RESUMEN
Transformed epithelial cells can activate programs of epithelial plasticity and switch from a sessile, epithelial phenotype to a motile, mesenchymal phenotype. This process is linked to the acquisition of an invasive phenotype and the formation of distant metastases. The development of compounds that block the acquisition of an invasive phenotype or revert the invasive mesenchymal phenotype into a more differentiated epithelial phenotype represent a promising anticancer strategy. In a high-throughput assay based on E-cadherin (re)induction and the inhibition of tumor cell invasion, 44,475 low molecular weight (LMW) compounds were screened. The screening resulted in the identification of candidate compounds from the PROAM02 class. Selected LMW compounds activated E-cadherin promoter activity and inhibited cancer cell invasion in multiple metastatic human cancer cell lines. The intraperitoneal administration of selected LMW compounds reduced the tumor burden in human prostate and breast cancer in vivo mouse models. Moreover, selected LMW compounds decreased the intra-bone growth of xenografted human prostate cancer cells. This study describes the identification of the PROAM02 class of small molecules that can be exploited to reduce cancer cell invasion and metastases. Further clinical evaluation of selected candidate inhibitors is warranted to address their safety, bioavailability and antitumor efficacy in the management of patients with aggressive cancers.
Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Próstata/patología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Oncolytic viruses, including the oncolytic rhabdovirus VSV-GP tested here, selectively infect and kill cancer cells and are a promising new therapeutic modality. Our aim was to study the efficacy of VSV-GP, a vesicular stomatitis virus carrying the glycoprotein of lymphocytic choriomeningitis virus, against prostate cancer, for which current treatment options still fail to cure metastatic disease. VSV-GP was found to infect 6 of 7 prostate cancer cell lines with great efficacy. However, susceptibility was reduced in one cell line with low virus receptor expression and in 3 cell lines after interferon alpha treatment. Four cell lines had developed resistance to interferon type I at different levels of the interferon signaling pathway, resulting in a deficient antiviral response. In prostate cancer mouse models, long-term remission was achieved upon intratumoral and, remarkably, also upon intravenous treatment of subcutaneous tumors and bone metastases. These promising efficacy data demonstrate that treatment of prostate cancer with VSV-GP is feasible and safe in preclinical models and encourage further preclinical and clinical development of VSV-GP for systemic treatment of metastatic prostate cancer.
Asunto(s)
Efecto Citopatogénico Viral , Modelos Animales de Enfermedad , Viroterapia Oncolítica , Neoplasias de la Próstata/terapia , Virus de la Estomatitis Vesicular Indiana/fisiología , Animales , Apoptosis , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Próstata/patología , Transducción de Señal , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: While it has been challenging to establish prostate cancer patient-derived xenografts (PDXs), with a take rate of 10-40% and long latency time, multiple groups throughout the world have developed methods for the successful establishment of serially transplantable human prostate cancer PDXs using a variety of immune deficient mice. In 2014, the Movember Foundation launched a Global Action Plan 1 (GAP1) project to support an international collaborative prostate cancer PDX program involving eleven groups. Between these Movember consortium members, a total of 98 authenticated human prostate cancer PDXs were available for characterization. Eighty three of these were derived directly from patient material, and 15 were derived as variants of patient-derived material via serial passage in androgen deprived hosts. A major goal of the Movember GAP1 PDX project was to provide the prostate cancer research community with a summary of both the basic characteristics of the 98 available authenticated serially transplantable human prostate cancer PDX models and the appropriate contact information for collaborations. Herein, we report a summary of these PDX models. METHODS: PDX models were established in immunocompromised mice via subcutaneous or subrenal-capsule implantation. Dual-label species (ie, human vs mouse) specific centromere and telomere Fluorescence In Situ Hybridization (FISH) and immuno-histochemical (IHC) staining of tissue microarrays (TMAs) containing replicates of the PDX models were used for characterization of expression of a number of phenotypic markers important for prostate cancer including AR (assessed by IHC and FISH), Ki67, vimentin, RB1, P-Akt, chromogranin A (CgA), p53, ERG, PTEN, PSMA, and epithelial cytokeratins. RESULTS: Within this series of PDX models, the full spectrum of clinical disease stages is represented, including androgen-sensitive and castration-resistant primary and metastatic prostate adenocarcinomas as well as prostate carcinomas with neuroendocrine differentiation. The annotated clinical characteristics of these PDXs were correlated with their marker expression profile. CONCLUSION: Our results demonstrate the clinical relevance of this series of PDXs as a platform for both basic science studies and therapeutic discovery/drug development. The present report provides the prostate cancer community with a summary of the basic characteristics and a contact information for collaborations using these models.
Asunto(s)
Xenoinjertos , Trasplante de Neoplasias/métodos , Neoplasias de la Próstata/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Biomarcadores de Tumor/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Neoplasias de la Próstata/metabolismoRESUMEN
Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the most frequently occurring histological subtypes of breast cancer, accounting for 80-90% and 10-15% of the total cases, respectively. At the time of diagnosis and surgical resection of the primary tumour, most patients do not have clinical signs of metastases, but bone micrometastases may already be present. Our aim was to develop a novel preclinical ILC model of spontaneous bone micrometastasis. We used murine invasive lobular breast carcinoma cells (KEP) that were generated by targeted deletion of E-cadherin and p53 in a conditional K14cre;Cdh1((F/F));Trp53((F/F)) mouse model of de novo mammary tumour formation. After surgical resection of the growing orthotopically implanted KEP cells, distant metastases were formed. In contrast to other orthotopic breast cancer models, KEP cells readily formed skeletal metastases with minimal lung involvement. Continuous treatment with SD-208 (60 mg/kg per day), an orally available TGFß receptor I kinase inhibitor, increased the tumour growth at the primary site and increased the number of distant metastases. Furthermore, when SD-208 treatment was started after surgical resection of the orthotopic tumour, increased bone colonisation was also observed (versus vehicle). Both our in vitro and in vivo data show that SD-208 treatment reduced TGFß signalling, inhibited apoptosis, and increased proliferation. In conclusion, we have demonstrated that orthotopic implantation of murine ILC cells represent a new breast cancer model of minimal residual disease in vivo, which comprises key steps of the metastatic cascade. The cancer cells are sensitive to the anti-tumour effects of TGFß. Our in vivo model is ideally suited for functional studies and evaluation of new pharmacological intervention strategies that may target one or more steps along the metastatic cascade of events.
Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Carcinoma Lobular/secundario , Neoplasias Mamarias Experimentales/patología , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pteridinas/toxicidad , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Neoplasias Óseas/enzimología , Neoplasias Óseas/genética , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Carcinoma Lobular/inducido químicamente , Carcinoma Lobular/enzimología , Carcinoma Lobular/genética , Proteínas Cdh1/deficiencia , Proteínas Cdh1/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/enzimología , Neoplasias Mamarias Experimentales/genética , Ratones Noqueados , Micrometástasis de Neoplasia , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Carga Tumoral/efectos de los fármacos , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Bone metastasis is a complex process that needs to be better understood in order to help clinicians prevent and treat it. Xenografts using patient-derived material (PDX) rather than cancer cell lines are a novel approach that guarantees more clinically realistic results. A primary culture of bone metastasis derived from a 67-year-old patient with breast cancer was cultured and then injected into zebrafish (ZF) embryos to study its metastatic potential. In vivo behavior and results of gene expression analyses of the primary culture were compared with those of cancer cell lines with different metastatic potential (MCF7 and MDA-MB-231). The MCF7 cell line, which has the same hormonal receptor status as the bone metastasis primary culture, did not survive in the in vivo model. Conversely, MDA-MB-231 disseminated and colonized different parts of the ZF, including caudal hematopoietic tissues (CHT), revealing a migratory phenotype. Primary culture cells disseminated and in later stages extravasated from the vessels, engrafting into ZF tissues and reaching the CHT. Primary cell behavior reflected the clinical course of the patient's medical history. Our results underline the potential for using PDX models in bone metastasis research and outline new methods for the clinical application of this in vivo model.
Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/complicaciones , Modelos Animales de Enfermedad , Animales , Femenino , Xenoinjertos , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto , Pez CebraRESUMEN
Micrometastasis is a barrier to the development of effective cancer therapies for prostate cancer metastasis to bone. The mechanisms remain incompletely characterised, primarily due to an inability to adequately monitor the initial metastatic events in vivo. This study aimed to establish a new model, allowing the tracking of prostate cancer cells homing to bone, and furthermore, to evaluate the response of this approach to therapeutic modulation, using the integrin antagonist GLPG0187. A single murine metatarsal was engrafted into a dorsal skinfold chamber implanted on a SCID mouse. Fluorescently-labeled human prostate (PC3-GFP) or oral (SCC4-GFP) cancer cells were administered via intracardiac (i.c) injection, with simultaneous daily GLPG0187 or vehicle-control treatment (i.p. 100 mg/kg/day) for the experimental duration. Metatarsal recordings were taken every 48 h for up to 4 weeks. Tissue was harvested and processed for microCT, multiphoton analysis, histology and immunohistochemistry. Cell viability, proliferation and migration in vitro were also quantified following treatment with GLPG0187. Metatarsals rapidly revascularised by inosculation with the host vasculature (day 5-7). PC3-GFP cells adhered to the microvascular endothelium and/or metatarsal matrix 3 days after administration, with adhesion maintained for the experimental duration. GLPG0187 treatment significantly (p < 0.05) reduced PC3 cell number within the metatarsal in vivo and reduced migration (p < 0.05) and proliferation (p < 0.05) but not cell viability in vitro. This new model allows evaluation of the early events of tumour-cell homing and localisation to the bone microenvironment, in addition to determining responses to therapeutic interventions.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias Óseas/secundario , Integrinas/antagonistas & inhibidores , Neoplasias de la Próstata/patología , Animales , Antineoplásicos/administración & dosificación , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: The inflammatory tumor microenvironment, and more specifically the tumor-associated macrophages, plays an essential role in the development and progression of prostate cancer towards metastatic bone disease. Tumors are often characterized by a leaky vasculature, which - combined with the prolonged circulation kinetics of liposomes - leads to efficient tumor localization of these drug carriers, via the so-called enhanced permeability and retention (EPR) -effect. In this study, we evaluated the utility of targeted, liposomal drug delivery of the glucocorticoid dexamethasone in a model of prostate cancer bone metastases. METHODS: Tumor-bearing Balb-c nu/nu mice were treated intravenously with 0.2-1.0-5.0 mg/kg/week free- and liposomal DEX for 3-4 weeks and tumor growth was monitored by bioluminescent imaging. RESULTS: Intravenously administered liposomes localize efficiently to bone metastases in vivo and treatment of established bone metastases with (liposomal) dexamethasone resulted in a significant inhibition of tumor growth up to 26 days after initiation of treatment. Furthermore, 1.0 mg/kg liposomal dexamethasone significantly outperformed 1.0 mg/kg free dexamethasone, and was found to be well-tolerated at clinically-relevant dosages that display potent anti-tumor efficacy. CONCLUSIONS: Liposomal delivery of the glucocorticoid dexamethasone inhibits the growth of malignant bone lesions. We believe that liposomal encapsulation of dexamethasone offers a promising new treatment option for advanced, metastatic prostate cancer which supports further clinical evaluation.
Asunto(s)
Antineoplásicos Hormonales/administración & dosificación , Neoplasias Óseas/prevención & control , Neoplasias Óseas/secundario , Dexametasona/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Neoplasias Óseas/patología , Línea Celular Tumoral , Humanos , Liposomas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Próstata/patología , Ratas , Ratas Sprague-DawleyRESUMEN
BACKGROUND: Tumor cell migration and metastasis require dynamic rearrangements of the actin cytoskeleton. Interestingly, the F-actin cross-linking and stabilizing protein L-plastin, originally described as a leukocyte specific protein, is aberrantly expressed in several non-hematopoietic malignant tumors. Therefore, it has been discussed as a tumor marker. However, systematic in vivo analyses of the functional relevance of L-plastin for tumor cell metastasis were so far lacking. METHODS: We investigated the relevance of L-plastin expression and phosphorylation by ectopical expression of L-plastin in human melanoma cells (MV3) and knock-down of endogenous L-plastin in prostate cancer (PC3M). The growth and metastatic potential of tumor cells expressing no L-plastin, phosphorylatable or non-phosphorylatable L-plastin was analyzed in a preclinical mouse model after subcutaneous and intracardial injection of the tumor cells. RESULTS: Knock-down of endogenous L-plastin in human prostate carcinoma cells led to reduced tumor cell growth and metastasis. Vice versa, and in line with these findings, ectopic expression of L-plastin in L-plastin negative melanoma cells significantly increased the number of metastases. Strikingly, the metastasis promoting effect of L-plastin was not observed if a non-phosphorylatable L-plastin mutant was expressed. CONCLUSIONS: Our data provide the first in vivo evidence that expression of L-plastin promotes tumor metastasis and, importantly, that this effect depends on an additionally required phosphorylation of L-plastin. In conclusion, these findings imply that for determining the importance of tumor-associated proteins like L-plastin a characterization of posttranslational modifications is indispensable.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Melanoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Masculino , Melanoma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Fosforilación , Neoplasias de la Próstata/patología , Transfección , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The clinical efficacy of anti-angiogenic monotherapies in metastatic breast cancer is less than originally anticipated, and it is not clear what the response of bone metastasis to anti-angiogenic therapies is. Here, we examined the impact of neutralizing tumor-derived vascular endothelial growth factor (VEGF) in animal models of subcutaneous tumor growth and bone metastasis formation. Silencing of VEGF expression (Sh-VEGF) in osteotropic human MDA-MB-231/B02 breast cancer cells led to a substantial growth inhibition of subcutaneous Sh-VEGF B02 tumor xenografts, as a result of reduced angiogenesis, when compared to that observed with animals bearing mock-transfected (Sc-VEGF) B02 tumors. However, there was scant evidence that either the silencing of tumor-derived VEGF or the use of a VEGF-neutralizing antibody (bevacizumab) affected B02 breast cancer bone metastasis progression in animals. We also examined the effect of vatalanib (a VEGF receptor tyrosine kinase inhibitor) in this mouse model of bone metastasis. However, vatalanib failed to inhibit bone metastasis caused by B02 breast cancer cells. In sharp contrast, vatalanib in combination with bevacizumab reduced not only bone destruction but also skeletal tumor growth in animals bearing breast cancer bone metastases, when compared with either agent alone. Thus, our study highlights the importance of targeting both the tumor compartment and the host tissue (i.e., skeleton) to efficiently block the development of bone metastasis. We believe this is a crucially important observation as the clinical benefit of anti-angiogenic monotherapies in metastatic breast cancer is relatively modest.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Óseas/secundario , Neoplasias Óseas/terapia , Neoplasias de la Mama/terapia , Inhibidores de la Angiogénesis/administración & dosificación , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Bevacizumab , Neoplasias Óseas/irrigación sanguínea , Neoplasias Óseas/genética , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Huésped Inmunocomprometido , Ratones , Ratones Endogámicos C3H , Osteólisis/tratamiento farmacológico , Osteólisis/patología , Ftalazinas/administración & dosificación , Embarazo , Piridinas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Transfección , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Castration is the standard therapy for advanced prostate cancer (PC). Although this treatment is initially effective, tumors invariably relapse as incurable, castration-resistant PC (CRPC). Adaptation of androgen-dependent PC cells to an androgen-depleted environment or selection of pre-existing, CRPC cells have been proposed as mechanisms of CRPC development. Stem cell (SC)-like PC cells have been implicated not only as tumor initiating/maintaining in PC but also as tumor-reinitiating cells in CRPC. Recently, castration-resistant cells expressing the NK3 homeobox 1 (Nkx3-1) (CARNs), the other luminal markers cytokeratin 18 (CK18) and androgen receptor (AR), and possessing SC properties, have been found in castrated mouse prostate and proposed as the cell-of-origin of CRPC. However, the human counterpart of CARNs has not been identified yet. Here, we demonstrate that in the human PC xenograft BM18, pre-existing SC-like and neuroendocrine (NE) PC cells are selected by castration and survive as totally quiescent. SC-like BM18 cells, displaying the SC markers aldehyde dehydrogenase 1A1 or NANOG, coexpress the luminal markers NKX3-1, CK18, and a low level of AR (AR(low)) but not basal or NE markers. These CR luminal SC-like cells, but not NE cells, reinitiate BM18 tumor growth after androgen replacement. The AR(low) seems to mediate directly both castration survival and tumor reinitiation. This study identifies for the first time in human PC SC-/CARN-like cells that may represent the cell-of-origin of tumor reinitiation as CRPC. This finding will be fundamental for refining the hierarchy among human PC cancer cells and may have important clinical implications.
Asunto(s)
Andrógenos/genética , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Animales , Castración , Línea Celular Tumoral , Supervivencia Celular/fisiología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones SCID , Neoplasias de la Próstata/genética , Análisis de Supervivencia , Trasplante HeterólogoRESUMEN
BACKGROUND: A number of putative stem cell markers have been associated with aggressiveness of prostate cancer, including alpha 2 and alpha 6 integrin and c-met. The study aimed to test the hypothesis that the development of bone metastasis correlates with the proportion of prostate cancer stem cell-like cells present in the primary tumor. METHODS: Prostate tissue samples were obtained from patients with high-risk prostatic adenocarcinoma. Prostate cancer tumor tissue samples underwent immunohistochemical staining for alpha 2 and alpha 6 integrin and c-met; positive and negative controls were included. Samples were scored as positive if >5% of cells within the sample stained positively. Survival and bone metastasis-free survival curves on the patient cohort were estimated by the actuarial method of Kaplan-Meier. RESULTS: A total of 62 patients were included in the study. Bone metastases progression rate was 46% at 105 months with a median time of 46 months (95% CI: 1-62.5 months); prostate cancer-specific survival was 33% at 122 months with a median survival time of 69.4 months (95% CI: 63.5-109.4 months). Survival curves show that c-met-, alpha 2, and alpha 6 integrin-positive tumors were positively associated with the occurrence of bone metastasis-free survival. There was a higher level of significance when at least c-met and either alpha 2 or alpha 6 integrin was positive. CONCLUSION: It can be concluded that percentage of stem cell-like prostate cancer cells has a prognostic impact especially on the risk of metastatic bone progression.
Asunto(s)
Adenocarcinoma/secundario , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/secundario , Células Madre Neoplásicas/metabolismo , Neoplasias de la Próstata/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/cirugía , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Neoplasias Óseas/metabolismo , Estudios de Cohortes , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Humanos , Integrina alfa2/análisis , Integrina alfa6/análisis , Masculino , Persona de Mediana Edad , Pronóstico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/cirugía , Proteínas Proto-Oncogénicas c-met/análisisRESUMEN
Integrins participate in multiple cellular processes, including cell adhesion, migration, proliferation, survival, and the activation of growth factor receptors. Recent studies have shown that expression of αv integrins is elevated in the prostate cancer stem/progenitor cell subpopulation compared with more differentiated, committed precursors. Here, we examine the functional role of αv integrin receptor expression in the acquisition of a metastatic stem/progenitor phenotype in human prostate cancer. Stable knockdown of αv integrins expression in PC-3M-Pro4 prostate cancer cells coincided with a significant decrease of prostate cancer stem/progenitor cell characteristics (α2 integrin, CD44, and ALDH(hi)) and decreased expression of invasion-associated genes Snail, Snail2, and Twist. Consistent with these observations, αv-knockdown strongly inhibited the clonogenic and migratory potentials of human prostate cancer cells in vitro and significantly decreased tumorigenicity and metastatic ability in preclinical models of orthotopic growth and bone metastasis. Our data indicate that integrin αv expression is functionally involved in the maintenance of a highly migratory, mesenchymal cellular phenotype as well as the acquisition of a stem/progenitor phenotype in human prostate cancer cells with metastasis-initiating capacity.
Asunto(s)
Integrina alfaV/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular , Transformación Celular Neoplásica/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Fenotipo , Ensayo de Tumor de Célula Madre , Regulación hacia ArribaRESUMEN
In this chapter currently available preclinical models of tumor progression and bone metastasis, including genetically engineered mice that develop primary and metastatic carcinomas and transplantable animal models, will be described. Understanding the multistep process of incurable bone metastasis is pivotal to the development of new therapeutic strategies. Novel technologies for imaging molecules or pathologic processes in cancers and their surrounding stroma have emerged rapidly and have greatly facilitated cancer research, in particular the cellular behavior of osteotropic tumors and their response to new and existing therapeutic agents. Optical imaging, in particular, has become an important tool in preclinical bone metastasis models, clinical trials and medical practice. Advances in experimental and clinical imaging will-in the long run-result in significant improvements in diagnosis, tumor localization, enhanced drug delivery and treatment.
Asunto(s)
Neoplasias Óseas/secundario , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Animales , Antineoplásicos/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Humanos , RatonesRESUMEN
Bone metastasis is a complex process that ultimately leads to devastating metastatic bone disease. It is therefore of key interest to unravel the mechanisms underlying the multistep process of skeletal metastasis and cancer-induced bone disease, and to develop better treatment and management of patients with this devastating disease. Fortunately, novel technologies are rapidly emerging that allow real-time imaging of molecules, pathogenic processes, drug delivery and drug response in preclinical in vivo models. The outcome of these experimental studies will facilitate clinical cancer research by improving the detection of cancer cell invasion, metastasis and therapy response.
Asunto(s)
Neoplasias Óseas/diagnóstico , Neoplasias Óseas/secundario , Diagnóstico por Imagen/métodos , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Imagen Molecular/métodos , Metástasis de la Neoplasia/diagnósticoRESUMEN
The use of human adenoviruses (hAds) as oncolytic agents has demonstrated considerable potential. However, their efficacy in clinical studies is generally moderate and often varies between patients. This may, in part, be attributable to variable pre-existing neutralizing immunity in patients, which can impact the antitumor efficacy and lead to response heterogeneity. Our aim was to isolate new Ads for the development of oncolytic vectors with low prevalence of neutralizing immunity in the human population. To this end, we isolated a collection of new nonhuman primate (nhp) Ads from stool samples of four great ape species held captive. We elected 12 isolates comprising the broadest genetic variability for further characterization. For three new nhpAds, all classified as the human adenovirus B (HAdV-B) species, no neutralizing activity could be detected when exposed to a preparation of immunoglobulins isolated from a pool of >1,000 donors as a surrogate of population immunity. In addition, the nhpAds of the HAdV-B species showed enhanced oncolytic potency compared to nhpAds of the HAdV-C species as well as to human adenovirus type 5 (HAdV-C5) in vitro when tested in a panel of 29 human cancer cell lines. Next-generation sequencing of the viral genomes revealed higher sequence similarity between hAds and nhpAds of HAdV-B compared to HAdV-C, which might underlie the differences in oncolytic ability. As a proof-of-concept, the Rb-binding domain of the E1A protein of the gorilla-derived HAdV-B nhpAd-lumc007 was deleted, thereby creating a new oncolytic derivative, which demonstrated increased oncolytic potential compared to HAdV-C5. Collectively, our data demonstrate that nhpAds of the HAdV-B species can serve as an alternative for the development of potent oncolytic Ad vectors with limited pre-existing neutralizing immunity in humans.
Asunto(s)
Adenovirus Humanos , Neoplasias , Adenoviridae/genética , Adenovirus Humanos/genética , Animales , Genoma Viral , Humanos , Neoplasias/genética , Neoplasias/terapia , Primates/genéticaRESUMEN
Treatment of castration-resistant prostate cancer remains a challenging clinical problem. Despite the promising effects of immunotherapy in other solid cancers, prostate cancer has remained largely unresponsive. Oncolytic viruses represent a promising therapeutic avenue, as oncolytic virus treatment combines tumour cell lysis with activation of the immune system and mounting of effective anti-tumour responses. Mammalian Orthoreoviruses are non-pathogenic human viruses with a preference of lytic replication in human tumour cells. In this study, we evaluated the oncolytic efficacy of the bioselected oncolytic reovirus mutant jin-3 in multiple human prostate cancer models. The jin-3 reovirus displayed efficient infection, replication, and anti-cancer responses in 2D and 3D prostate cancer models, as well as in ex vivo cultured human tumour slices. In addition, the jin-3 reovirus markedly reduced the viability and growth of human cancer cell lines and patient-derived xenografts. The infection induced the expression of mediators of immunogenic cell death, interferon-stimulated genes, and inflammatory cytokines. Taken together, our data demonstrate that the reovirus mutant jin-3 displays tumour tropism, and induces potent oncolytic and immunomodulatory responses in human prostate cancer models. Therefore, jin-3 reovirus represents an attractive candidate for further development as oncolytic agent for treatment of patients with aggressive localised or advanced prostate cancer.
Asunto(s)
Orthoreovirus Mamífero 3 , Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias de la Próstata , Reoviridae , Animales , Línea Celular Tumoral , Humanos , Masculino , Mamíferos , Virus Oncolíticos/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Reoviridae/genéticaRESUMEN
Transforming growth factor-ß (TGF-ß) has opposing roles in breast cancer progression by acting as a tumor suppressor in the initial phase, but stimulating invasion and metastasis at later stages. In contrast to the mechanisms by which TGF-ß induces growth arrest, the pathways that mediate tumor invasion are not well understood. Here, we describe a TGF-ß-dependent invasion assay system consisting of spheroids of MCF10A1 normal breast epithelial cells (M1) and RAS-transformed (pre-)malignant derivatives (M2 and M4) embedded in collagen gels. Both basal and TGF-ß-induced invasion of these cell lines was found to correlate with their tumorigenic potential; M4 showing the most aggressive behavior and M1 showing the least. Basal invasion was strongly inhibited by the TGF-ß receptor kinase inhibitor SB-431542, indicating the involvement of autocrine TGF-ß or TGF-ß-like activity. TGF-ß-induced invasion in premalignant M2 and highly malignant M4 cells was also inhibited upon specific knockdown of Smad3 or Smad4. Interestingly, both a broad spectrum matrix metalloproteinase (MMP) inhibitor and a selective MMP2 and MMP9 inhibitor mitigated TGF-ß-induced invasion of M4 cells, while leaving basal invasion intact. In line with this, TGF-ß was found to strongly induce MMP2 and MMP9 expression in a Smad3- and Smad4-dependent manner. This collagen-embedded spheroid system therefore offers a valuable screening model for TGF-ß/Smad- and MMP2- and MMP9-dependent breast cancer invasion.
Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Invasividad Neoplásica/genética , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Benzamidas/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Dioxoles/farmacología , Femenino , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Invasividad Neoplásica/prevención & control , Proteínas Smad/genética , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Células Tumorales Cultivadas , Regulación hacia Arriba/genéticaRESUMEN
Preclinical knowledge of dysregulated pathways and potential biomarkers for urological cancers has undergone limited translation into the clinic. Moreover, the low approval rate of new anticancer drugs and the heterogeneous drug responses in patients indicate that current preclinical models do not always reflect the complexity of malignant disease. Patient-derived tumour models used in preclinical uro-oncology research include 3D culture systems, organotypic tissue slices and patient-derived xenograft models. Technological innovations have enabled major improvements in the capacity of these tumour models to reproduce the clinical complexity of urological cancers. Each type of patient-derived model has inherent advantages and limitations that can be exploited, either alone or in combination, to gather specific knowledge on clinical challenges and address unmet clinical needs. Nevertheless, few opportunities exist for patients with urological cancers to benefit from personalized therapeutic approaches. Clinical validation of experimental data is needed to facilitate the translation and implementation of preclinical knowledge into treatment decision making.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Modelos Animales de Enfermedad , Medicina de Precisión/métodos , Neoplasias Urológicas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antineoplásicos/uso terapéutico , Línea Celular Transformada , Ensayos Clínicos como Asunto/métodos , Humanos , Neoplasias Urológicas/patologíaRESUMEN
Despite increasing options for treatment of castration-resistant prostate cancer, development of drug resistance is inevitable. The glucocorticoid receptor (GR) is a prime suspect for acquired therapy resistance, as prostate cancer (PCa) cells are able to increase GR signaling during anti-androgen therapy and thereby circumvent androgen receptor (AR)-blockade and cell death. As standard AR-directed therapies fail to block the GR and GR inhibitors might result in intolerable side effects, the identification of GR signature genes, which are better suited for a targeted approach, is of clinical importance. Therefore, the specific epithelial and stromal GR signature was determined in cancer-associated fibroblasts as well as in abiraterone and enzalutamide-resistant cells after glucocorticoid (GC) treatment. Microarray and ChIP analysis identified MAO-A as a directly up-regulated mutual epithelial and stromal GR target, which is induced after GC treatment and during PCa progression. Elevated MAO-A levels were confirmed in in vitro cell models, in primary tissue cultures after GC treatment, and in patients after neoadjuvant chemotherapy with GCs. MAO-A expression correlates with GR/AR activity as well as with a reduced progression-free survival. Pharmacological MAO-A inhibition combined with 2nd generation AR signaling inhibitors or chemotherapeutics results in impaired growth of androgen-dependent, androgen-independent, and long-term anti-androgen-treated cells. In summary, these findings demonstrate that targeting MAO-A represents an innovative therapeutic strategy to synergistically block GR and AR dependent PCa cell growth and thereby overcome therapy resistance.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores de Glucocorticoides , Antagonistas de Receptores Androgénicos , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Receptores AndrogénicosRESUMEN
Dexamethasone has antitumor activity in metastatic castration resistant prostate cancer (mCRPC). We aimed to investigate intravenous liposome-encapsulated dexamethasone disodium phosphate (liposomal dexamethasone) administration in mCRPC patients. In this exploratory first-in-man study, patients in part A received a starting dose of 10 mg followed by five doses of 20 mg liposomal dexamethasone at 2-week intervals. Upon review of part A safety, patients in part B received 10 weekly doses of 18.5 mg. Primary outcomes were safety and pharmacokinetic profile, secondary outcome was antitumor efficacy. Nine mCRPC patients (5 part A, 4 part B) were enrolled. All patients experienced grade 1-2 toxicity, one (part B) patient experienced grade 3 toxicity (permanent bladder catheter-related urosepsis). No infusion-related adverse events occurred. One patient had upsloping glucose levels ≤9.1 mmol/L. Trough plasma concentrations of liposomal- and free dexamethasone were below the lower limit of quantification (LLOQ) in part A, and above LLOQ in three patients in part B (t1/2 ~50 h for liposomal dexamethasone), trough concentrations of liposomal- and free dexamethasone increased toward the end of the study. In seven of nine patients (78%) patients, stable disease was observed in bone and/or CT scans at follow-up, and in one (part B) of these seven patients a >50% PSA biochemical response was observed. Bi- and once weekly administrations of IV liposomal dexamethasone were well-tolerated. Weekly dosing enabled trough concentrations of liposomal- and free dexamethasone >LLOQ. The data presented support further clinical investigation in well-powered studies. Clinical trial registration: ISRCTN 10011715.