fármacos , Microbiota/genética , Datos de Secuencia Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis
4.
Nucleic Acids Res ; 40(20): 10032-40, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22933716

RESUMEN

Transcriptional activation or 'rewiring' of silent genes is an important, yet poorly understood, phenomenon in prokaryotic genomes. Anecdotal evidence coming from experimental evolution studies in bacterial systems has shown the promptness of adaptation upon appropriate selective pressure. In many cases, a partial or complete promoter is mobilized to silent genes from elsewhere in the genome. We term hereafter such recruited regulatory sequences as Putative Mobile Promoters (PMPs) and we hypothesize they have a large impact on rapid adaptation of novel or cryptic functions. Querying all publicly available prokaryotic genomes (1362) uncovered >4000 families of highly conserved PMPs (50 to 100 long with ≥80% nt identity) in 1043 genomes from 424 different genera. The genomes with the largest number of PMP families are Anabaena variabilis (28 families), Geobacter uraniireducens (27 families) and Cyanothece PCC7424 (25 families). Family size varied from 2 to 93 homologous promoters (in Desulfurivibrio alkaliphilus). Some PMPs are present in particular species, but some are conserved across distant genera. The identified PMPs represent a conservative dataset of very recent or conserved events of mobilization of non-coding DNA and thus they constitute evidence of an extensive reservoir of recyclable regulatory sequences for rapid transcriptional rewiring.


Asunto(s)
Archaea/genética , Bacterias/genética , Regiones Promotoras Genéticas , Secuencia de Bases , Secuencia Conservada , Escherichia coli/genética , Genoma Arqueal , Genoma Bacteriano , Datos de Secuencia Molecular , Riboswitch , Alineación de Secuencia , Secuencias Repetidas Terminales
5.
BMC Genomics ; 13: 66, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22325062

RESUMEN

BACKGROUND: We sought to assess whether the concept of relative entropy (information capacity), could aid our understanding of the process of horizontal gene transfer in microbes. We analyzed the differences in information capacity between prokaryotic chromosomes, genomic islands (GI), phages, and plasmids. Relative entropy was estimated using the Kullback-Leibler measure. RESULTS: Relative entropy was highest in bacterial chromosomes and had the sequence chromosomes > GI > phage > plasmid. There was an association between relative entropy and AT content in chromosomes, phages, plasmids and GIs with the strongest association being in phages. Relative entropy was also found to be lower in the obligate intracellular Mycobacterium leprae than in the related M. tuberculosis when measured on a shared set of highly conserved genes. CONCLUSIONS: We argue that relative entropy differences reflect how plasmids, phages and GIs interact with microbial host chromosomes and that all these biological entities are, or have been, subjected to different selective pressures. The rate at which amelioration of horizontally acquired DNA occurs within the chromosome is likely to account for the small differences between chromosomes and stably incorporated GIs compared to the transient or independent replicons such as phages and plasmids.


Asunto(s)
Bacteriófagos/genética , Cromosomas Bacterianos/genética , Islas Genómicas , Plásmidos/genética , ADN Bacteriano/química , Entropía , Transferencia de Gen Horizontal , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética
6.
Environ Microbiol ; 14(6): 1444-53, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22429517

RESUMEN

Cumulative site-directed mutagenesis is of limited suitability for the global analysis of the gene functions in the microbe's cellular network. In order to simplify and stabilize the genome of the soil bacterium Pseudomonas putida, we developed a recyclable three-step excision method based on the combination of customized mini-transposons and the FLP-FRT site-specific recombination system. To demonstrate the powerful potential of these tools, we first established insertion mutant libraries that allow users to study gene functions with respect either to phenotypic characteristics (single insertions) or to their involvement in predicted networks (double insertions). Based on these libraries, we generated as a proof-of-principle, single-deletion mutants lacking ~4.1% of the genome (~3.7% of the gene repertoire). A cyclical application of the method generated four double-deletion mutants of which a maximum of ~7.4% of the chromosome (~6.9% of the gene count) was excised. This procedure demonstrates a new strategy for rapid genome streamlining and gain of new insights into the molecular interactions and regulations.


Asunto(s)
Ingeniería Genética/métodos , Genoma Bacteriano , Pseudomonas putida/genética , Eliminación de Secuencia , ADN/genética , ADN Nucleotidiltransferasas/genética
8.
J Bacteriol ; 193(9): 2367-8, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21398538

RESUMEN

Bacteria of the deeply branching phylum Verrucomicrobia are rarely cultured yet commonly detected in metagenomic libraries from aquatic, terrestrial, and intestinal environments. We have sequenced the genome of Opitutus terrae PB90-1, a fermentative anaerobe within this phylum, isolated from rice paddy soil and capable of propionate production from plant-derived polysaccharides.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Ecosistema , Genoma Bacteriano , Oryza/fisiología , Microbiología del Suelo , Datos de Secuencia Molecular
10.
J Bacteriol ; 193(9): 2373-4, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21398537

RESUMEN

Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastrointestinal tract.


Asunto(s)
Bacterias Anaerobias/genética , Tracto Gastrointestinal/microbiología , Bacterias Anaerobias/clasificación , Secuencia de Bases , ADN Bacteriano/genética , Genoma Bacteriano , Humanos , Datos de Secuencia Molecular
11.
BMC Genomics ; 12: 427, 2011 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-21864345

RESUMEN

BACKGROUND: Microbial genomes do not merely evolve through the slow accumulation of mutations, but also, and often more dramatically, by taking up new DNA in a process called horizontal gene transfer. These innovation leaps in the acquisition of new traits can take place via the introgression of single genes, but also through the acquisition of large gene clusters, which are termed Genomic Islands. Since only a small proportion of all the DNA diversity has been sequenced, it can be hard to find the appropriate donors for acquired genes via sequence alignments from databases. In contrast, relative oligonucleotide frequencies represent a remarkably stable genomic signature in prokaryotes, which facilitates compositional comparisons as an alignment-free alternative for phylogenetic relatedness. In this project, we test whether Genomic Islands identified in individual bacterial genomes have a similar genomic signature, in terms of relative dinucleotide frequencies, and can therefore be expected to originate from a common donor species. RESULTS: When multiple Genomic Islands are present within a single genome, we find that up to 28% of these are compositionally very similar to each other, indicative of frequent recurring acquisitions from the same donor to the same acceptor. CONCLUSIONS: This represents the first quantitative assessment of common directional transfer events in prokaryotic evolutionary history. We suggest that many of the resident Genomic Islands per prokaryotic genome originated from the same source, which may have implications with respect to their regulatory interactions, and for the elucidation of the common origins of these acquired gene clusters.


Asunto(s)
Evolución Molecular , Genoma Arqueal , Genoma Bacteriano , Islas Genómicas , ADN de Archaea/genética , ADN Bacteriano/genética , Transferencia de Gen Horizontal , Análisis de Secuencia de ADN
12.
PeerJ ; 9: e11000, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732552

RESUMEN

Genome sequences provide information on the genetic elements present in an organism, and currently there are databases containing hundreds of thousands of bacterial genome sequences. These repositories allow for mining patterns concerning antibiotic resistance gene occurrence in both pathogenic and non-pathogenic bacteria in e.g. natural or animal environments, and link these to relevant metadata such as bacterial host species, country and year of isolation, and co-occurrence with other resistance genes. In addition, the advances in the prediction of mobile genetic elements, and discerning chromosomal from plasmid DNA, broadens our view on the mechanism mediating dissemination. In this study we utilize the vast amount of data in the public database PATRIC to investigate the dissemination of carbapenemase-encoding genes (CEGs), the emergence and spread of which is considered a grave public health concern. Based on publicly available genome sequences from PATRIC and manually curated CEG sequences from the beta lactam database, we found 7,964 bacterial genomes, belonging to at least 70 distinct species, that carry in total 9,892 CEGs, amongst which bla NDM, bla OXA, bla VIM, bla IMP and bla KPC. We were able to distinguish between chromosomally located resistance genes (4,137; 42%) and plasmid-located resistance genes (5,753; 58%). We found that a large proportion of the identified CEGs were identical, i.e. displayed 100% nucleotide similarity in multiple bacterial species (8,361 out of 9,892 genes; 85%). For example, the New Delhi metallo-beta-lactamase NDM-1 was found in 42 distinct bacterial species, and present in seven different environments. Our data show the extent of carbapenem-resistance far beyond the canonical species Acetinobacter baumannii, Klebsiella pneumoniae or Pseudomonas aeruginosa. These types of data complement previous systematic reviews, in which carbapenem-resistant Enterobacteriaceae were found in wildlife, livestock and companion animals. Considering the widespread distribution of CEGs, we see a need for comprehensive surveillance and transmission studies covering more host species and environments, akin to previous extensive surveys that focused on extended spectrum beta-lactamases. This may help to fully appreciate the spread of CEGs and improve the understanding of mechanisms underlying transmission, which could lead to interventions minimizing transmission to humans.

13.
Front Microbiol ; 12: 622356, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276576

RESUMEN

Parasites often have complex developmental cycles that account for their presence in a variety of difficult-to-analyze matrices, including feces, water, soil, and food. Detection of parasites in these matrices still involves laborious methods. Untargeted sequencing of nucleic acids extracted from those matrices in metagenomic projects may represent an attractive alternative method for unbiased detection of these pathogens. Here, we show how publicly available metagenomic datasets can be mined to detect parasite specific sequences, and generate data useful for environmental surveillance. We use the protozoan parasite Cryptosporidium parvum as a test organism, and show that detection is influenced by the reference sequence chosen. Indeed, the use of the whole genome yields high sensitivity but low specificity, whereas specificity is improved through the use of signature sequences. In conclusion, querying metagenomic datasets for parasites is feasible and relevant, but requires optimization and validation. Nevertheless, this approach provides access to the large, and rapidly increasing, number of datasets from metagenomic and meta-transcriptomic studies, allowing unlocking hitherto idle signals of parasites in our environments.

14.
Front Bioeng Biotechnol ; 9: 797076, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957083

RESUMEN

Research on pathogenic organisms is crucial for medical, biological and agricultural developments. However, biological agents as well as associated knowledge and techniques, can also be misused, for example for the development of biological weapons. Potential malicious use of well-intended research, referred to as "dual-use research", poses a threat to public health and the environment. There are various international resources providing frameworks to assess dual-use potential of the research concerned. However, concrete instructions for researchers on how to perform a dual-use risk assessment is largely lacking. The international need for practical dual-use monitoring and risk assessment instructions, in addition to the need to raise awareness among scientists about potential dual-use aspects of their research has been identified over the last years by the Netherlands Biosecurity Office, through consulting national and international biorisk stakeholders. We identified that Biorisk Management Advisors and researchers need a practical tool to facilitate a dual-use assessment on their specific research. Therefore, the Netherlands Biosecurity Office developed a web-based Dual-Use Quickscan (www.dualusequickscan.com), that can be used periodically by researchers working with microorganisms to assess potential dual-use risks of their research by answering a set of fifteen yes/no questions. The questions for the tool were extracted from existing international open resources, and categorized into three themes: characteristics of the biological agent, knowledge and technology about the biological agent, and consequences of misuse. The results of the Quickscan provide the researcher with an indication of the dual-use potential of the research and can be used as a basis for further discussions with a Biorisk Management Advisor. The Dual-Use Quickscan can be embedded in a broader system of biosafety and biosecurity that includes dual-use monitoring and awareness within organizations. Increased international attention to examine pathogens with pandemic potential has been enhanced by the current COVID-19 pandemic, hence monitoring of dual-use potential urgently needs to be encouraged.

15.
Glob Health Action ; 14(1): 1971866, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34493169

RESUMEN

International regulations stipulate that countries need to organize their biosafety and biosecurity systems to minimize the risk of accidental (biosafety) or malicious intentional (biosecurity) release of dangerous pathogens. International Health Regulations (IHR) benchmarks from the WHO state that even for a level of limited capacity countries need to 'Identify and document human and animal health facilities that store/maintain dangerous pathogens and toxins in the relevant sectors and health professionals responsible for them'. This study provides a stepwise, systematic approach and best practices for countries to initiate a national inventory of dangerous pathogens. With a national inventory of dangerous pathogens a country can identify and document information in a dedicated electronic database on institutes that store or maintain dangerous pathogens. The systematic approach for the implementation of a national inventory of dangerous pathogens consists of four stages; identification, preparation, implementation, and maintenance and evaluation. In the identification phase, commitment of the relevant national ministries is to be established, and a responsible government entity needs to be identified. In the preparatory phase, a list of pathogens to be incorporated in the inventory, as well as a list of institutes to include, is to be agreed upon. In the implementation phase, the institutes are contacted, and the collected data is stored safely and securely in a electronical database. Finally, in the maintenance and evaluation phase meaningful insights are derived and reported to the relevant government authorities. Also, preparations for updates and modifications are undertaken, such as modifications of pathogen lists or institute lists. The approach and database, which is available from the authors, have been tested for the implementation of a national inventory of dangerous pathogens in multiple East-African countries. A national inventory of dangerous pathogens helps countries in strengthening national biosafety and biosecurity as well as in their compliance to IHR.


Asunto(s)
Contención de Riesgos Biológicos , Animales , Bases de Datos Factuales , Humanos
16.
Antibiotics (Basel) ; 10(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919179

RESUMEN

Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant workers and residents living in the vicinity. We aim to deliver precise information about the methods used in the AWARE (Antibiotic Resistance in Wastewater: Transmission Risks for Employees and Residents around Wastewater Treatment Plants) study. Within the AWARE study, we gathered data on the prevalence of two antibiotic resistance phenotypes, ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae, as well as on their corresponding antibiotic resistance genes isolated from air, water, and sewage samples taken from inside and outside of different wastewater treatment plants in Germany, the Netherlands, and Romania. Additionally, we analysed stool samples of wastewater treatment plant workers, nearby residents, and members of a comparison group living ≥1000 m away from the closest WWTP. To our knowledge, this is the first study investigating the potential spread of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes from WWTPs to workers, the environment, and nearby residents. Quantifying the contribution of different wastewater treatment processes to the removal efficiency of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes will provide us with evidence-based support for possible mitigation strategies.

17.
Appl Environ Microbiol ; 76(13): 4421-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20453123

RESUMEN

Protein secretion plays an eminent role in cell maintenance and adaptation to the extracellular environment of microorganisms. Although protein secretion is an extremely efficient process in filamentous fungi, the mechanisms underlying protein secretion have remained largely uncharacterized in these organisms. In this study, we analyzed the effects of the d-xylose induction of cellulase and hemicellulase enzyme secretion on the protein composition of secretory organelles in Aspergillus niger. We aimed to systematically identify the components involved in the secretion of these enzymes via mass spectrometry of enriched subcellular microsomal fractions. Under each condition, fractions enriched for secretory organelles were processed for tandem mass spectrometry, resulting in the identification of peptides that originate from 1,081 proteins, 254 of which-many of them hypothetical proteins-were predicted to play direct roles in the secretory pathway. d-Xylose induction led to an increase in specific small GTPases known to be associated with polarized growth, exocytosis, and endocytosis. Moreover, the endoplasmic-reticulum-associated degradation (ERAD) components Cdc48 and all 14 of the 20S proteasomal subunits were recruited to the secretory organelles. In conclusion, induction of extracellular enzymes results in specific changes in the secretory subproteome of A. niger, and the most prominent change found in this study was the recruitment of the 20S proteasomal subunits to the secretory organelles.


Asunto(s)
Aspergillus niger/metabolismo , Microsomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica/métodos , Xilosa/farmacología , Aspergillus niger/genética , Aspergillus niger/crecimiento & desarrollo , Aspergillus niger/ultraestructura , Celulasa/biosíntesis , Cromatografía Liquida , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Regulación Fúngica de la Expresión Génica , Glicósido Hidrolasas/metabolismo , Espectrometría de Masas , Complejo de la Endopetidasa Proteasomal/genética , Espectrometría de Masas en Tándem
18.
PLoS Comput Biol ; 4(4): e1000059, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18404206

RESUMEN

Bacterial species, and even strains within species, can vary greatly in their gene contents and metabolic capabilities. We examine the evolution of this diversity by assessing the distribution and ancestry of each gene in 13 sequenced isolates of Escherichia coli and Shigella. We focus on the emergence and demise of two specific classes of genes, ORFans (genes with no homologs in present databases) and HOPs (genes with distant homologs), since these genes, in contrast to most conserved ancestral sequences, are known to be a major source of the novel features in each strain. We find that the rates of gain and loss of these genes vary greatly among strains as well as through time, and that ORFans and HOPs show very different behavior with respect to their emergence and demise. Although HOPs, which mostly represent gene acquisitions from other bacteria, originate more frequently, ORFans are much more likely to persist. This difference suggests that many adaptive traits are conferred by completely novel genes that do not originate in other bacterial genomes. With respect to the demise of these acquired genes, we find that strains of Shigella lose genes, both by disruption events and by complete removal, at accelerated rates.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli/genética , Evolución Molecular , Transferencia de Gen Horizontal/genética , Variación Genética/genética , Inestabilidad Genómica/genética , Shigella/genética
19.
Appl Biosaf ; 24(2): 83-89, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32655326

RESUMEN

INTRODUCTION: Laboratory biosecurity is of continuously growing interest due to increasing concerns about deliberate misuse of biological materials and emerging biological risks. These risks continue to be magnified by globalization, the rapid pace of scientific development, and dual-use technologies. Worldwide laboratory capacities are expanding, which calls for concrete actions to improve laboratory biosafety and biosecurity practices to protect researchers and the community. Hence, laboratories require comprehensive biorisk management programs to minimize the risk of accidental and deliberate release of infectious biological materials. OBJECTIVE: Malaysia has prioritized the concern of national biosecurity and aims to consolidate laboratory biosecurity performance to detect and prevent the deliberate release of biological agents. METHODS: Two 3-day workshops were organized over the course of four months in which Malaysia collaborated with The Netherlands. This bilateral engagement aimed to integrate biosecurity practices in their national biorisk management programs, and resulted into a comprehensive biosecurity checklist for laboratory assessment and monitoring. RESULTS: This biosecurity checklist is based on Malaysian and Dutch expert opinions and national and international guidelines and regulations. The biosecurity checklist is a survey-driven tool that consists of a set of concrete questions for each key biosecurity area, which are discussion points for assessment. CONCLUSION: We display a practical biosecurity checklist for laboratory assessment and monitoring. Although the presented checklist was the template for the specific Malaysia checklist, it could serve as a template for other countries.

20.
Health Secur ; 17(3): 169-173, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31033346

RESUMEN

One of the challenges of global biosecurity is to protect and control dangerous pathogens from unauthorized access and intentional release. A practical and feasible option to protect life science institutes against theft and sabotage, and secure their biological materials against misuse, is to establish a national electronic database with a comprehensive overview of the locations of all controlled dangerous pathogens in a country. This national database could be used as an instrument to secure and account for dangerous pathogens in a country, but it could also assist in establishing a biosecurity assessing and monitoring system for laboratories that work with these controlled biological agents. The Republic of Uganda is one of the first countries, prompted by the World Health Organization's (WHO's) Joint External Evaluation (JEE), to implement a national electronic database that assembles information collected from relevant Ugandan laboratories. This Ugandan Inventory of Dangerous Pathogens is different from an institute-specific pathogen inventory system, as it is intended to store the information collected from laboratories in the country working with dangerous pathogens in 1 centralized secure location. The Uganda National Council for Science and Technology (UNCST) has coordinated the implementation of the Ugandan national inventory. The inventory was recognized by the WHO JEE as contributing to Uganda's developed capacities regarding biosafety and biosecurity. This article describes the steps in implementing Uganda's National Inventory of Dangerous Pathogens. In addition, it presents a straightforward approach that can be adapted by other countries that aim to enhance their biosecurity capacities.


Asunto(s)
Contención de Riesgos Biológicos , Bases de Datos Factuales , Investigación Biomédica/legislación & jurisprudencia , Laboratorios/legislación & jurisprudencia , Uganda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA