Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 117(13): 136401, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27715109

RESUMEN

We report on optical reflectivity experiments performed on Cd_{3}As_{2} over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorption in the quantum limit implies that we are probing massless Kane electrons rather than symmetry-protected 3D Dirac particles. The latter may appear at a smaller energy scale and are not directly observed in our infrared experiments.

2.
Phys Rev Lett ; 113(8): 087404, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25192127

RESUMEN

We report optical measurements demonstrating that the low-energy relaxation rate (1/τ) of the conduction electrons in Sr(2)RuO(4) obeys scaling relations for its frequency (ω) and temperature (T) dependence in accordance with Fermi-liquid theory. In the thermal relaxation regime, 1/τ ∝ (hω)(2)+(pπk(B)T)(2) with p = 2, and ω/T scaling applies. Many-body electronic structure calculations using dynamical mean-field theory confirm the low-energy Fermi-liquid scaling and provide quantitative understanding of the deviations from Fermi-liquid behavior at higher energy and temperature. The excess optical spectral weight in this regime provides evidence for strongly dispersing "resilient" quasiparticle excitations above the Fermi energy.

3.
Phys Rev Lett ; 112(4): 047402, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24580490

RESUMEN

BiTeI is a giant Rashba spin splitting system, in which a noncentrosymmetric topological phase has recently been suggested to appear under high pressure. We investigated the optical properties of this compound, reflectivity and transmission, under pressures up to 15 GPa. The gap feature in the optical conductivity vanishes above p∼9 GPa and does not reappear up to at least 15 GPa. The plasma edge, associated with intrinsically doped charge carriers, is smeared out through a phase transition at 9 GPa. Using high-pressure Raman spectroscopy, we follow the vibrational modes of BiTeI, providing additional clear evidence that the transition at 9 GPa involves a change of crystal structure. This change of crystal structure possibly inhibits the high-pressure topological phase from occurring.

4.
Phys Rev Lett ; 109(26): 266406, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23368593

RESUMEN

We study Na2IrO3 by angle-resolved photoemission spectroscopy, optics, and band structure calculations in the local-density approximation (LDA). The weak dispersion of the Ir 5d-t(2g) manifold highlights the importance of structural distortions and spin-orbit (SO) coupling in driving the system closer to a Mott transition. We detect an insulating gap Δ(gap)≃340 meV which, at variance with a Slater-type description, is already open at 300 K and does not show significant temperature dependence even across T(N)≃15 K. An LDA analysis with the inclusion of SO and Coulomb repulsion U reveals that, while the prodromes of an underlying insulating state are already found in LDA+SO, the correct gap magnitude can only be reproduced by LDA+SO+U, with U=3 eV. This establishes Na2IrO3 as a novel type of Mott-like correlated insulator in which Coulomb and relativistic effects have to be treated on an equal footing.

5.
Phys Rev Lett ; 106(21): 217601, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21699342

RESUMEN

We show an example of a purely magnetic spin resonance in EuTiO(3) and the resulting new record high Faraday rotation of 590°/mm at 1.6 T for 1 cm wavelengths probed by a novel technique of magneto-optical gigahertz time-domain ellipsometry. From our transmission measurements of linear polarized light, we map out the complex index of refraction n=√ϵµ in the gigahertz to terahertz range. We observe a strong resonant absorption by magnetic dipole transitions involving the Zeeman split S=7/2 magnetic energy levels of the Eu(2+) ions, which causes a very large dichroism for circular polarized radiation.

6.
Sci Rep ; 11(1): 7105, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782440

RESUMEN

A highlight of Fermi-liquid phenomenology, as explored in neutral [Formula: see text]He, is the observation that in the collisionless regime shear stress propagates as if one is dealing with the transverse phonon of a solid. The existence of this "transverse zero sound" requires that the quasiparticle mass enhancement exceeds a critical value. Could such a propagating shear stress also exist in strongly correlated electron systems? Despite some noticeable differences with the neutral case in the Galilean continuum, we arrive at the verdict that transverse zero sound should be generic for mass enhancement higher than 3. We present an experimental setup that should be exquisitely sensitive in this regard: the transmission of terahertz radiation through a thin slab of heavy-fermion material will be strongly enhanced at low temperature and accompanied by giant oscillations, which reflect the interference between light itself and the "material photon" being the actual manifestation of transverse zero sound in the charged Fermi liquid.

7.
Phys Rev Lett ; 104(23): 237401, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20867270

RESUMEN

The application of pressure to elemental bismuth reduces its conduction-valence band overlap, and results in a semimetal-semiconductor (SMSC) transition around 25 kbar. This transition is nominally of the topological "Lifshitz" Fermi surface variety, but there are open questions about the role of interactions at low charge densities. Using a novel pressure cell with optical access, we have performed an extensive study of bismuth's infrared conductivity under pressure. In contrast to the expected pure band behavior we find signatures of enhanced interaction effects, including strongly coupled charge-plasmon (plasmaron) features and a plasma frequency that remains finite up to the transition. These effect are inconsistent with a pure Lifshitz bandlike transition. We postulate that interactions play a central role in driving the transition.

8.
Phys Rev Lett ; 105(15): 157006, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-21230933

RESUMEN

We measured the momentum dependence of magnetic excitations in the model spin-1/2 2D antiferromagnetic insulator Sr2CuO2Cl2 (SCOC). We identify a single-spin-wave feature and a multimagnon continuum, with different polarization dependences. The spin waves display a large (70 meV) dispersion between the zone-boundary points (π, 0) and (π/2, π/2). Employing an extended t-t'-t''-U one-band Hubbard model, we find significant electronic hopping beyond nearest-neighbor Cu ions, indicative of extended magnetic interactions. The spectral line shape at (π, 0) indicates sizable quantum effects in SCOC and probably more generally in the cuprates.

9.
Nature ; 425(6955): 271-4, 2003 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-13679910

RESUMEN

Quantum criticality is associated with a system composed of a nearly infinite number of interacting quantum degrees of freedom at zero temperature, and it implies that the system looks on average the same regardless of the time- and length scale on which it is observed. Electrons on the atomic scale do not exhibit such symmetry, which can only be generated as a collective phenomenon through the interactions between a large number of electrons. In materials with strong electron correlations a quantum phase transition at zero temperature can occur, and a quantum critical state has been predicted, which manifests itself through universal power-law behaviours of the response functions. Candidates have been found both in heavy-fermion systems and in the high-transition temperature (high-T(c)) copper oxide superconductors, but the reality and the physical nature of such a phase transition are still debated. Here we report a universal behaviour that is characteristic of the quantum critical region. We demonstrate that the experimentally measured phase angle agrees precisely with the exponent of the optical conductivity. This points towards a quantum phase transition of an unconventional kind in the high-T(c) superconductors.

10.
J Phys Condens Matter ; 19(18): 186219, 2007 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-21691000

RESUMEN

The electronic structure of the magnetic refrigerant Gd(5)Ge(2)Si(2) has been experimentally investigated by photoemission and x-ray absorption spectroscopy. The resonant photoemission and x-ray absorption measurements performed across the Gd N(4,5) and Gd M(4,5) edges identify the position of Gd 4f multiplet lines, and assess the 4f occupancy (4f(7)) and the character of the states close to the Fermi edge. The presence of Gd 5d states in the valence band suggests that an indirect 5d exchange mechanism underlies the magnetic interactions between Gd 4f moments in Gd(5)Ge(2)Si(2). From 175 to 300 K the first 4 eV of the valence band and the Gd partial density of states do not display clear variations. A significant change is instead detected in the photoemission spectra at higher binding energy, around 5.5 eV, likely associated to the variation of the bonding and antibonding Ge(Si) s bands across the phase transition.

11.
Sci Rep ; 6: 37582, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27892485

RESUMEN

We report the influence on the superconducting critical temperature Tc in doped SrTiO3 of the substitution of the natural 16O atoms by the heavier isotope 18O. We observe that for a wide range of doping this substitution causes a strong (~50%) enhancement of Tc. Also the magnetic critical field Hc2 is increased by a factor ~2. Such a strong impact on Tc and Hc2, with a sign opposite to conventional superconductors, is unprecedented. The observed effect could be the consequence of strong coupling of the doped electrons to lattice vibrations (phonons), a notion which finds support in numerous optical and photo-emission studies. The unusually large size of the observed isotope effect supports a recent model for superconductivity in these materials based on strong coupling to the ferroelectric soft modes of SrTiO3.

12.
Phys Rev Lett ; 84(7): 1575-8, 2000 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-11017571

RESUMEN

The temperature dependence of the c-axis optical conductivity sigma(omega) of optimally and overdoped YBa2Cu3Ox ( x = 6.93 and 7) is reported in the far- (FIR) and midinfrared (MIR) range. Below T(c) we observe a transfer of spectral weight from the FIR not only to the condensate at omega = 0, but also to a new peak in the MIR. This peak is naturally explained as a transverse out-of-phase bilayer plasmon by a model for sigma(omega) which takes the layered crystal structure into account. With decreasing doping the plasmon shifts to lower frequencies and can be identified with the surprising and so far not understood FIR feature reported in underdoped bilayer cuprates.

13.
Nat Commun ; 5: 4353, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-25014895

RESUMEN

A major challenge in understanding the cuprate superconductors is to clarify the nature of the fundamental electronic correlations that lead to the pseudogap phenomenon. Here we use ultrashort light pulses to prepare a non-thermal distribution of excitations and capture novel properties that are hidden at equilibrium. Using a broadband (0.5-2 eV) probe, we are able to track the dynamics of the dielectric function and unveil an anomalous decrease in the scattering rate of the charge carriers in a pseudogap-like region of the temperature (T) and hole-doping (p) phase diagram. In this region, delimited by a well-defined T*neq(p) line, the photoexcitation process triggers the evolution of antinodal excitations from gapped (localized) to delocalized quasiparticles characterized by a longer lifetime. The novel concept of photo-enhanced antinodal conductivity is naturally explained within the single-band Hubbard model, in which the short-range Coulomb repulsion leads to a k-space differentiation between nodal quasiparticles and antinodal excitations.

14.
Science ; 335(6076): 1600-3, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22461606

RESUMEN

Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamental step toward this goal would be to identify the relative weight of the electronic and phononic contributions to the overall frequency (Ω)-dependent bosonic function, Π(Ω). We performed optical spectroscopy on Bi(2)Sr(2)Ca(0.92)Y(0.08)Cu(2)O(8+δ) crystals with simultaneous time and frequency resolution; this technique allowed us to disentangle the electronic and phononic contributions by their different temporal evolution. The spectral distribution of the electronic excitations and the strength of their interaction with fermionic quasiparticles fully account for the high critical temperature of the superconducting phase transition.

15.
Phys Rev Lett ; 69(17): 2575-2577, 1992 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-10046529
16.
Phys Rev Lett ; 69(17): 2578-2581, 1992 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-10046530
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA