Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Genet Metab ; 139(4): 107631, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37453187

RESUMEN

Acid sphingomyelinase deficiency (ASMD) is a rare LSD characterized by lysosomal accumulation of sphingomyelin, primarily in macrophages. With the recent availability of enzyme replacement therapy, the need for biomarkers to assess severity of disease has increased. Glycoprotein non-metastatic protein B (GPNMB) plasma levels were demonstrated to be elevated in Gaucher disease. Given the similarities between Gaucher disease and ASMD, the hypothesis was that GPNMB might be a potential biochemical marker for ASMD as well. Plasma samples of ASMD patients were analyzed and GPNMB plasma levels were compared to those of healthy volunteers. Visceral disease severity was classified as severe when splenic, hepatic and pulmonary manifestations were all present and as mild to moderate if this was not the case. Median GPNMB levels in 67 samples of 19 ASMD patients were 185 ng/ml (range 70-811 ng/ml) and were increased compared to 10 healthy controls (median 36 ng/ml, range 9-175 ng/ml, p < 0.001). Median plasma GPNMB levels of ASMD patients with mild to moderate visceral disease compared to patients with severe visceral disease differed significantly and did not overlap (respectively 109 ng/ml, range 70-304 ng/ml and 325 ng/ml, range 165-811 ng/ml, p < 0.001). Correlations with other biochemical markers of ASMD (i.e. chitotriosidase activity, CCL18 and lysosphingomyelin, respectively R = 0.28, p = 0.270; R = 0.34, p = 0.180; R = 0.39, p = 0.100) and clinical parameters (i.e. spleen volume, liver volume, diffusion capacity and forced vital capacity, respectively R = 0.59, p = 0.061, R = 0.5, p = 0.100, R = 0.065, p = 0.810, R = -0.38, p = 0.160) could not be established within this study. The results of this study suggest that GPNMB might be suitable as a biomarker of visceral disease severity in ASMD. Correlations between GPNMB and biochemical or clinical markers of ASMD and response to therapy have to be studied in a larger cohort.


Asunto(s)
Glicoproteínas de Membrana , Enfermedad de Niemann-Pick Tipo B , Humanos , Masculino , Femenino , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Glicoproteínas de Membrana/sangre , Enfermedad de Niemann-Pick Tipo B/sangre , Enfermedad de Niemann-Pick Tipo B/diagnóstico , Biomarcadores/sangre , Enfermedad de Niemann-Pick Tipo A/sangre , Enfermedad de Niemann-Pick Tipo A/diagnóstico , Gravedad del Paciente , Enfermedad de Gaucher/sangre , Enfermedad de Gaucher/diagnóstico , Estudios de Casos y Controles
2.
J Cell Biochem ; 123(5): 893-905, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35312102

RESUMEN

Glucocerebrosidase (GCase), encoded by the GBA gene, degrades the ubiquitous glycosphingolipid glucosylceramide. Inherited GCase deficiency causes Gaucher disease (GD). In addition, carriers of an abnormal GBA allele are at increased risk for Parkinson's disease. GCase undergoes extensive modification of its four N-glycans en route to and inside the lysosome that is reflected in changes in molecular weight as detected with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fluorescent activity-based probes (ABPs) that covalently label GCase in reaction-based manner in vivo and in vitro allow sensitive visualization of GCase molecules. Using these ABPs, we studied the life cycle of GCase in cultured fibroblasts and macrophage-like RAW264.7 cells. Specific attention was paid to the impact of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) supplementation to bicarbonate-buffered medium. Here, we report how HEPES-buffered medium markedly influences processing of GCase, its lysosomal degradation, and the total cellular enzyme level. HEPES-containing medium was also found to reduce maturation of other lysosomal enzymes (α-glucosidase and ß-glucuronidase) in cells. The presence of HEPES in bicarbonate containing medium increases GCase activity in GD-patient derived fibroblasts, illustrating how the supplementation of HEPES complicates the use of cultured cells for diagnosing GD.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Bicarbonatos/metabolismo , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , HEPES/metabolismo , Humanos , Lisosomas/metabolismo
3.
Traffic ; 20(5): 346-356, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30895685

RESUMEN

ß-Glucocerebrosidase (GBA) is the enzyme that degrades glucosylceramide in lysosomes. Defects in GBA that result in overall loss of enzymatic activity give rise to the lysosomal storage disorder Gaucher disease, which is characterized by the accumulation of glucosylceramide in tissue macrophages. Gaucher disease is currently treated by infusion of mannose receptor-targeted recombinant GBA. The recombinant GBA is thought to reach the lysosomes of macrophages, based on the impressive clinical response that is observed in Gaucher patients (type 1) receiving this enzyme replacement therapy. In this study, we used cyclophellitol-derived activity-based probes (ABPs) with a fluorescent reporter that irreversibly bind to the catalytic pocket of GBA, to visualize the active enzymes in a correlative microscopy approach. The uptake of pre-labeled recombinant enzyme was monitored by fluorescence and electron microscopy in human fibroblasts that stably expressed the mannose receptor. The endogenous active enzyme was simultaneously visualized by in situ labeling with the ABP containing an orthogonal fluorophore. This method revealed the efficient delivery of recombinant GBA to lysosomal target compartments that contained endogenous active enzyme.


Asunto(s)
Fibroblastos/metabolismo , Glucosilceramidasa/metabolismo , Células Cultivadas , Fibroblastos/ultraestructura , Glucosilceramidasa/genética , Células HEK293 , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Receptor de Manosa , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Transporte de Proteínas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Depuradores/genética , Receptores Depuradores/metabolismo
4.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802460

RESUMEN

The lysosomal storage disease Niemann-Pick type C (NPC) is caused by impaired cholesterol efflux from lysosomes, which is accompanied by secondary lysosomal accumulation of sphingomyelin and glucosylceramide (GlcCer). Similar to Gaucher disease (GD), patients deficient in glucocerebrosidase (GCase) degrading GlcCer, NPC patients show an elevated glucosylsphingosine and glucosylated cholesterol. In livers of mice lacking the lysosomal cholesterol efflux transporter NPC1, we investigated the expression of established biomarkers of lipid-laden macrophages of GD patients, their GCase status, and content on the cytosol facing glucosylceramidase GBA2 and lysosomal integral membrane protein type B (LIMP2), a transporter of newly formed GCase to lysosomes. Livers of 80-week-old Npc1-/- mice showed a partially reduced GCase protein and enzymatic activity. In contrast, GBA2 levels tended to be reciprocally increased with the GCase deficiency. In Npc1-/- liver, increased expression of lysosomal enzymes (cathepsin D, acid ceramidase) was observed as well as increased markers of lipid-stressed macrophages (GPNMB and galectin-3). Immunohistochemistry showed that the latter markers are expressed by lipid laden Kupffer cells. Earlier reported increase of LIMP2 in Npc1-/- liver was confirmed. Unexpectedly, immunohistochemistry showed that LIMP2 is particularly overexpressed in the hepatocytes of the Npc1-/- liver. LIMP2 in these hepatocytes seems not to only localize to (endo)lysosomes. The recent recognition that LIMP2 harbors a cholesterol channel prompts the speculation that LIMP2 in Npc1-/- hepatocytes might mediate export of cholesterol into the bile and thus protects the hepatocytes.


Asunto(s)
Glucosilceramidasa/metabolismo , Hígado/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Receptores Depuradores/metabolismo , Animales , Transporte Biológico/fisiología , Catepsina D/metabolismo , Línea Celular , Línea Celular Tumoral , Enfermedad de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Lisosomas/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Esfingomielinas/metabolismo
5.
Int J Mol Sci ; 20(1)2018 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30586924

RESUMEN

Several diseases are caused by inherited defects in lysosomes, the so-called lysosomal storage disorders (LSDs). In some of these LSDs, tissue macrophages transform into prominent storage cells, as is the case in Gaucher disease. Here, macrophages become the characteristic Gaucher cells filled with lysosomes laden with glucosylceramide, because of their impaired enzymatic degradation. Biomarkers of Gaucher cells were actively searched, particularly after the development of costly therapies based on enzyme supplementation and substrate reduction. Proteins selectively expressed by storage macrophages and secreted into the circulation were identified, among which glycoprotein non-metastatic protein B (GPNMB). This review focusses on the emerging potential of GPNMB as a biomarker of stressed macrophages in LSDs as well as in acquired pathologies accompanied by an excessive lysosomal substrate load in macrophages.


Asunto(s)
Biomarcadores/metabolismo , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Espumosas/metabolismo , Humanos , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/metabolismo , Glicoproteínas de Membrana/química , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Células Mieloides/metabolismo , Fagocitosis
6.
JIMD Rep ; 62(1): 15-21, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765393

RESUMEN

Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disease (LSD) in which sphingomyelin accumulates due to deficient acid sphingomyelinase. In the chronic visceral subtype, organ manifestations are generally limited to the spleen, liver, and lungs. We report a male patient with the chronic visceral subtype who developed proteinuria and renal insufficiency at the age of 49. In renal tissue, foam cells were observed in the glomeruli as well as sphingomyelin accumulation within podocytes, mesangial cells, endothelial cells, and tubular epithelial cells. Although macrophages are the primary storage cells in both ASMD and Gaucher disease, comparison to the histopathological findings in Gaucher and Fabry disease revealed a diffuse storage pattern in multiple renal cell types, closer resembling the pattern found in Fabry disease.

7.
ACS Cent Sci ; 6(11): 1997-2007, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33274277

RESUMEN

Bioorthogonal correlative light-electron microscopy (B-CLEM) can give a detailed overview of multicomponent biological systems. It can provide information on the ultrastructural context of bioorthogonal handles and other fluorescent signals, as well as information about subcellular organization. We have here applied B-CLEM to the study of the intracellular pathogen Mycobacterium tuberculosis (Mtb) by generating a triply labeled Mtb through combined metabolic labeling of the cell wall and the proteome of a DsRed-expressing Mtb strain. Study of this pathogen in a B-CLEM setting was used to provide information about the intracellular distribution of the pathogen, as well as its in situ response to various clinical antibiotics, supported by flow cytometric analysis of the bacteria, after recovery from the host cell (ex cellula). The RNA polymerase-targeting drug rifampicin displayed the most prominent effect on subcellular distribution, suggesting the most direct effect on pathogenicity and/or viability, while the cell wall synthesis-targeting drugs isoniazid and ethambutol effectively rescued bacterial division-induced loss of metabolic labels. The three drugs combined did not give a more pronounced effect but rather an intermediate response, whereas gentamicin displayed a surprisingly strong additive effect on subcellular distribution.

8.
Curr Opin Chem Biol ; 53: 204-215, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31783225

RESUMEN

Glycosphingolipids are important building blocks of the outer leaflet of the cell membrane. They are continuously recycled, involving fragmentation inside lysosomes by glycosidases. Inherited defects in degradation cause lysosomal glycosphingolipid storage disorders. The relatively common glycosphingolipidosis Gaucher disease is highlighted here to discuss new insights in the molecular basis and pathophysiology of glycosphingolipidoses reached by fundamental research increasingly using chemical biology tools. We discuss improvements in the detection of glycosphingolipid metabolites by mass spectrometry and review new developments in laboratory diagnosis and disease monitoring as well as therapeutic interventions.


Asunto(s)
Enfermedad de Gaucher/metabolismo , Glicoesfingolípidos/metabolismo , Animales , Biomarcadores/sangre , Enfermedad de Gaucher/diagnóstico , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/patología , Humanos
9.
Autophagy ; 14(3): 437-449, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29455584

RESUMEN

In recent years, the lysosome has emerged as a highly dynamic, transcriptionally regulated organelle that is integral to nutrient-sensing and metabolic rewiring. This is coordinated by a lysosome-to-nucleus signaling nexus in which MTORC1 controls the subcellular distribution of the microphthalmia-transcription factor E (MiT/TFE) family of "master lysosomal regulators". Yet, despite the importance of the lysosome in cellular metabolism, the impact of traditional in vitro culture media on lysosomal dynamics and/or MiT/TFE localization has not been fully appreciated. Here, we identify HEPES, a chemical buffering agent that is broadly applied in cell culture, as a potent inducer of lysosome biogenesis. Supplementation of HEPES to cell growth media is sufficient to decouple the MiT/TFE family members-TFEB, TFE3 and MITF-from regulatory mechanisms that control their cytosolic retention. Increased MiT/TFE nuclear import in turn drives the expression of a global network of lysosomal-autophagic and innate host-immune response genes, altering lysosomal dynamics, proteolytic capacity, autophagic flux, and inflammatory signaling. In addition, siRNA-mediated MiT/TFE knockdown effectively blunted HEPES-induced lysosome biogenesis and gene expression profiles. Mechanistically, we show that MiT/TFE activation in response to HEPES requires its macropinocytic ingestion and aberrant lysosomal storage/pH, but is independent of MTORC1 signaling. Altogether, our data underscore the cautionary use of chemical buffering agents in cell culture media due to their potentially confounding effects on experimental results.


Asunto(s)
Autofagia/fisiología , Redes Reguladoras de Genes/genética , HEPES/metabolismo , Lisosomas/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular , Humanos , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA