Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(3): e1012036, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457376

RESUMEN

Viruses actively reprogram the metabolism of the host to ensure the availability of sufficient building blocks for virus replication and spreading. However, relatively little is known about how picornaviruses-a large family of small, non-enveloped positive-strand RNA viruses-modulate cellular metabolism for their own benefit. Here, we studied the modulation of host metabolism by coxsackievirus B3 (CVB3), a member of the enterovirus genus, and encephalomyocarditis virus (EMCV), a member of the cardiovirus genus, using steady-state as well as 13C-glucose tracing metabolomics. We demonstrate that both CVB3 and EMCV increase the levels of pyrimidine and purine metabolites and provide evidence that this increase is mediated through degradation of nucleic acids and nucleotide recycling, rather than upregulation of de novo synthesis. Finally, by integrating our metabolomics data with a previously acquired phosphoproteomics dataset of CVB3-infected cells, we identify alterations in phosphorylation status of key enzymes involved in nucleotide metabolism, providing insight into the regulation of nucleotide metabolism during infection.


Asunto(s)
Cardiovirus , Infecciones por Enterovirus , Enterovirus , Picornaviridae , Humanos , Enterovirus/fisiología , Virus de la Encefalomiocarditis/fisiología , Replicación Viral , Enterovirus Humano B/fisiología , Células HeLa
2.
Liver Int ; 42(11): 2442-2452, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35924448

RESUMEN

The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers.


Asunto(s)
Hígado Graso , Neoplasias Hepáticas , Animales , Hígado Graso/patología , Hepatocitos/metabolismo , Lípidos , Hígado/patología , Neoplasias Hepáticas/patología , Ratones , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt
3.
Glycoconj J ; 36(3): 227-236, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31055697

RESUMEN

Glycosaminoglycans (GAGs) are known to play pivotal roles in physiological processes and pathological conditions. To study interactions of GAGs with proteins, immobilization of GAGs is often required. Current methodologies for immobilization involve modification of GAGs and/or surfaces, which can be time-consuming and may involve specialized equipment. Here, we use an efficient and low-cost method to immobilize GAGs without any (chemical) modification using highly concentrated salt solutions. A number of salts from the Hofmeister series were probed for their capacity to immobilize heparin and chondroitin-6-sulfate on microtiter plates applying single chain antibodies against GAGs for detection (ELISA). From all salts tested, the cosmotropic salt ammonium sulfate was most efficient, especially at high concentrations (80-100% (v/v) saturation). Immobilized GAGs were bioavailable as judged by their binding of FGF2 and VEGF, and by their susceptibility towards GAG lyases (heparinase I, II and III, chondroitinase ABC). Using 80% (v/v) saturated ammonium sulfate, block and continuous gradients of heparin were established and a gradient of FGF2 was created using a heparin block gradient as a template. In conclusion, high concentrations of ammonium sulfate are effective for immobilization of GAGs and for the establishment of gradients of both GAGs and GAG-binding molecules, which enables the study to the biological roles of GAGs.


Asunto(s)
Sulfatos de Condroitina/química , Factores de Crecimiento de Fibroblastos/química , Heparina/química , Factor A de Crecimiento Endotelial Vascular/química , Liasa de Heparina/metabolismo , Poliésteres/química , Impresión Tridimensional , Sales (Química)/química
4.
Environ Microbiol ; 20(4): 1374-1388, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29318721

RESUMEN

Bacteria have evolved different mechanisms to catabolize carbon sources from nutrient mixtures. They first consume their preferred carbon source, before others are used. Regulatory mechanisms adapt the metabolism accordingly to maximize growth and to outcompete other organisms. The human pathogen Campylobacter jejuni is an asaccharolytic Gram-negative bacterium that catabolizes amino acids and organic acids for growth. It prefers serine and aspartate as carbon sources, however it lacks all regulators known to be involved in regulating carbon source utilization in other organisms. In which manner C. jejuni adapts its metabolism towards the presence or absence of preferred carbon sources is unknown. In this study, we show with transcriptomic analysis and enzyme assays how C. jejuni adapts its metabolism in response to its preferred carbon sources. In the presence of serine as well as lactate and pyruvate C. jejuni inhibits the utilization of other carbon sources, by repressing the expression of a number of central metabolic enzymes. The regulatory proteins RacR, Cj1000 and CsrA play a role in the regulation of these metabolic enzymes. This metabolism dependent transcriptional repression correlates with an accumulation of intracellular succinate. Hence, we propose a demand-based catabolite repression mechanism in C. jejuni, depended on intracellular succinate levels.


Asunto(s)
Campylobacter jejuni/metabolismo , Represión Catabólica/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Ácido Succínico/metabolismo , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/genética , Carbono/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Serina/metabolismo , Factores de Transcripción/metabolismo
5.
FASEB J ; 31(5): 2195-2209, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28183801

RESUMEN

Although chemotherapy is designed to eradicate tumor cells, it also has significant effects on normal tissues. The platinum-induced fatty acid 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) induces systemic resistance to a broad range of DNA-damaging chemotherapeutics. We show that 16:4(n-3) exerts its effect by activating splenic F4/80+/CD11blow macrophages, which results in production of chemoprotective lysophosphatidylcholines (LPCs). Pharmacologic studies, together with analysis of expression patterns, identified GPR120 on F4/80+/CD11blow macrophages as the relevant receptor for 16:4(n-3). Studies that used splenocytes from GPR120-deficient mice have confirmed this conclusion. Activation of the 16:4(n-3)-GPR120 axis led to enhanced cPLA2 activity in these splenic macrophages and secretion of the resistance-inducing lipid mediator, lysophosphatidylcholine(24:1). These studies identify a novel and unexpected function for GPR120 and suggest that antagonists of this receptor might be effective agents to limit development of chemotherapy resistance.-Houthuijzen, J. M., Oosterom, I., Hudson, B. D., Hirasawa, A., Daenen, L. G. M., McLean, C. M., Hansen, S. V. F., van Jaarsveld, M. T. M., Peeper, D. S., Jafari Sadatmand, S., Roodhart, J. M. L., van de Lest, C. H. A., Ulven, T., Ishihara, K., Milligan, G., Voest, E. E. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance.


Asunto(s)
Macrófagos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Resistencia a Medicamentos/fisiología , Ácidos Grasos Omega-3/metabolismo , Ratones Endogámicos BALB C , Transducción de Señal/fisiología
6.
J Immunol ; 197(8): 3382-3392, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27619994

RESUMEN

Mast cells (MC) are well known for their effector role in allergic disorders; moreover, they are associated with diverse modulatory effects in innate and adaptive immunity. It is largely unclear how MC exert these modulating functions. In this article, we show that IgE-mediated MC degranulation leads to a rapid release of high quantities of extracellular vesicles (EV), comparable to the release of preformed mediators. EV are submicron structures composed of lipid bilayers, proteins, and nucleic acids that are released by cells in a regulated fashion and are involved in intercellular communication. Primary murine mucosal-type MC and connective tissue-type MC released phenotypically different EV populations depending on the stimulus they received. Although unstimulated MC constitutively released CD9+ EV, degranulation was accompanied by the release of CD63+ EV, which correlated with release of the soluble mediator ß-hexosaminidase. This CD63+ EV subset was smaller and exhibited a higher buoyant density and distinct phospholipid composition compared with CD9+ EV. Marked differences were observed for phosphatidylinositol, phosphatidic acid, and bis(monoacylglycero)phosphate species. Strikingly, proteomic analysis of CD63+ EV from connective tissue-type MC unveiled an abundance of MC-specific proteases. With regard to carboxypeptidase A3, it was confirmed that the enzyme was EV associated and biologically active. Our data demonstrate that, depending on their activation status, MC release distinct EV subsets that differ in composition and protease activity and are indicative of differential immunological functions. Concerning the strategic tissue distribution of MC and the presence of degranulated MC in various (allergic) disorders, MC-derived EV should be considered potentially important immune regulators.


Asunto(s)
Degranulación de la Célula , Vesículas Extracelulares/metabolismo , Mastocitos/inmunología , Mastocitos/metabolismo , Péptido Hidrolasas/metabolismo , Animales , Degranulación de la Célula/inmunología , Células Cultivadas , Vesículas Extracelulares/inmunología , Ratones , Ratones Endogámicos C57BL , Péptido Hidrolasas/inmunología
7.
Biochim Biophys Acta ; 1851(2): 220-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25500141

RESUMEN

Hepatic stellate cell (HSC) activation is a critical step in the development of chronic liver disease. We previously observed that the levels of triacylglycerol (TAG) species containing long polyunsaturated fatty acids (PUFAs) are increased in in vitro activated HSCs. Here we investigated the cause and consequences of the rise in PUFA-TAGs by profiling enzymes involved in PUFA incorporation. We report that acyl CoA synthetase (ACSL) type 4, which has a preference for PUFAs, is the only upregulated ACSL family member in activated HSCs. Inhibition of the activity of ACSL4 by siRNA-mediated knockdown or addition of rosiglitazone specifically inhibited the incorporation of deuterated arachidonic acid (AA-d8) into TAG in HSCs. In agreement with this, ACSL4 was found to be partially localized around lipid droplets (LDs) in HSCs. Inhibition of ACSL4 also prevented the large increase in PUFA-TAGs in HSCs upon activation and to a lesser extent the increase of arachidonate-containing phosphatidylcholine species. Inhibition of ACSL4 by rosiglitazone was associated with an inhibition of HSC activation and prostaglandin secretion. Our combined data show that upregulation of ACSL4 is responsible for the increase in PUFA-TAG species during activation of HSCs, which may serve to protect cells against a shortage of PUFAs required for eicosanoid secretion.


Asunto(s)
Coenzima A Ligasas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Células Estrelladas Hepáticas/enzimología , Triglicéridos/metabolismo , Animales , Ácido Araquidónico/metabolismo , Línea Celular , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/genética , Inhibidores Enzimáticos/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Masculino , Fosfatidilcolinas/metabolismo , Interferencia de ARN , Ratas Wistar , Rosiglitazona , Tiazolidinedionas/farmacología , Factores de Tiempo , Transfección , Regulación hacia Arriba
8.
Environ Microbiol ; 17(4): 1049-64, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24707969

RESUMEN

The natural environment of the human pathogen Campylobacter jejuni is the gastrointestinal tract of warm-blooded animals. In the gut, the availability of oxygen is limited; therefore, less efficient electron acceptors such as nitrate or fumarate are used by C. jejuni. The molecular mechanisms that regulate the activity of the highly branched respiratory chain of C. jejuni are still a mystery mainly because C. jejuni lacks homologues of transcription factors known to regulate energy metabolism in other bacteria. Here we demonstrate that dependent on the available electron acceptors the two-component system RacRS controls the production of fumarate from aspartate, as well as its transport and reduction to succinate. Transcription profiling, DNAse protection and functional assays showed that phosphorylated RacR binds to and represses at least five promoter elements located in front of genes involved in the uptake and synthesis of fumarate. The RacRS system is active in the presence of nitrate and trimethyl-amine-N-oxide under oxygen-limited conditions when fumarate is less preferred as an alternative electron acceptor. In the inactive state, RacRS allows utilization of fumarate for respiration. The unique C. jejuni RacRS regulatory system illustrates the disparate evolution of Campylobacter and aids the survival of this pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Metabolismo Energético/fisiología , Fumaratos/metabolismo , Tracto Gastrointestinal/microbiología , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Transporte Biológico/genética , Ciclo del Ácido Cítrico/genética , Transporte de Electrón/fisiología , Regulación Bacteriana de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Nitratos/metabolismo , Oxígeno/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Ácido Succínico/metabolismo , Transactivadores/genética
9.
J Dairy Sci ; 98(4): 2322-36, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25648816

RESUMEN

The fertility of high-yielding dairy cows has declined during the last 3 decades, in association with a more profound negative energy balance (NEB) during the early weeks postpartum. One feature of this NEB is a marked elevation in circulating free fatty acid (FFA) concentrations. During the early postpartum period (≤ d 42), circulatory FFA levels were measured weekly, and progesterone concentrations and the diameter of the dominant follicles were determined thrice weekly. Retrospectively, cows that ovulated within 35 d postpartum were grouped as "normal ovulating" cows (n = 5), and the others were grouped as "delayed ovulating" cows (n = 5). In both groups, high total FFA levels (>500 µM) were evident immediately postpartum. Interestingly, cows with delayed ovulation had higher plasma FFA concentrations in the first weeks postpartum compared with normal ovulating cows. In both cow groups, FFA decreased to control levels of non-NEB cows within 3 wk postpartum. The FFA compositions and concentrations in fluids from the dominant follicles of postpartum cows were not different between the normal and delayed ovulating cows when measured at potential insemination points: d 55, 80, and 105 postpartum. Interestingly, the concentration of monounsaturated oleic acid was higher and that of saturated stearic acid lower in follicular fluids of both groups compared with that in blood. The level of FFA in follicular fluid was correlated with the ratio of 17ß-estradiol (E2) to progesterone (P4) in follicular fluid, with a relatively high level of unsaturated FFA in follicles with a low E2:P4 ratio. Taken together, these results indicate that a more severe NEB early postpartum is related to a delay in the first postpartum ovulation and does not affect FFA composition in follicular fluid at the preferred insemination time. The high FFA level in dominant follicles with a low E2:P4 ratio may be due to a different FFA metabolism in these follicles. The diagnostic value of this observation for selective screening of dominant follicles needs further investigation.


Asunto(s)
Ácidos Grasos no Esterificados/sangre , Líquido Folicular/química , Inseminación/fisiología , Periodo Posparto , Animales , Bovinos , Metabolismo Energético , Estradiol/sangre , Femenino , Ácido Oléico/sangre , Ovulación , Análisis de Componente Principal , Progesterona/sangre , Estudios Retrospectivos , Ácidos Esteáricos/sangre , Estrés Fisiológico
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167283, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38851305

RESUMEN

Obesity represents a significant health challenge, intricately linked to conditions such as type II diabetes, metabolic syndrome, and hepatic steatosis. Several existing obesity treatments exhibit limited efficacy, undesirable side effects or a limited capability to maintain therapeutics effects in the long-term. Recently, modulation Coenzyme Q (CoQ) metabolism has emerged as a promising target for treatment of metabolic syndrome. This potential intervention could involve the modulation of endogenous CoQ biosynthesis by the use of analogs of the precursor of its biosynthesis, such as ß-resorcylic acid (ß-RA). Here, we show that oral supplementation with ß-RA, incorporated into the diet of diet-induced obese (DIO) mice, leads to substantial weight loss. The anti-obesity effects of ß-RA are partially elucidated through the normalization of mitochondrial CoQ metabolism in white adipose tissue (WAT). Additionally, we identify an HFN4α/LXR-dependent transcriptomic activation of the hepatic lipid metabolism that contributes to the anti-obesity effects of ß-RA. Consequently, ß-RA mitigates WAT hypertrophy, prevents hepatic steatosis, counteracts metabolic abnormalities in WAT and liver, and enhances glucose homeostasis by reducing the insulin/glucagon ratio and plasma levels of gastric inhibitory peptide (GIP). Moreover, pharmacokinetic evaluation of ß-RA supports its translational potential. Thus, ß-RA emerges as an efficient, safe, and translatable therapeutic option for the treatment and/or prevention of obesity, metabolic dysfunction-associated steatotic liver disease (MASLD).


Asunto(s)
Ratones Endogámicos C57BL , Obesidad , Animales , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Ratones , Masculino , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/metabolismo , Ubiquinona/administración & dosificación , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/patología , Hígado/metabolismo , Hígado/patología , Metabolismo de los Lípidos/efectos de los fármacos , Administración Oral , Dieta Alta en Grasa/efectos adversos , Humanos
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159534, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39033851

RESUMEN

The molecular signature of cell-derived extracellular vesicles (EVs) from synovial fluid (SF) offers insights into the cells and molecular processes associated with joint disorders and can be exploited to define biomarkers. The EV-signature is determined by cargo molecules and the lesser-studied lipid bilayer. We here investigated the lipidome of SF-EVs in inflamed joints derived from Rheumatoid Arthritis (RA) and Spondyloarthritis (SpA) patients, two autoimmune-driven joint diseases, and compared these signatures to the lipid profile of equine SF-EVs obtained during induced acute synovitis. Since neutrophils are primary SF-infiltrating cells during these inflammatory joint diseases, we also analyzed how inflammatory stimuli alter the lipidomic profile of human and equine neutrophil-derived EVs (nEVs) in vitro and how these signatures relate to the lipidome signatures of SF-EVs from inflamed joints. We identified neutrophil stimulation intensity-dependent changes in the lipidomic profile of nEVs with elevated presence of dihexosylceramide (lactosylceramide), phosphatidylserine, and phosphatidylethanolamine ether-linked lipid classes in human nEVs upon full neutrophil activation. In horses, levels of monohexosylceramide (glucosylceramide) increased instead of dihexosylceramide, indicating species-specific differences. The lipid profiles of RA and SpA SF-EVs were relatively similar and showed a relative resemblance with stimulated human nEVs. Similarly, the lipidome of equine synovitis-derived SF-EVs closer resembled the one of stimulated equine nEVs. Hence, lipidome profiling can provide insights into the contribution of nEVs to the heterogeneous pool of SF-EVs, deepening our understanding of inflammatory joint diseases and revealing molecular changes in joint homeostasis, which can lead to the development of more precise disease diagnosis and treatment strategies.


Asunto(s)
Artritis Reumatoide , Vesículas Extracelulares , Lipidómica , Neutrófilos , Líquido Sinovial , Líquido Sinovial/metabolismo , Humanos , Animales , Vesículas Extracelulares/metabolismo , Caballos , Neutrófilos/metabolismo , Neutrófilos/patología , Lipidómica/métodos , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Masculino , Inflamación/metabolismo , Inflamación/patología , Femenino , Lactosilceramidos/metabolismo , Glucosilceramidas/metabolismo , Espondiloartritis/metabolismo , Espondiloartritis/patología
12.
Biochem Biophys Rep ; 37: 101635, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38298208

RESUMEN

Osteoarthritis causes progressive joint deterioration, severe morbidity, and reduced mobility in both humans and horses. Currently, osteoarthritis is diagnosed at late stages through clinical examination and radiographic imaging, hence it is challenging to address and provide timely therapeutic interventions to slow disease progression or ameliorate symptoms. Extracellular vesicles are cell-derived vesicles that play a key role in cell-to-cell communication and are potential sources for specific composite biomarker panel discovery. We here used a multi-omics strategy combining proteomics and phospholipidomics in an integral approach to identify composite biomarkers associated to purified extracellular vesicles from synovial fluid of healthy, mildly and severely osteoarthritic equine joints. Although the number of extracellular vesicles was unaffected by osteoarthritis, proteome profiling of extracellular vesicles by mass spectrometry identified 40 differentially expressed proteins (non-adjusted p < 0.05) in osteoarthritic joints associated with 7 significant canonical pathways in osteoarthritis. Moreover, pathway analysis unveiled changes in disease and molecular functions during osteoarthritis development. Phospholipidome profiling by mass spectrometry showed a relative increase in sphingomyelin and a decrease in phosphatidylcholine, phosphatidylinositol, and phosphatidylserine in extracellular vesicles derived from osteoarthritic joints compared to healthy joints. Unsupervised data integration revealed positive correlations between the proteome and the phospholipidome. Comprehensive analysis showed that some phospholipids and their related proteins increased as the severity of osteoarthritis progressed, while others decreased or remained stable. Altogether our data show interrelationships between synovial fluid extracellular vesicle-associated phospholipids and proteins responding to osteoarthritis pathology and which could be explored as potential composite diagnostic biomarkers of disease.

13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159540, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39068984

RESUMEN

Lecithin:retinol acyltransferase (LRAT) is the main enzyme producing retinyl esters (REs) in quiescent hepatic stellate cells (HSCs). When cultured on stiff plastic culture plates, quiescent HSCs activate and lose their RE stores in a process similar to that in the liver following tissue damage, leading to fibrosis. Here we validated HSC cultures in soft gels to study RE metabolism in stable quiescent HSCs and investigated RE synthesis and breakdown in activating HSCs. HSCs cultured in a soft gel maintained characteristics of quiescent HSCs, including the size, amount and composition of their characteristic large lipid droplets. Quiescent gel-cultured HSCs maintained high expression levels of Lrat and a RE storing phenotype with low levels of RE breakdown. Newly formed REs are highly enriched in retinyl palmitate (RP), similar to freshly isolated quiescent HSCs, which is associated with high LRAT activity. Comparison of these quiescent gel-cultured HSCs with activated plastic-cultured HSCs showed that although during early activation the total RE levels and RP-enrichment are reduced, levels of RE formation are maintained and mediated by LRAT. Loss of REs was caused by enhanced RE breakdown in activating HSCs. Upon prolonged culturing, activated HSCs have lost their LRAT activity and produce small amounts of REs by DGAT1. This study reveals unexpected dynamics in RE metabolism during early HSC activation, which might be important in liver disease as early stages are reversible. Soft gel cultures provide a promising model to study RE metabolism in quiescent HSCs, allowing detailed molecular investigations on the mechanisms for storage and release.


Asunto(s)
Aciltransferasas , Células Estrelladas Hepáticas , Células Estrelladas Hepáticas/metabolismo , Aciltransferasas/metabolismo , Aciltransferasas/genética , Animales , Ésteres de Retinilo/metabolismo , Células Cultivadas , Diterpenos/metabolismo , Diterpenos/farmacología , Ratas , Ratones
14.
Biol Reprod ; 88(6): 164, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23616596

RESUMEN

Metabolic conditions characterized by elevated free fatty acid concentrations in blood and follicular fluid are often associated with impaired female fertility. Especially elevated saturated fatty acid levels can be lipotoxic for several somatic cell types. The aim of this study was to determine the impact of elevated free fatty acid concentrations in follicular fluid on neutral lipids (fatty acids stored in lipid droplets) inside cumulus cells and oocytes and their developmental competence. To this end, cows were exposed to a short-term fasting period during final oocyte maturation. This resulted in elevated, but distinct, free fatty acid concentrations in blood and follicular fluid and a rise in the concentrations of in particular fatty acids with a chain length of 14-18 carbon atoms. Interestingly, elevated free fatty acid concentrations in follicular fluid resulted in a massive increase in the level of neutral lipids in cumulus cells, whereas the level of neutral lipid in oocytes was hardly affected. Furthermore, competence of oocytes to develop to the blastocyst stage after fertilization and culture of cumulus-oocyte-complexes of the experimental and control group was not different. In conclusion these data suggest that short-term elevated free fatty acid concentrations in follicular fluid do not harm oocyte developmental competence. We propose that the involvement of high levels of mobilized oleic acid in follicular fluid in combination with the induced lipid storage in cumulus cells serves to prevent harmful saturated fatty acid exposure to the oocyte.


Asunto(s)
Células del Cúmulo/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/fisiología , Oocitos/metabolismo , Oogénesis/fisiología , Animales , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Bovinos , Células Cultivadas , Células del Cúmulo/citología , Células del Cúmulo/efectos de los fármacos , Técnicas de Cultivo de Embriones , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Ácidos Grasos/farmacología , Femenino , Fertilización In Vitro , Líquido Folicular/metabolismo , Oocitos/citología , Oocitos/efectos de los fármacos , Oogénesis/efectos de los fármacos
15.
Biol Reprod ; 88(1): 21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23115269

RESUMEN

This study demonstrates for the first time that porcine and mouse sperm incubated in capacitation media supplemented with bicarbonate produce oxysterols. The production is dependent on a reactive oxygen species (ROS) signaling pathway that is activated by bicarbonate and can be inhibited or blocked by addition of vitamin E or vitamin A or induced in absence of bicarbonate with pro-oxidants. The oxysterol formation was required to initiate albumin dependent depletion of 30% of the total free sterol and >50% of the formed oxysterols. Incubation of bicarbonate treated sperm with oxysterol-binding proteins (ORP-1 or ORP-2) caused a reduction of >70% of the formed oxysterols in the sperm pellet but no free sterol depletion. Interestingly, both ORP and albumin treatments led to similar signs of sperm capacitation: hyperactivated motility, tyrosin phosphorylation, and aggregation of flotillin in the apical ridge area of the sperm head. However, only albumin incubations led to high in vitro fertilization rates of the oocytes, whereas the ORP-1 and ORP-2 incubations did not. A pretreatment of sperm with vitamin E or A caused reduced in vitro fertilization rates with 47% and 100%, respectively. Artificial depletion of sterols mediated by methyl-beta cyclodextrin bypasses the bicarbonate ROS oxysterol signaling pathway but resulted only in low in vitro fertilization rates and oocyte degeneration. Thus, bicarbonate-induced ROS formation causes at the sperm surface oxysterol formation and a simultaneous activation of reverse sterol transport from the sperm surface, which appears to be required for efficient oocyte fertilization.


Asunto(s)
Bicarbonatos/farmacología , Fertilización In Vitro/veterinaria , Transducción de Señal/efectos de los fármacos , Capacitación Espermática/fisiología , Esteroles/metabolismo , Porcinos/fisiología , Animales , Colesterol , Medios de Cultivo , Desmosterol , Fertilización In Vitro/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Especies Reactivas de Oxígeno , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159367, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37473834

RESUMEN

Inflammation is the hallmark of most joint disorders. However, the precise regulation of induction, perpetuation, and resolution of joint inflammation is not entirely understood. Since extracellular vesicles (EVs) are critical for intercellular communication, we aim to unveil their role in these processes. Here, we investigated the EVs' dynamics and phospholipidome profile from synovial fluid (SF) of healthy equine joints and from horses with lipopolysaccharide (LPS)-induced synovitis. LPS injection triggered a sharp increase of SF-EVs at 5-8 h post-injection, which started to decline at 24 h post-injection. Importantly, we identified significant changes in the lipid profile of SF-EVs after synovitis induction. Compared to healthy joint-derived SF-EVs (0 h), SF-EVs collected at 5, 24, and 48 h post-LPS injection were strongly increased in hexosylceramides. At the same time, phosphatidylserine, phosphatidylcholine, and sphingomyelin were decreased in SF-EVs at 5 h and 24 h post-LPS injection. Based on the lipid changes during acute inflammation, we composed specific lipid profiles associated with healthy and inflammatory state-derived SF-EVs. The sharp increase in SF-EVs during acute synovitis and the correlation of specific lipids with either healthy or inflamed states-derived SF-EVs are findings of potential interest for unveiling the role of SF-EVs in joint inflammation, as well as for the identification of EV-biomarkers of joint inflammation.


Asunto(s)
Líquido Sinovial , Sinovitis , Animales , Caballos , Fosfolípidos , Lipopolisacáridos/efectos adversos , Sinovitis/inducido químicamente , Sinovitis/veterinaria , Inflamación/inducido químicamente
17.
Gut Microbes ; 14(1): 2091371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35797141

RESUMEN

Lysophospholipids (LPLs) are crucial for regulating epithelial integrity and homeostasis in eukaryotes, however the effects of LPLs produced by bacteria on host cells is largely unknown. The membrane of the human bacterial pathogen Campylobacter jejuni is rich in LPLs. Although C. jejuni possesses several virulence factors, it lacks traditional virulence factors like type III secretion systems, present in most enteropathogens. Here, we provide evidence that membrane lipids lysophosphatidylethanolamines (lysoPEs) of C. jejuni are able to lyse erythrocytes and are toxic for HeLa and Caco-2 cells. Lactate dehydrogenase (LDH) release assays and confocal microscopy revealed that lysoPE permeabilizes the cells. LysoPE toxicity was partially rescued by oxidative stress inhibitors, indicating that intracellular reactive oxygen species may contribute to the cell damage. Our results show that especially the short-chain lysoPEs (C:14) which is abundantly present in the C. jejuni membrane may be considered as a novel virulence factor.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Microbioma Gastrointestinal , Células CACO-2 , Infecciones por Campylobacter/microbiología , Membrana Celular/metabolismo , Humanos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Factores de Virulencia/metabolismo
18.
Biol Reprod ; 85(1): 128-36, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21415139

RESUMEN

We report on the presence and formation of cholesterol oxidation products (oxysterols) in bovine sperm. Although cholesterol is the most abundant molecule in the membrane of mammalian cells and is easily oxidized, this is the first report on cholesterol oxidation in sperm membranes as investigated by state-of-the-art liquid chromatographic and mass spectrometric methods. First, oxysterols are already present in fresh semen samples, showing that lipid peroxidation is part of normal sperm physiology. After chromatographic separation (by high-performance liquid chromatography), the detected oxysterol species were identified with atmospheric pressure chemical ionization mass spectrometry in multiple-reaction-monitoring mode that enabled detection in a broad and linear concentration range (0.05-100 pmol for each oxysterol species detected). Second, exposure of living sperm cells to oxidative stress does not result in the same level and composition of oxysterol species compared with oxidative stress imposed on reconstituted vesicles from protein-free sperm lipid extracts. This suggests that living sperm cells protect themselves against elevated oxysterol formation. Third, sperm capacitation induces the formation of oxysterols, and these formed oxysterols are almost completely depleted from the sperm surface by albumin. Fourth, and most importantly, capacitation after freezing/thawing of sperm fails to induce both the formation of oxysterols and the subsequent albumin-dependent depletion of oxysterols from the sperm surface. The possible physiological relevance of capacitation-dependent oxysterol formation and depletion at the sperm surface as well as the omission of this after freezing/thawing semen is discussed.


Asunto(s)
Colesterol/química , Espermatozoides/química , Animales , Bovinos , Masculino , Espectrometría de Masas , Oxidación-Reducción
19.
Am J Pathol ; 176(6): 3073-84, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20431029

RESUMEN

Lysophosphatidic acid (LPA) accumulates in the central atheroma of human atherosclerotic plaques and is the primary platelet-activating lipid constituent of plaques. Here, we investigated the enzymatic regulation of LPA homeostasis in atherosclerotic lesions at various stages of disease progression. Atherosclerotic lesions were induced in carotid arteries of low-density lipoprotein receptor-deficient mice by semiconstrictive collar placement. At 2-week intervals after collar placement, lipids and RNA were extracted from the vessel segments carrying the plaque. Enzymatic-and liquid chromatography-mass spectrometry-based lipid profiling revealed progressive accumulation of LPA species in atherosclerotic tissue preceded by an increase in lysophosphatidylcholine, a precursor in LPA synthesis. Plaque expression of LPA-generating enzymes cytoplasmic phospholipase A(2)IVA (cPLA(2)IVA) and calcium-independent PLA(2)VIA (iPLA(2)VIA) was gradually increased, whereas that of the LPA-hydrolyzing enzyme LPA acyltransferase alpha was quenched. Increased expression of cPLA(2)IVA and iPLA(2)VIA in advanced lesions was confirmed by immunohistochemistry. Moreover, LPA receptors 1 and 2 were 50% decreased and sevenfold upregulated, respectively. Therefore, key proteins in LPA homeostasis are increasingly dysregulated in the plaque during atherogenesis, favoring intracellular LPA production. This might at least partly explain the observed progressive accumulation of this thrombogenic proinflammatory lipid in human and mouse plaques. Thus, intervention in the enzymatic LPA production may be an attractive measure to lower intraplaque LPA content, thereby reducing plaque progression and thrombogenicity.


Asunto(s)
Aterosclerosis/patología , Homeostasis , Lisofosfolípidos/metabolismo , Aciltransferasas/metabolismo , Animales , Aterosclerosis/metabolismo , Arterias Carótidas/patología , Dieta , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Fosfolipasas A2 Grupo VI/metabolismo , Humanos , Lisofosfolípidos/química , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Receptores de LDL/genética , Receptores de LDL/metabolismo
20.
Curr Res Microb Sci ; 2: 100010, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34841304

RESUMEN

Host defense peptides (HDPs), such as cathelicidins, are small, cationic, amphipathic peptides and represent an important part of the innate immune system. Most cathelicidins, including the porcine PMAP-36, are membrane active and disrupt the bacterial membrane. For example, a chicken cathelicidin, CATH-2, has been previously shown to disrupt both Escherichia coli membranes and to release, at sub-lethal concentrations, outer membrane vesicles (OMVs). Since OMVs are considered promising vaccine candidates, we sought to investigate the effect of sub-bactericidal concentrations of PMAP-36 on both OMV release by a porcine strain of Bordetella bronchiseptica and on the modulation of immune responses to OMVs. PMAP-36 treatment of bacteria resulted in a slight increase in OMV release. The characteristics of PMAP-36-induced OMVs were compared with those of spontaneously released OMVs and OMVs induced by heat treatment. The stability of both PMAP-36- and heat-induced OMVs was decreased compared to spontaneous OMVs, as shown by dynamic light scattering. Furthermore, treatment of bacteria with PMAP-36 or heat resulted in an increase in negatively charged phospholipids in the resulting OMVs. A large increase in lysophospholipid content was observed in heat-induced OMVs, which was at least partially due to the activity of the outer-membrane phospholipase A (OMPLA). Although PMAP-36 was detected in OMVs isolated from PMAP-36-treated bacteria, the immune response of porcine bone-marrow-derived macrophages to these OMVs was similar as those against spontaneous or heat-induced OMVs. Therefore, the effect of PMAP-36 addition after OMV isolation was investigated. This did decrease cytokine expression of OMV-stimulated macrophages. These results indicate that PMAP-36 is a promising molecule to attenuate undesirable immune responses, for instance in vaccines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA