Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Europace ; 25(9)2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37477953

RESUMEN

BACKGROUND AND AIMS: Atrial extrasystoles (AES) provoke conduction disorders and may trigger episodes of atrial fibrillation (AF). However, the direction- and rate-dependency of electrophysiological tissue properties on epicardial unipolar electrogram (EGM) morphology is unknown. Therefore, this study examined the impact of spontaneous AES on potential amplitude, -fractionation, -duration, and low-voltage areas (LVAs), and correlated these differences with various degrees of prematurity and aberrancy. METHODS AND RESULTS: Intra-operative high-resolution epicardial mapping of the right and left atrium, Bachmann's Bundle, and pulmonary vein area was performed during sinus rhythm (SR) in 287 patients (60 with AF). AES were categorized according to their prematurity index (>25% shortening) and degree of aberrancy (none, mild/opposite, moderate and severe). In total, 837 unique AES (457 premature; 58 mild/opposite, 355 moderate, and 154 severe aberrant) were included. The average prematurity index was 28% [12-45]. Comparing SR and AES, average voltage decreased (-1.1 [-1.2, -0.9] mV, P < 0.001) at all atrial regions, whereas the amount of LVAs and fractionation increased (respectively, +3.4 [2.7, 4.1] % and +3.2 [2.6, 3.7] %, P < 0.001). Only weak or moderate correlations were found between EGM morphology parameters and prematurity indices (R2 < 0.299, P < 0.001). All parameters were, however, most severely affected by either mild/opposite or severely aberrant AES, in which the effect was more pronounced in AF patients. Also, there were considerable regional differences in effects provoked by AES. CONCLUSION: Unipolar EGM characteristics during spontaneous AES are mainly directional-dependent and not rate-dependent. AF patients have more direction-dependent conduction disorders, indicating enhanced non-uniform anisotropy that is uncovered by spontaneous AES.


Asunto(s)
Fibrilación Atrial , Complejos Atriales Prematuros , Mapeo Epicárdico , Humanos , Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos/diagnóstico por imagen
2.
Europace ; 25(4): 1432-1440, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36794695

RESUMEN

AIMS: Conventional right atrial appendage (RAA) pacing is associated with increased atrial activation time resulting in higher incidences of atrial tachyarrhythmia. Optimal pacing sites ideally shorten inter-atrial conduction delay, thereby decreasing atrial excitation time. We therefore examined the impact of programmed electrical stimulation (PES) from the right atrium (RA) and left atrium (LA) on the electrophysiological properties of Bachmann's bundle (BB). METHODS AND RESULTS: High-resolution epicardial mapping of BB was performed during sinus rhythm (SR) and PES in 34 patients undergoing cardiac surgery. Programmed electrical stimulation was performed from the RAA, junction of the RA with inferior caval vein (LRA), and left atrial appendage (LAA). Pacing from either the RAA or LAA resulted in, respectively, right- and left-sided conduction across BB. However, during LRA pacing in most patients (n = 15), activation started in the centre of BB. The total activation time (TAT) of BB during RAA pacing [63 (55-78) ms] was similar to that of SR [61 (52-68) ms, P = 0.464], while it decreased during LRA [45 (39-62) ms, P = 0.003] and increased during LAA pacing [67 (61-75) ms, P = 0.009]. Reduction of both conduction disorders and TAT was most often achieved during LRA pacing (N = 13), especially in patients who already had a higher amount of conduction disorders during SR [9.8 (7.3-12.3) vs. 4.5 (3.5-6.6)%, P < 0.001]. CONCLUSION: Pacing from the LRA results in a remarkable decrease of TAT compared with pacing from the LAA or RAA. As the most optimal pacing site varies between patients, individualized positioning of the atrial pacing lead guided by mapping of BB may be one of the new frontiers for atrial pacing.


Asunto(s)
Fibrilación Atrial , Humanos , Sistema de Conducción Cardíaco , Estimulación Cardíaca Artificial/métodos , Atrios Cardíacos , Nodo Atrioventricular
3.
Europace ; 25(3): 1162-1171, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36637110

RESUMEN

AIMS: Loss of cell-to-cell communication results in local conduction disorders and directional heterogeneity (LDH) in conduction velocity (CV) vectors, which may be unmasked by premature atrial contractions (PACs). We quantified LDH and examined differences between sinus rhythm (SR) and spontaneous PACs in patients with and without atrial fibrillation (AF). METHODS AND RESULTS: Intra-operative epicardial mapping of the right and left atrium (RA, LA), Bachmann's bundle (BB) and pulmonary vein area (PVA) was performed in 228 patients (54 with AF). Conduction velocity vectors were computed at each electrode using discrete velocity vectors. Directions and magnitudes of individual vectors were compared with surrounding vectors to identify LDH. Five hundred and three PACs [2 (1-3) per patient; prematurity index of 45 ± 12%] were included. During SR, most LDH were found at BB and LA [11.9 (8.3-14.9) % and 11.3 (8.0-15.2) %] and CV was lowest at BB [83.5 (72.4-94.3) cm/s, all P < 0.05]. Compared with SR, the largest increase in LDH during PAC was found at BB and PVA [+13.0 (7.7, 18.3) % and +12.5 (10.8, 14.2) %, P < 0.001]; CV decreased particularly at BB, PVA and LA [-10.0 (-13.2, -6.9) cm/s, -9.3 (-12.5, -6.2) cm/s and -9.1 (-11.7, -6.6) cm/s, P < 0.001]. Comparing patients with and without AF, more LDH were found during SR in AF patients at PVA and BB, although the increase in LDH during PACs was similar for all sites. CONCLUSION: Local directional heterogeneity is a novel methodology to quantify local heterogeneity in CV as a possible indicator of electropathology. Intra-operative high-resolution mapping indeed revealed that LDH increased during PACs particularly at BB and PVA. Also, patients with AF already have more LDH during SR, which becomes more pronounced during PACs.


Asunto(s)
Fibrilación Atrial , Complejos Atriales Prematuros , Humanos , Complejos Atriales Prematuros/diagnóstico , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Trastorno del Sistema de Conducción Cardíaco , Mapeo Epicárdico , Atrios Cardíacos
4.
Europace ; 25(11)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37931071

RESUMEN

AIMS: Areas of conduction inhomogeneity (CI) during sinus rhythm may facilitate the initiation and perpetuation of atrial fibrillation (AF). Currently, no tool is available to quantify the severity of CI. Our aim is to develop and validate a novel tool using unipolar electrograms (EGMs) only to quantify the severity of CI in the atria. METHODS AND RESULTS: Epicardial mapping of the right atrium (RA) and left atrium, including Bachmann's bundle, was performed in 235 patients undergoing coronary artery bypass grafting surgery. Conduction inhomogeneity was defined as the amount of conduction block. Electrograms were classified as single, short, long double (LDP), and fractionated potentials (FPs), and the fractionation duration of non-single potentials was measured. The proportion of low-voltage areas (LVAs, <1 mV) was calculated. Increased CI was associated with decreased potential voltages and increased LVAs, LDPs, and FPs. The Electrical Fingerprint Score consisting of RA EGM features, including LVAs and LDPs, was most accurate in predicting CI severity. The RA Electrical Fingerprint Score demonstrated the highest correlation with the amount of CI in both atria (r = 0.70, P < 0.001). CONCLUSION: The Electrical Fingerprint Score is a novel tool to quantify the severity of CI using only unipolar EGM characteristics recorded. This tool can be used to stage the degree of conduction abnormalities without constructing spatial activation patterns, potentially enabling early identification of patients at high risk of post-operative AF or selection of the appropriate ablation approach in addition to pulmonary vein isolation at the electrophysiology laboratory.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Frecuencia Cardíaca , Atrios Cardíacos/cirugía , Mapeo Epicárdico , Nodo Atrioventricular
5.
J Cardiovasc Electrophysiol ; 32(4): 903-912, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33650738

RESUMEN

INTRODUCTION: Advancing age is a known risk factor for developing atrial fibrillation (AF), yet it is unknown which electrophysiological changes contribute to this increased susceptibility. The goal of this study is to investigate conduction disturbances and unipolar voltages (UV) related to aging. METHODS: We included 216 patients (182 male, age: 36-83 years) without a history of AF undergoing elective coronary artery bypass surgery. Five seconds of sinus rhythm were recorded intraoperatively at the right atrium (RA), Bachmann's bundle (BB), the left atrium and the pulmonary vein area (PVA). Conduction delay (CD), -block (CB), -velocity (CV), length of longest CB lines and UV were assessed in all regions. RESULTS: With aging, increasing conduction disturbances were found, particularly at RA and BB (RA: longest CB line rs = .158, p = .021; BB: CB prevalence rs = .206, p = .003; CV rs = -.239, p < .0005). Prevalence of low UV areas (UV <5th percentile) increased with aging at the BB and PVA (BB: rs = .237, p < .0005 and PVA: rs = .228, p = .001). CONCLUSIONS: Aging is accompanied by an increase in conduction disturbances during sinus rhythm and a higher prevalence of low UV areas, particularly at BB and in the RA. These electrophysiological alterations could in part explain the increasing susceptibility to AF development associated with aging.


Asunto(s)
Fibrilación Atrial , Venas Pulmonares , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Trastorno del Sistema de Conducción Cardíaco , Atrios Cardíacos , Humanos , Masculino , Persona de Mediana Edad
6.
Europace ; 23(3): 469-478, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33432326

RESUMEN

AIMS: Unipolar voltage (UV) mapping is increasingly used for guiding ablative therapy of atrial fibrillation (AF) as unipolar electrograms (U-EGMs) are independent of electrode orientation and atrial wavefront direction. This study was aimed at constructing individual, high-resolution sinus rhythm (SR) UV fingerprints to identify low-voltage areas and study the effect of AF episodes in patients with mitral valve disease (MVD). METHODS AND RESULTS: Intra-operative epicardial mapping (interelectrode distance 2 mm) of the right and left atrium, Bachmann's bundle (BB), and pulmonary vein area was performed in 67 patients (27 male, 67 ± 11 years) with or without a history of paroxysmal AF (PAF). In all patients, there were considerable regional variations in voltages. UVs at BB were lower in patients with PAF compared with those without [no AF: 4.94 (3.56-5.98) mV, PAF: 3.30 (2.25-4.57) mV, P = 0.006]. A larger number of low-voltage potentials were recorded at BB in the PAF group [no AF: 2.13 (0.52-7.68) %, PAF: 12.86 (3.18-23.59) %, P = 0.001]. In addition, areas with low-voltage potentials were present in all patients, yet we did not find any predilection sites for low-voltage potentials to occur. CONCLUSION: Even in SR, advanced atrial remodelling in MVD patients shows marked inter-individual and regional variation. Low UVs are even present during SR in patients without a history of AF indicating that low UVs should carefully be used as target sites for ablative therapy.


Asunto(s)
Fibrilación Atrial , Enfermedades de las Válvulas Cardíacas , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Mapeo Epicárdico , Atrios Cardíacos , Enfermedades de las Válvulas Cardíacas/complicaciones , Enfermedades de las Válvulas Cardíacas/diagnóstico , Enfermedades de las Válvulas Cardíacas/cirugía , Humanos , Masculino , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía
7.
Europace ; 23(11): 1815-1825, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-33970234

RESUMEN

AIMS: Accurate determination of intra-atrial conduction velocity (CV) is essential to identify arrhythmogenic areas. The most optimal, commonly used, estimation methodology to measure conduction heterogeneity, including finite differences (FiD), polynomial surface fitting (PSF), and a novel technique using discrete velocity vectors (DVV), has not been determined. We aim (i) to identify the most suitable methodology to unravel local areas of conduction heterogeneities using high-density CV estimation techniques, (ii) to quantify intra-atrial differences in CV, and (iii) to localize areas of CV slowing associated with paroxysmal atrial fibrillation (PAF). METHODS AND RESULTS: Intra-operative epicardial mapping (>5000 sites, interelectrode distances 2 mm) of the right and left atrium and Bachmann's bundle (BB) was performed during sinus rhythm (SR) in 412 patients with or without PAF. The median atrial CV estimated using the DVV, PSF, and FiD techniques was 90.0 (62.4-116.8), 92.0 (70.6-123.2), and 89.4 (62.5-126.5) cm/s, respectively. The largest difference in CV estimates was found between PSF and DVV which was caused by smaller CV magnitudes detected only by the DVV technique. Using DVV, a lower CV at BB was found in PAF patients compared with those without atrial fibrillation (AF) [79.1 (72.2-91.2) vs. 88.3 (79.3-97.2) cm/s; P < 0.001]. CONCLUSIONS: Areas of local conduction heterogeneities were most accurately identified using the DVV technique, whereas PSF and FiD techniques smoothen wavefront propagation thereby masking local areas of conduction slowing. Comparing patients with and without AF, slower wavefront propagation during SR was found at BB in PAF patients, indicating structural remodelling.


Asunto(s)
Fibrilación Atrial , Atrios Cardíacos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/etiología , Fibrilación Atrial/cirugía , Nodo Atrioventricular , Mapeo Epicárdico , Frecuencia Cardíaca/fisiología , Humanos
8.
Europace ; 22(10): 1509-1519, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33033830

RESUMEN

AIMS: The morphology of unipolar single potentials (SPs) contains information on intra-atrial conduction disorders and possibly the substrate underlying atrial fibrillation (AF). This study examined the impact of AF episodes on features of SP morphology during sinus rhythm (SR) in patients with mitral valve disease. METHODS AND RESULTS: Intraoperative epicardial mapping (interelectrode distance 2 mm) of the right and left atrium (RA, LA), Bachmann's bundle (BB), and pulmonary vein area (PVA) was performed in 67 patients (27 male, 67 ± 11 years) with or without a history of paroxysmal AF (PAF). Unipolar SPs were classified according to their differences in relative R- and S-wave amplitude ratios. A clear predominance of S-waves was observed at BB and the RA in both the no AF and PAF groups (BB 88.8% vs. 85.9%, RA 92.1% vs. 85.1%, respectively). Potential voltages at the RA, BB, and PVA were significantly lower in the PAF group (P < 0.001 for each) and were mainly determined by the size of the S-waves amplitudes. The largest difference in S-wave amplitudes was found at BB; the S-wave amplitude was lower in the PAF group [4.08 (2.45-6.13) mV vs. 2.94 (1.40-4.75) mV; P < 0.001]. In addition, conduction velocity (CV) at BB was lower as well [0.97 (0.70-1.21) m/s vs. 0.89 (0.62-1.16) m/s, P < 0.001]. CONCLUSION: Though excitation of the atria during SR is heterogeneously disrupted, a history of AF is characterized by decreased SP amplitudes at BB due to loss of S-wave amplitudes and decreased CV. This suggests that SP morphology could provide additional information on wavefront propagation.


Asunto(s)
Fibrilación Atrial , Enfermedades de las Válvulas Cardíacas , Fibrilación Atrial/diagnóstico , Mapeo Epicárdico , Atrios Cardíacos/diagnóstico por imagen , Humanos , Masculino , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía
9.
Hellenic J Cardiol ; 75: 9-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37482189

RESUMEN

OBJECTIVE: Patients with persistent atrial fibrillation (AF) have more electrical endo-epicardial asynchrony (EEA) during sinus rhythm (SR) than patients without AF. Prior mapping studies indicated that particularly unipolar, endo- and/or epicardial electrogram (EGM) morphology may be indicators of EEA. This study aim to develop a novel method for estimating the degree of EEA by using unipolar EGM characteristics recorded from either the endo- and/or epicardium. METHODS: Simultaneous endo-epicardial mapping during sinus rhythm was performed in 86 patients. EGM characteristics, including unipolar voltages, low-voltage areas (LVAs), potential types (single, short/long double and fractionated potentials: SP, SDP, LDP and FP) and fractionation duration (FD) of double potentials (DP) and FP were compared between EEA and non-EEA areas. Asynchrony Fingerprinting Scores (AFS) containing quantified EGM characteristics were constructed to estimate the degree of EEA. RESULTS: Endo- and epicardial sites of EEA areas are characterized by lower unipolar voltages, a higher number of LDPs and FPs and longer DP and FP durations. Patients with AF have lower potential voltages in EEA areas, along with alterations in the potential types. The EE-AFS, containing the proportion of endocardial LVAs and FD of epicardial DPs, had the highest predictive value for determining the degree of EEA (AUC: 0.913). Endo- and epi-AFS separately also showed good predictive values (AUC: 0.901 and 0.830 respectively). CONCLUSIONS: EGM characteristics can be used to identify EEA areas. AFS can be utilized as a novel diagnostic tool for accurately estimating the degree of EEA. These characteristics potentially indicate AF related arrhythmogenic substrates.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Humanos , Atrios Cardíacos , Mapeo Epicárdico , Pericardio/diagnóstico por imagen
10.
J Clin Med ; 13(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38398329

RESUMEN

(1) Background: Structural remodeling plays an important role in the pathophysiology of atrial fibrillation (AF). It is likely that structural remodeling occurs transmurally, giving rise to electrical endo-epicardial asynchrony (EEA). Recent studies have suggested that areas of EEA may be suitable targets for ablation therapy of AF. We hypothesized that the degree of EEA is more pronounced in areas of transmural conduction block (T-CB) than single-sided CB (SS-CB). This study examined the degree to which SS-CB and T-CB enhance EEA and which specific unipolar potential morphology parameters are predictive for SS-CB or T-CB. (2) Methods: Simultaneous endo-epicardial mapping in the human right atrium was performed in 86 patients. Potential morphology parameters included unipolar potential voltages, low-voltage areas, potential complexity (long double and fractionated potentials: LDPs and FPs), and the duration of fractionation. (3) Results: EEA was mostly affected by the presence of T-CB areas. Lower potential voltages and more LDPs and FPs were observed in T-CB areas compared to SS-CB areas. (4) Conclusion: Areas of T-CB could be most accurately predicted by combining epicardial unipolar potential morphology parameters, including voltages, fractionation, and fractionation duration (AUC = 0.91). If transmural areas of CB indeed play a pivotal role in the pathophysiology of AF, they could theoretically be used as target sites for ablation.

11.
IEEE Trans Biomed Eng ; PP2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941196

RESUMEN

OBJECTIVE: The severity of atrial fibrillation (AF) can be assessed from intra-operative epicardial measurements (high-resolution electrograms), using metrics such as conduction block (CB) and continuous conduction delay and block (cCDCB). These features capture differences in conduction velocity and wavefront propagation, but ignore complementary properties such as the morphology of the action potentials. In this work, we focus on such complementary properties, and derive features to detect variations in the atrial potential waveforms. METHODS: We show that the spatial variation of atrial potential morphology during a single beat may be described by changes in the singular values of the epicardial measurement matrix. The method is non-parametric and requires little preprocessing. A corresponding singular value map points at areas subject to fractionation and block. Further, we developed an experiment where we simultaneously measure electrograms (EGMs) and a multi-lead ECG. RESULTS: The captured data showed that the normalized singular values of the heartbeats during AF are higher than during SR, and that this difference is more pronounced for the (non-invasive) ECG data than for the EGM data, if the electrodes are positioned at favorable locations. CONCLUSION: Overall, the singular value-based features are a useful indicator to detect and evaluate AF. SIGNIFICANCE: The proposed method might be beneficial for identifying electropathological regions in the tissue without estimating the local activation time.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38752952

RESUMEN

BACKGROUND: Quantified features of local conduction heterogeneity due to pathological alterations of myocardial tissue could serve as a marker for the degree of electrical remodeling and hence be used to determine the stage of atrial fibrillation (AF). OBJECTIVES: In this study, the authors investigated whether local directional heterogeneity (LDH) and anisotropy ratio, derived from estimated local conduction velocities (CVs) during AF, are suitable electrical parameters to stage AF. METHODS: Epicardial mapping (244-electrode array, interelectrode distance 2.25 mm) of the right atrium was performed during acute atrial fibrillation (AAF) (n = 25, 32 ± 11 years of age) and during long-standing persistent atrial fibrillation (LSPAF) (n = 23, 64 ± 9 years of age). Episodes of 9 ± 4 seconds of AF were analyzed. Local CV vectors were constructed to assess the degree of anisotropy. Directions and magnitudes of individual vectors were compared with surrounding vectors to identify LDH. RESULTS: Compared with the entire AAF group, LSPAF was characterized by slower conduction (71.5 ± 6.8 cm/s vs 67.6 ± 5.6 cm/s; P = 0.037) with a larger dispersion (1.59 ± 0.21 vs 1.95 ± 0.17; P < 0.001) and temporal variability (32.0 ± 4.7 cm/s vs 38.5 ± 3.3 cm/s; P < 0.001). Also, LSPAF was characterized by more LDH (19.6% ± 4.4% vs 26.0% ± 3.4%; P < 0.001) and a higher degree of anisotropy (1.38 ± 0.07 vs 1.51 ± 0.14; P < 0.001). Compared with the most complex type of AAF (type III), LSPAF was still associated with a larger CV dispersion, higher temporal variability of CV, and larger amount of LDH. CONCLUSIONS: Increasing AF complexity was associated with increased spatiotemporal variability of local CV vectors, local conduction heterogeneity, and anisotropy ratio. By using these novel parameters, LSPAF could potentially be discriminated from the most complex type of AAF. These observations may indicate pathological alterations of myocardial tissue underlying progression of AF.

13.
Heart Rhythm ; 21(6): 819-827, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38246568

RESUMEN

BACKGROUND: Atrial fibrillation (AF) in patients with hypertrophic obstructive cardiomyopathy (HOCM) may be caused by a primary atrial myopathy. Whether HOCM-related atrial myopathy affects mainly electrophysiological properties of the left atrium (LA) or also the right atrium (RA) has never been investigated. OBJECTIVE: The purpose of this study was to characterize atrial conduction and explore differences in the prevalence of conduction disorders, potential fractionation, and low-voltage areas (LVAs) between the RA and LA during sinus rhythm (SR) as indicators of potential arrhythmogenic areas. METHODS: Intraoperative epicardial mapping of both atria during SR was performed in 15 HOCM patients (age 50 ± 12 years). Conduction delay (CD) and conductin block (CB), unipolar potential characteristics (voltages, fractionation), and LVA were quantified. RESULTS: Conduction disorders and LVA were found scattered throughout both atria in all patients and did not differ between the RA and LA (CD: 2.9% [1.9%-3.6%] vs 2.6% [2.1%-6.4%], P = .541; CB: 1.7% [0.9%-3.1%] vs 1.5% [0.5%-2.8%], P = .600; LVA: 4.7% [1.6%-7.7%] vs 2.9% [2.1%-7.1%], P = .793). Compared to the RA, unipolar voltages of single potentials (SPs) and fractionated potentials (FPs) were higher in the LA (SP: P75 7.3 mV vs 10.9 mV; FP: P75 2.0 mV vs 3.7 mV). FP contained low-voltage components in only 18% of all LA sites compared to 36% of all RA sites. CONCLUSION: In patients with HOCM, conduction disorders, LVA, and FP are equally present in both atria, supporting the hypothesis of a primary atrial myopathy. Conceptually, the presence of a biatrial substrate and high-voltage FP may contribute to failure of ablative therapy of atrial tachyarrhythmias in this population.


Asunto(s)
Fibrilación Atrial , Cardiomiopatía Hipertrófica , Atrios Cardíacos , Humanos , Cardiomiopatía Hipertrófica/fisiopatología , Cardiomiopatía Hipertrófica/complicaciones , Persona de Mediana Edad , Femenino , Masculino , Atrios Cardíacos/fisiopatología , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/cirugía , Fibrilación Atrial/diagnóstico , Sistema de Conducción Cardíaco/fisiopatología , Mapeo Epicárdico/métodos , Electrocardiografía
14.
JACC Clin Electrophysiol ; 9(9): 1843-1853, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37480858

RESUMEN

BACKGROUND: Low-level vagus nerve stimulation through the tragus (tLLVNS) is increasingly acknowledged as a therapeutic strategy to prevent and treat atrial fibrillation. However, a lack in understanding of the exact antiarrhythmic properties of tLLVNS has hampered clinical implementation. OBJECTIVES: In this study, the authors aimed to study the effects of tLLVNS on atrial electrophysiology by performing intraoperative epicardial mapping during acute and chronic tLLVNS. METHODS: Epicardial mapping of the superior right atrium was performed before and after arterial graft harvesting in patients undergoing coronary artery bypass grafting without a history of atrial fibrillation. The time needed for arterial graft harvesting was used to perform chronic tLLVNS. Electrophysiological properties were compared before and during chronic tLLVNS. RESULTS: A total of 10 patients (median age 74 years [IQR: 69-78 years]) underwent tLLVNS for a duration of 56 minutes (IQR: 43-73 minutes). During acute and chronic tLLVNS, a shift of the sinoatrial node exit site toward a more cranial direction was observed in 5 (50%) patients. Unipolar potential voltage increased significantly during acute and chronic tLLVNS (3.9 mV [IQR: 3.1-4.8 mV] vs 4.7 mV [IQR: 4.0-5.3 mV] vs 5.2 mV [IQR: 4.8-7.0 mV]; P = 0.027, P = 0.02, respectively). Total activation time, slope of unipolar potentials, amount of fractionation, low-voltage areas and conduction velocity did not differ significantly between baseline measurements and tLLVNS. Two patients showed consistent "improvement" of all electrophysiological properties during tLLVNS, while 1 patient appeared to have no beneficial effect. CONCLUSIONS: We demonstrated that tLLVNS resulted in a significant increase in unipolar potential voltage. In addition, we observed the following in selective patients: 1) reduction in total activation time; 2) steeper slope of unipolar potentials; 3) decrease in the amount of fractionation; and 4) change in sinoatrial node exit sites.


Asunto(s)
Fibrilación Atrial , Estimulación del Nervio Vago , Humanos , Anciano , Fibrilación Atrial/terapia , Atrios Cardíacos , Puente de Arteria Coronaria , Electrofisiología Cardíaca
15.
Med Biol Eng Comput ; 61(4): 897-908, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36223000

RESUMEN

Atrial fibrillation (AF) resumes within 90 s in 27% of patients after sinus rhythm (SR) restoration. The aim of this study is to compare conduction heterogeneity during the supervulnerable period immediately after electrical cardioversion (ECV) with long-term SR in patients with AF. Epicardial mapping of both atria was performed during SR and premature atrial extrasystoles in patients in the ECV (N = 17, age: 73 ± 7 years) and control group (N = 17, age: 71 ± 6 years). Inter-electrode conduction times were used to identify areas of conduction delay (CD) (conduction times 7-11 ms) and conduction block (CB) (conduction times ≥ 12 ms). For all atrial regions, prevalences and length of longest CB and continuous CDCB lines, magnitude of conduction disorders, conduction velocity, biatrial activation time, and voltages did not differ between the ECV and control group during both SR and premature atrial extrasystoles (p ≥ 0.05). Hence, our data suggest that there may be no difference in biatrial conduction characteristics between the supervulnerable period after ECV and long-term SR in AF patients. The supervulnerable period after AF termination is not determined by conduction heterogeneity during SR and PACs. It is unknown to what extent intra-atrial conduction is impaired during the supervulnerable period immediately after ECV and whether different right and left atrial regions are equally affected. This high-resolution epicardial mapping study (upper left panel) of both atria shows that during SR the prevalences and length of longest CB and cCDCB lines (upper middle panel), magnitude of conduction disorders, CV and TAT (lower left panel), and voltages did not differ between the ECV and control group. Likewise, these parameters were comparable during PACs between the ECV and control group (lower left panel). †Non-normally distributed. cm/s = centimeters per second; mm = millimeter; ms = millisecond; AF = atrial fibrillation; AT = activation time; BB = Bachmann's bundle; cCDCB = continuous lines of conduction delay and block; CB = conduction block; CD = conduction delay; CT = conduction time; CV = conduction velocity; ECV = electrical cardioversion; LA = left atrium; LAT = local activation times; PAC = premature atrial complexes; PVA = pulmonary vein area; RA = right atrium; SR = sinus rhythm; TAT = total activation time.


Asunto(s)
Fibrilación Atrial , Complejos Atriales Prematuros , Humanos , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/terapia , Frecuencia Cardíaca/fisiología , Atrios Cardíacos , Mapeo Epicárdico
16.
JACC Clin Electrophysiol ; 9(7 Pt 2): 1097-1107, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37227342

RESUMEN

BACKGROUND: Perpetuation of atrial fibrillation (AF) is rooted in derailment of molecular proteostasis pathways that cause electrical conduction disorders that drive AF. Emerging evidence indicates a role for long noncoding RNAs (lncRNAs) in the pathophysiology of cardiac diseases, including AF. OBJECTIVES: In the present study, the authors explored the association between 3 cardiac lncRNAs and the degree of electropathology. METHODS: Patients had paroxysmal AF (ParAF) (n = 59), persistent AF (PerAF) (n = 56), or normal sinus rhythm without a history of AF (SR) (n = 70). The relative expression levels of urothelial carcinoma-associated 1 (UCA1), OXCT1-AS1 (SARRAH), and the mitochondrial lncRNA uc022bqs.q (LIPCAR) were measured by means of quantitative reverse-transcription polymerase chain reaction in the right atrial appendage (RAA) or serum (or both). A selection of the patients was subjected to high-resolution epicardial mapping to evaluate electrophysiologic features during SR. RESULTS: The expression levels of SARRAH and LIPCAR were decreased in RAAs of all AF patients compared with SR. Also, in RAAs, UCA1 levels significantly correlated with the percentage of conduction block and delay, and inversely with conduction velocity, indicating that UCA1 levels in RAA reflect the degree of electrophysiologic disorders. Moreover, in serum samples, SARRAH and UCA1 levels were increased in the total AF group and ParAF patients compared with SR. CONCLUSIONS: LncRNAs SARRAH and LIPCAR are reduced in RAA of AF patients, and UCA1 levels correlate with electrophysiologic conduction abnormalities. Thus, RAA UCA1 levels may aid staging of electropathology severity and act as a patient-tailored bioelectrical fingerprint.


Asunto(s)
Apéndice Atrial , Fibrilación Atrial , Carcinoma de Células Transicionales , ARN Largo no Codificante , Neoplasias de la Vejiga Urinaria , Humanos , Fibrilación Atrial/patología , Carcinoma de Células Transicionales/complicaciones , Carcinoma de Células Transicionales/metabolismo , Carcinoma de Células Transicionales/patología , Trastorno del Sistema de Conducción Cardíaco , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Vejiga Urinaria/complicaciones , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
17.
Ann Med ; 55(1): 1431-1441, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37194486

RESUMEN

BACKGROUND: It is unknown which features of unipolar atrial electrogram (U-AEGM) morphology are affected by ageing and whether age-related changes in U-AEGM morphology are equally distributed throughout the right and left atria. PATIENTS AND METHODS: Epicardial high-resolution mapping was performed in patients undergoing coronary artery bypass grafting surgery during sinus rhythm (SR). Mapping areas include the right atrium (RA), left atrium (LA), pulmonary vein area (PVA) and Bachmann's bundle (BB). Patients were categorized into a young (age < 60) and aged (age ≥ 60) group. U-AEGM were classified as single potentials (SPs, one deflection), short double potentials (SDPs, deflection interval ≤ 15ms), long double potentials (LDPs, deflection interval > 15ms) and fractionated potentials (FPs, ≥3 deflections). RESULTS: A total of 213 patients (age: 67 (59-73) years; young group N = 58, aged group N = 155) were included. Only at BB, the proportion of SPs (p = 0.007) was significantly higher in the young group, while the proportion of SDPs (p = 0.051), LDPs (p = 0.004) and FPs (p = 0.006) was higher in the aged group. After adjusting for potential confounders, older age was associated with a reduction in SPs [regression coefficient (ß): -6.33, 95% confident interval (CI): -10.37 to -2.30] at the expense of an increased proportion of SDPs (ß: 2.49, 95% CI: 0.09 to 4.89), LDPs (ß: 1.94, 95% CI: 0.21 to 3.68) and FPs (ß: 1.90, 95% CI: 0.62 to 3.18). CONCLUSIONS: Age-related remodeling particularly affects BB as indicated by the decreased amount of non-SP at this location in the elderly.Key MessagesAgeing preferentially affects the morphology of unipolar atrial electrograms recorded at Bachmann's bundle.At Bachmann's bundle, the proportion of short double-, long double- and fractionated potentials increase during ageing at the expense of a decrease in the proportion of single potentials, reflecting aggravation of abnormalities in conduction.The increase in abnormal unipolar atrial electrograms at Bachmann's bundle during ageing supports the concept that Bachmann's bundle may play an important role in development of age-related arrhythmias such as atrial fibrillation.


Asunto(s)
Fibrilación Atrial , Mapeo Epicárdico , Anciano , Humanos , Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos , Frecuencia Cardíaca
18.
BMJ Open ; 13(6): e069957, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369412

RESUMEN

OBJECTIVES: Delirium is a serious complication following neurosurgical procedures. We hypothesise that the beneficial effect of music on a combination of delirium-eliciting factors might reduce delirium incidence following neurosurgery and subsequently improve clinical outcomes. DESIGN: Prospective randomised controlled trial. SETTING: Single centre, conducted at the neurosurgical department of the Erasmus Medical Center, Rotterdam, the Netherlands. PARTICIPANTS: Adult patients undergoing craniotomy were eligible. INTERVENTIONS: Patients in the intervention group received preferred recorded music before, during and after the operation until day 3 after surgery. Patients in the control group were treated according to standard of clinical care. PRIMARY AND SECONDARY OUTCOME MEASURES: Primary outcome was presence or absence of postoperative delirium within the first 5 postoperative days measured with the Delirium Observation Screening Scale (DOSS) and, in case of a daily mean score of 3 or higher, a psychiatric evaluation with the latest Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria. Secondary outcomes included anxiety, heart rate variability (HRV), depth of anaesthesia, delirium severity and duration, postoperative complications, length of stay and location of discharge. RESULTS: We enrolled 189 patients (music=95, control=94) from July 2020 through September 2021. Delirium, as assessed by the DOSS, was less common in the music (n=11, 11.6%) than in the control group (n=21, 22.3%, OR:0.49, p=0.048). However, after DSM-5 confirmation, differences in delirium were not significant (4.2% vs 7.4%, OR:0.47, p=0.342). Moreover, music increased the HRV (root mean square of successive differences between normal heartbeats, p=0.012). All other secondary outcomes were not different between groups. CONCLUSION: Our results support the efficacy of music in reducing the incidence of delirium after craniotomy, as found with DOSS but not after DSM-5 confirmation, substantiated by the effect of music on preoperative autonomic tone. Delirium screening tools should be validated and the long-term implications should be evaluated after craniotomy. TRIAL REGISTRATION NUMBER: Trialregister.nl: NL8503 and ClinicalTrials.gov: NCT04649450.


Asunto(s)
Delirio , Música , Neurocirugia , Adulto , Humanos , Estudios Prospectivos , Delirio/etiología , Delirio/prevención & control , Delirio/diagnóstico , Procedimientos Neuroquirúrgicos/efectos adversos
19.
Arrhythm Electrophysiol Rev ; 11: e11, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35846426

RESUMEN

Progression of AF is accompanied by structural and electrical remodelling, resulting in complex electrical conduction disorders. This is defined as electropathology and it increases with the progression of AF. The severity of electropathology, thus, defines the stage of AF and is a major determinant of effectiveness of AF therapy. As specific features of AF-related electropathology are still unknown, it is essential to first quantify the electrophysiological properties of atrial tissue and then to examine the inter- and intra-individual variation during normal sinus rhythm. Comparison of these parameters between patients with and without a history of AF unravels quantified electrophysiological features that are specific to AF patients. This can help to identify patients at risk for early onset or progression of AF. This review summarises current knowledge on quantified features of atrial electrophysiological properties during sinus rhythm and discusses its relevance in identifying AF-related electropathology.

20.
Comput Biol Med ; 143: 105331, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35231835

RESUMEN

BACKGROUND: An increasing number of wearables are capable of measuring electrocardiograms (ECGs), which may help in early detection of atrial fibrillation (AF). Therefore, many studies focus on automated detection of AF in ECGs. A major obstacle is the required amount of manually labelled data. This study aimed to provide an efficient and reliable method to train a classifier for AF detection using large datasets of real-life ECGs. METHOD: Human-controlled semi-supervised learning was applied, consisting of two phases: the pre-training phase and the semi-automated training phase. During pre-training, an initial classifier was trained, which was used to predict the classes of new ECG segments in the semi-automated training phase. Based on the degree of certainty, segments were added to the training dataset automatically or after human validation. Thereafter, the classifier was retrained and this procedure was repeated. To test the model performance, a real-life telemetry dataset containing 3,846,564 30-s ECG segments of hospitalized patients (n = 476) and the CinC Challenge 2017 database were used. RESULTS: After pre-training, the average F1-score on a hidden testing dataset was 89.0%. Furthermore, after the pre-training phase 68.0% of all segments in the hidden test set could be classified with an estimated probability of successful classification of 99%, providing an F1-score of 97.9% for these segments. During the semi-automated training phase, this F1-score showed little variation (97.3%-97.9% in the hidden test set), whilst the number of segments which could be automatically classified increased from 68.0% to 75.8% due to the enhanced training dataset. At the same time, the overall F1-score increased from 89.0% to 91.4%. CONCLUSIONS: Human-validated semi-supervised learning makes training a classifier more time efficient without compromising on accuracy, hence this method might be valuable in the automated detection of AF in real-life ECGs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA