Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Glia ; 66(2): 221-238, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29134703

RESUMEN

Infants born prematurely are at high risk to develop white matter injury (WMI), due to exposure to hypoxic and/or inflammatory insults. Such perinatal insults negatively impact the maturation of oligodendrocytes (OLs), thereby causing deficits in myelination. To elucidate the precise pathophysiology underlying perinatal WMI, it is essential to fully understand the cellular mechanisms contributing to healthy/normal white matter development. OLs are responsible for myelination of axons. During brain development, OLs are generally derived from neuroepithelial zones, where neural stem cells committed to the OL lineage differentiate into OL precursor cells (OPCs). OPCs, in turn, develop into premyelinating OLs and finally mature into myelinating OLs. Recent studies revealed that OPCs develop in multiple waves and form potentially heterogeneous populations. Furthermore, it has been shown that myelination is a dynamic and plastic process with an excess of OPCs being generated and then abolished if not integrated into neural circuits. Myelination patterns between rodents and humans show high spatial and temporal similarity. Therefore, experimental studies on OL biology may provide novel insights into the pathophysiology of WMI in the preterm infant and offers new perspectives on potential treatments for these patients.


Asunto(s)
Lesiones Encefálicas/patología , Encéfalo/patología , Oligodendroglía/patología , Sustancia Blanca/lesiones , Sustancia Blanca/patología , Animales , Encéfalo/crecimiento & desarrollo , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Femenino , Humanos , Recién Nacido , Vaina de Mielina/patología , Embarazo , Sustancia Blanca/crecimiento & desarrollo
2.
Glia ; 66(1): 78-93, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28925578

RESUMEN

Diffuse white matter injury (WMI) is a serious problem in extremely preterm infants, and is associated with adverse neurodevelopmental outcome, including cognitive impairments and an increased risk of autism-spectrum disorders. Important risk factors include fetal or perinatal inflammatory insults and fluctuating cerebral oxygenation. However, the exact mechanisms underlying diffuse WMI are not fully understood and no treatment options are currently available. The use of clinically relevant animal models is crucial to advance knowledge on the pathophysiology of diffuse WMI, allowing the definition of novel therapeutic targets. In the present study, we developed a multiple-hit animal model of diffuse WMI by combining fetal inflammation and postnatal hypoxia in rats. We characterized the effects on white matter development and functional outcome by immunohistochemistry, MRI and behavioral paradigms. Combined fetal inflammation and postnatal hypoxia resulted in delayed cortical myelination, microglia activation and astrogliosis at P18, together with long-term changes in oligodendrocyte maturation as observed in 10 week old animals. Furthermore, rats with WMI showed impaired motor performance, increased anxiety and signs of autism-like behavior, i.e. reduced social play behavior and increased repetitive grooming. In conclusion, the combination of fetal inflammation and postnatal hypoxia in rats induces a pattern of brain injury and functional impairments that closely resembles the clinical situation of diffuse WMI. This animal model provides the opportunity to elucidate pathophysiological mechanisms underlying WMI, and can be used to develop novel treatment options for diffuse WMI in preterm infants.


Asunto(s)
Trastorno Autístico/etiología , Hipoxia/complicaciones , Leucoencefalopatías/complicaciones , Vaina de Mielina/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Animales Recién Nacidos , Ansiedad/etiología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Gliosis/etiología , Aseo Animal/efectos de los fármacos , Aseo Animal/fisiología , Hipoxia/diagnóstico por imagen , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/etiología , Lipopolisacáridos/toxicidad , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/diagnóstico por imagen , Ratas , Ratas Wistar , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología
3.
Psychopharmacology (Berl) ; 239(3): 745-764, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35064798

RESUMEN

RATIONALE: Infants born prematurely risk developing diffuse white matter injury (WMI), which is associated with impaired cognitive functioning and an increased risk of autism spectrum disorder. Recently, our rat model of preterm diffuse WMI induced by combined fetal inflammation and postnatal hypoxia showed impaired motor performance, anxiety-like behaviour and autism-like behaviour in juvenile rats, especially males. Immunohistochemistry showed delayed myelination in the sensory cortex and impaired oligodendrocyte differentiation. OBJECTIVE: To assess long-term cognitive deficits in this double-hit rat model of diffuse WMI, animals were screened on impulsivity, attention and cognitive flexibility in adulthood using the 5-choice serial reaction time task (5CSRTT) and a probabilistic reversal learning task, tests that require a proper functioning prefrontal cortex. Thereafter, myelination deficits were evaluated by immunofluorescent staining in adulthood. RESULTS: Overall, little effect of WMI or sex was found in the cognitive tasks. WMI animals showed subtle differences in performance in the 5CSRTT. Manipulating 5CSRTT parameters resulted in performance patterns previously seen in the literature. Sex differences were found in perseverative responses and omitted trials: female WMI rats seem to be less flexible in the 5CSRTT but not in the reversal learning task. Males collected rewards faster in the probabilistic reversal learning task. These findings are explained by temporally rather than permanently affected myelination and by the absence of extensive injury to prefrontal cortical subregions, confirmed by immunofluorescent staining in both adolescence and adulthood. CONCLUSION: This rat model of preterm WMI does not lead to long-term cognitive deficits as observed in prematurely born human infants.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Sustancia Blanca , Animales , Cognición , Femenino , Hipoxia , Masculino , Ratas
4.
Stem Cells Dev ; 27(5): 313-325, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29310519

RESUMEN

Subarachnoid hemorrhage (SAH) represents a major health problem in Western society due to high mortality and morbidity, and the relative young age of patients. Currently, efficacious therapeutic options are very limited. Mesenchymal stem cell (MSC) administration has been shown to improve functional outcome and lesion size in experimental models of stroke and neonatal hypoxic-ischemic brain injury. Here, we studied the therapeutic potential of intranasally administered bone marrow-derived MSCs relatively late postinsult using a rat endovascular puncture model for SAH. Six days after induction of SAH, rats were treated with MSCs or vehicle through nasal administration. Intranasal MSC treatment significantly improved sensorimotor and mechanosensory function at 21 days after SAH. Gray and white matter loss was significantly reduced by MSC treatment and the number of NeuN+ neurons around the lesion increased due to MSC treatment. Moreover, intranasal MSC administration led to a sharp decrease in SAH-induced activation of astrocytes and microglia/macrophages in the lesioned hemisphere, especially of M2-like (CD206+) microglia/macrophages. Interestingly, MSC administration also decreased SAH-induced depression-like behavior in association with a restoration of tyrosine hydroxylase expression in the substantia nigra and striatum. We show here for the first time that intranasal MSC administration reverses the devastating consequences of SAH, including regeneration of the cerebral lesion, functional recovery, and treatment of comorbid depression-like behavior.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Cavidad Nasal , Hemorragia Subaracnoidea/terapia , Animales , Células Cultivadas , Cuerpo Estriado/citología , Macrófagos/metabolismo , Masculino , Microglía/metabolismo , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Sustancia Negra/citología , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
5.
Sci Rep ; 7(1): 16492, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184182

RESUMEN

MRI studies (e.g. using diffusion tensor imaging) revealed that injury to white matter tracts, as observed in for instance perinatal white matter injury and multiple sclerosis, leads to compromised microstructure of myelinated axonal tracts. Alterations in white matter microstructure are also present in a wide range of neurological disorders including autism-spectrum disorders, schizophrenia and ADHD. Whereas currently myelin quantity measures are often used in translational animal models of white matter disease, it can be an important valuable addition to study the microstructural organization of myelination patterns in greater detail. Here, we describe methods to extensively study the microstructure of cortical myelination by immunostaining for myelin. To validate these methods, we carefully analyzed the organization of myelinated axons running from the external capsule towards the outer layers of the cortex in three rodent models of neonatal brain injury and in an adult stroke model, that have all been associated with myelination impairments. This unique, relatively easy and sensitive methodology can be applied to study subtle differences in myelination patterns in animal models in which aberrations in myelination integrity are suspected. Importantly, the described methods can be applied to determine efficacy of novel experimental treatments on microstructural organization of cortical myelination.


Asunto(s)
Axones/patología , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/patología , Vaina de Mielina/patología , Fibras Nerviosas Mielínicas/patología , Animales , Animales Recién Nacidos , Asfixia , Axones/metabolismo , Biomarcadores , Lesiones Encefálicas/etiología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Ratones , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Ratas , Accidente Cerebrovascular
6.
Prog Neurobiol ; 136: 28-49, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26655283

RESUMEN

Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates.


Asunto(s)
Encéfalo/fisiopatología , Recien Nacido Prematuro/fisiología , Oligodendroglía/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Humanos , Leucoencefalopatías/patología , Leucoencefalopatías/fisiopatología , Leucoencefalopatías/terapia , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología
7.
Sci Signal ; 9(425): ra41, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27117251

RESUMEN

Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Trastornos de la Memoria/metabolismo , Biosíntesis de Proteínas , Privación de Sueño/metabolismo , Animales , Western Blotting , Cognición , Proteínas del Citoesqueleto/metabolismo , Chaperón BiP del Retículo Endoplásmico , Ensayo de Inmunoadsorción Enzimática , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Proteínas de Choque Térmico/metabolismo , Hipocampo/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fosforilación , Puromicina/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA