Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Chem Biol ; 27(6): 657-667.e6, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32220335

RESUMEN

Targeting protein-protein interactions (PPIs) is a promising approach in the development of drugs for many indications. 14-3-3 proteins are a family of phosphoprotein-binding molecules with critical functions in dozens of cell signaling networks. 14-3-3s are abundant in the central nervous system, and the small molecule fusicoccin-A (FC-A), a tool compound that can be used to manipulate 14-3-3 PPIs, enhances neurite outgrowth in cultured neurons. New semisynthetic FC-A derivatives with improved binding affinity for 14-3-3 complexes have recently been developed. Here, we use a series of screens that identify these compounds as potent inducers of neurite outgrowth through a polypharmacological mechanism. Using proteomics and X-ray crystallography, we discover that these compounds extensively regulate the 14-3-3 interactome by stabilizing specific PPIs, while disrupting others. These results provide new insights into the development of drugs to target 14-3-3 PPIs, a potential therapeutic strategy for CNS diseases.


Asunto(s)
Proteínas 14-3-3/antagonistas & inhibidores , Glicósidos/farmacología , Neuritas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas 14-3-3/aislamiento & purificación , Proteínas 14-3-3/metabolismo , Animales , Células Cultivadas , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Femenino , Glicósidos/química , Masculino , Modelos Moleculares , Conformación Molecular , Neuritas/metabolismo , Proyección Neuronal/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Bibliotecas de Moléculas Pequeñas/química
2.
Elife ; 92020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32293562

RESUMEN

The development of a polarized neuron relies on the selective transport of proteins to axons and dendrites. Although it is well known that the microtubule cytoskeleton has a central role in establishing neuronal polarity, how its specific organization is established and maintained is poorly understood. Using the in vivo model system Caenorhabditis elegans, we found that the highly conserved UNC-119 protein provides a link between the membrane-associated Ankyrin (UNC-44) and the microtubule-associated CRMP (UNC-33). Together they form a periodic membrane-associated complex that anchors axonal and dendritic microtubule bundles to the cortex. This anchoring is critical to maintain microtubule organization by opposing kinesin-1 powered microtubule sliding. Disturbing this molecular complex alters neuronal polarity and causes strong developmental defects of the nervous system leading to severely paralyzed animals.


Asunto(s)
Polaridad Celular/fisiología , Citoesqueleto/fisiología , Microtúbulos/fisiología , Neuronas/fisiología , Animales , Ancirinas/fisiología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiología , Células Cultivadas , Corteza Cerebral/fisiología , Locomoción , Factores de Crecimiento Nervioso/fisiología , Proteínas del Tejido Nervioso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA