Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(3): 107, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446285

RESUMEN

Potentially toxic elements (Pb and Cd) contamination of soil can adversely affect human health. Moreover, these metal ions interact with the gut microbiota after entering the human digestive system. Based on the physiologically based extraction test and the simulator of human intestinal microbial ecosystem, the bioaccessibility of Pb and Cd in soils contaminated with lead-acid power plants was assessed. The gastric stage exhibited the greatest average bioaccessibility of lead and cadmium (63.39% and 57.22%), followed by the small intestinal stage (6.86% and 36.29%); due to gut microorganisms, the bioaccessibility of lead and cadmium was further reduced in the colon stage (1.86% and 4.22%). Furthermore, to investigate soil contamination's effects on gut microbes, 16S rRNA high-throughput sequencing was used to identify the gut microbial species after the colon period. Due to Pb and Cd exposure, the relative abundance of Firmicutes and unidentified_Bacteria decreased, while the relative abundance of Proteobacteria, Synergistota, and Bacteroidota increased. The relationship between environmental factors and the number of microbial species in the gut was also examined using Spearman correlation analysis. Pb and Cd exposure has been found to affect the composition and structure of the gut microbiota.


Asunto(s)
Cadmio , Ecosistema , Humanos , Plomo , ARN Ribosómico 16S/genética , Centrales Eléctricas , Suelo
2.
Appl Microbiol Biotechnol ; 107(10): 3291-3304, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37042986

RESUMEN

The objective of this study was to systematically investigate how sodium butyrate (SB) affects the gastrointestinal bacteria in newborn calves at different stages before weaning. Forty female newborn Holstein calves (4-day-old, 40 ± 5 kg of body weight) were randomly divided into four groups; each group was supplemented with four SB doses: 0, 15, 30, and 45 g/day (ten replicates) in SB0, SB15, SB30, and SB45 groups, respectively. SB was fed with milk replacer from day 4 to day 60. Rumen fluid and feces were collected on days 2, 14, 28, 42, and 60 for 16S rRNA high-throughput sequencing. Data were analyzed in a complete randomized design and analyzed on the online platform of Majorbio Cloud Platform. The results showed that SB significantly increased the α-diversity in feces, especially Shannon and Chao indices in SB45 and SB30 at day 60 more than in SB15 (P < 0.05). Additionally, SB significantly enhanced Firmicutes growth from day 2 to 28 and also increased Bacteroides abundance from day 28 to 42 in rumen and feces (P < 0.05). SB also significantly inhibited Proteobacteria abundance in rumen and feces during the study period (P < 0.05). SB also promoted some potential beneficial bacterial abundance, including Prevotella, Lachnospiraceae, Clostridium, Ruminococcus, and Muribaculaceae (P < 0.05). Additionally, Escherichia-Shigella abundance at SB0 was significantly lower than in the other groups (P < 0.05). In conclusion, this study firstly reported a dynamic curve showing of the SB effects on bacteria in calves before weaning. This study provides valuable evidence for the development of the gastrointestinal tract of the calves in the early stage of the life. SB supplementation improved the gastrointestinal health by regulating the bacterial populations. KEY POINTS: • The gastrointestinal tract of calves has been improved after the SB supplementation. • Microbes were the vital influential factor in the development of calves. • Intervention before weaning is an effective strategy for calf health.


Asunto(s)
Suplementos Dietéticos , Leche , Animales , Bovinos , Femenino , Alimentación Animal/análisis , Bacterias/genética , Peso Corporal , Ácido Butírico/farmacología , Dieta/veterinaria , ARN Ribosómico 16S/genética , Rumen/microbiología , Destete
3.
Bull Entomol Res ; 113(6): 787-793, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38037350

RESUMEN

Periplaneta americana, one of the most widely distributed insects all over the world, can survive and reproduce in harsh environment which may be closely related to the critical roles of intestinal microorganisms in its multiple physiological functions. However, the composition and structure of gut microbiota throughout different life stages and its effects on the strong resilient and environmental adaptability of P. americana remain unclear. In this study, the gut microbiota across life stages including ootheca (embryos), nymph and adult of P. americana were investigated by 16S rRNA high-throughput sequencing. Multivariate statistical analysis showed the richness and diversity of bacterial communities were significantly different among ootheca, nymph and adult stage of P. americana. Taxonomic analysis showed Blattabacterium was the dominant genus in bacterial community of ootheca while the nutrient absorption-related genera including Christensenellaceae and Ruminococcaceae showed high relative abundance in nymph samples. Moreover, functional prediction analysis showed the metabolic categories in ootheca might have more influence on the basic life activities of the host than improved production and viability, while it was more associated to the society activities, reproduction and development of host in nymph and adult. It was suggested that the gut microbiota in each life stage might meet the requirements for environmental adaptability and survival of P. americana via transforming the composition and structure with specific metabolic capabilities. Overall, these results provided a novel sight to better understand the strong vitality and adaptability throughout life stages of P. americana.


Asunto(s)
Microbioma Gastrointestinal , Periplaneta , Animales , Periplaneta/genética , Periplaneta/microbiología , ARN Ribosómico 16S/genética , Bacterias
4.
Clin Oral Investig ; 27(11): 6725-6734, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37775585

RESUMEN

OBJECTIVES: In this prospective clinical study, the effect of clear aligners on periodontal health and oral hygiene was examined. As the same time, microbial changes of the aligner tray and subgingival microbiota community were investigated. METHODS: The study recruited fifteen patients, and clinical parameters were recorded at three different time points: before the initiation of aligner treatment (T0), 1 month after treatment onset (T1), and 3 months after treatment onset (T3). Plaque samples were collected from the inner surface of aligners and subgingival sulcus at each of these time points. The microbial composition of the samples was analyzed using 16S rRNA gene sequencing, and changes were evaluated based on the abundance of amplicon sequence variants (ASVs). RESULTS: Reduction in plaque index and improvement in periodontal health were observed. In aligner tray plaque samples, the relative abundance of Streptococcus increased significantly, as well as the richness and diversity of microbiota decreased substantially as the duration of treatment time. In subgingival plaque samples, alpha and beta diversity of microbiota did not change significantly. CONCLUSIONS: During the clear aligner treatment, the patients' periodontium remained in a healthy condition, and clear aligner treatment had no significant impact on the composition of subgingival microbiota. The structure of the aligner tray microbiota altered significantly at both phylum and genus levels and attracted a unique and less diverse microbiota community. CLABSINABSICAL RELEVANCE: Clear aligner treatment has no significant impact on periodontal health and subgingival microbiota composition of patients.


Asunto(s)
Placa Dental , Microbiota , Aparatos Ortodóncicos Removibles , Humanos , Estudios Prospectivos , Salud Bucal , ARN Ribosómico 16S/genética
5.
Can J Microbiol ; 66(1): 71-85, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31658427

RESUMEN

Rhizosphere and root associated bacteria are key components of plant microbiomes and influence crop production. In sustainable agriculture, it is important to investigate bacteria diversity in various plant species and how edaphic factors influence the bacterial microbiome. In this study, we used high-throughput sequencing to assess bacterial communities associated with the rhizosphere and root interior of canola, wheat, field pea, and lentil grown at four locations in Saskatchewan, Canada. Rhizosphere bacteria communities exhibited distinct profiles among crops and sampling locations. However, each crop was associated with distinct root endophytic bacterial communities, suggesting that crop species may influence the selection of root bacterial microbiome. Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla in the root interior, whereas Gemmatimonadetes, Firmicutes, and Acidobacteria were prevalent in the rhizosphere soil. Pseudomonas and Stenotrophomonas were predominant in the rhizosphere and root interior, whereas Acinetobacter, Arthrobacter, Rhizobium, Streptomyces, Variovorax, and Xanthomonas were dominant in the root interior of all crops. The relative abundance of specific bacterial groups in the rhizosphere correlated with soil pH and silt and organic matter contents; however, there was no correlation between root endophytes and analyzed soil properties. These results suggest that the root microbiome may be modulated by plant factors rather than soil characteristics.


Asunto(s)
Productos Agrícolas/microbiología , Microbiota , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Especificidad del Huésped , Saskatchewan , Suelo/química , Especificidad de la Especie
6.
Can J Microbiol ; 64(12): 1042-1053, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30199649

RESUMEN

Composting is a widely accepted method for the disposal of deceased livestock. It is a biological self-heating process during which animal carcasses are converted to fertilizer products. Additional inoculants can facilitate the composting progress. This study investigated how the addition of microbial inoculants could improve the composting effectiveness and could change the structure and dynamics of bacterial communities in the carcass composting process. Four strains of Bacillus were inoculated into the swine carcass composting piles. The groups with the additional inoculants showed a higher temperature in the thermophilic phase and higher germination indices in the composted products. The sequencing results showed that the dominant phyla were Proteobacteria, Firmicutes, and Actinobacteria, and the dominant classified genera were Brevibacterium and Bacillus. Canonical correlation analysis showed that temperature and moisture exerted a stronger influence on the bacterial community diversity. The interaction network of dominant genera and the abundance variation of the bacterial community demonstrated that the inoculated bacterial agent changed the structure of bacterial communities and enriched the diversity of the species due to antagonism and symbiosis among the dominant bacterial communities.


Asunto(s)
Bacterias/aislamiento & purificación , Compostaje , Microbiota , Porcinos/microbiología , Animales , Temperatura
7.
Biosci Biotechnol Biochem ; 80(10): 2025-32, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27251412

RESUMEN

A successful start-up enables acceleration of anaerobic digestion (AD) into steady state. The microbial community influences the AD performance during the start-up. To investigate how microbial communities changed during the start-up, microbial dynamics was analyzed via high-throughput sequencing in this study. The results confirmed that the AD was started up within 25 d. Thermophilic methanogens and bacterial members functioning in hydrolysis, acidogenesis, and syntrophic oxidation became predominant during the start-up stage, reflecting a quick adaption of microorganisms to operating conditions. Such predominance also indicated the great contribution of these members to the fast start-up of AD. Redundancy analysis confirmed that the bacterial abundance significantly correlated with AD conditions. The stable ratio of hydrogenotrophic methanogens to aceticlastic methanogens is also important to maintain the stability of the AD process. This work will be helpful to understand the contribution of microbial community to the start-up of AD.


Asunto(s)
Adaptación Fisiológica , Archaea/metabolismo , Bacterias/metabolismo , Alimentos , Residuos , Anaerobiosis , Archaea/genética , Archaea/aislamiento & purificación , Archaea/fisiología , Bacterias/genética , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Secuenciación de Nucleótidos de Alto Rendimiento , Cinética , ARN Ribosómico 16S/genética
8.
Insects ; 15(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38667347

RESUMEN

Bacterial symbionts associated with insects can be crucial in insect nutrition, metabolism, immune responses, development, and reproduction. However, the bacterial symbionts of the fall armyworm Spodoptera frugiperda remain unclear. S. frugiperda is an invasive polyphagous pest that severely damages many crops, particularly maize and wheat. Here, we investigated the infection, composition, abundance, and diversity of bacterial symbionts, especially Wolbachia, in different tissues of S. frugiperda female adults. The infection prevalence frequencies of Wolbachia in five provinces of China, namely Pu'er, Yunnan; Nanning, Guangxi; Sanya, Hainan; Yunfu, Guangdong; and Nanping, Fujian, were assessed. The results indicated that Proteobacteria, Firmicutes, and Bacteroidetes were the three most dominant bacterial phyla in S. frugiperda adults. At the genus level, the abundant microbiota, which included Enterobacter and Enterococcus, varied in abundance between tissues of S. frugiperda. Wolbachia was found in the ovaries and salivary glands of S. frugiperda adults, and was present in 33.33% of the Pu'er, Yunnan, 23.33% of the Nanning, Guangxi, and 13.33% of the Sanya, Hainan populations, but Wolbachia was absent in the Yunfu, Guangdong and Nanping, Fujian populations. Further phylogenetic analyses revealed that all of the Wolbachia strains from the different S. frugiperda populations belonged to the supergroup B and were named the wFru strain. Since there were Wolbachia strains inducing cytoplasmic incompatibility in supergroup B, these findings may provide a foundation for developing potential biocontrol techniques against S. frugiperda.

9.
Front Microbiol ; 15: 1331023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38328428

RESUMEN

Introduction: The microgravity environment astronauts experience during spaceflight can lead to an increased risk of oral diseases and possible changes in oral microecology. In this study, we aimed to assess changes in the microbial community of supragingival plaques to explore the effects of spaceflight microgravity environment on oral microecology. Methods: Sixteen healthy male volunteers were recruited, and supragingival plaque samples were collected under -6° head-down bed rest (HDBR) at five-time points: day 1 before HDBR; days 5, 10, and 15 of HDBR; and day 6 of recovery. Bacterial genomic DNA was sequenced using gene sequencing technology with 16S ribosomal ribonucleic acid V3-V4 hypervariable region amplification and the obtained data were analyzed bioinformatically. Results: Alpha diversity analysis showed a significant increase in species richness in supragingival plaque samples on day 15 of HDBR compared with that at pre-HDBR. Beta diversity analysis revealed that the community composition differed among the groups. Species distribution showed that, compared with those at pre-HDBR, the relative abundances of Corynebacterium and Aggregatibacter increased significantly during HDBR, while those of Veillonella, Streptococcus, and Lautropia decreased significantly. Moreover, compared with those at pre-HDBR, the relative abundance of Leptotrichia increased significantly on day 6 of recovery, whereas the relative abundances of Porphyromonas and Streptococcus decreased significantly. Network analysis showed that the interaction relationship between the dominant genera became simpler during HDBR, and the positive and negative correlations between them showed dynamic changes. Phylogenetic investigation of communities by reconstruction of unobserved states analysis showed that the amino acid metabolism function of plaque microorganisms was more enriched during HDBR. Discussion: In summary, in a 15-day simulated microgravity environment, the diversity, species distribution, interaction relationship, and metabolic function of the supragingival plaque microbial community changed, which suggests that microgravity may affect the oral microecosystem by changing the balance of supragingival plaque microbial communities and further leading to the occurrence and development of oral diseases.

10.
Front Microbiol ; 14: 1263917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033565

RESUMEN

The gut microbiota plays an essential role in maintaining the health and fitness of the host organism. As a critical environmental variable, temperature exerts significant effects on animal survival and reproduction. Elevated temperatures can influence the composition and function of the animal gut microbiota, which may have potentially detrimental effects on the host. The crocodile lizard (Shinisaurus crocodilurus) is an ancient and currently endangered reptile species due to human hunting and habitat destruction. Given the predicted shifts in global temperatures in the next century, it is important to understand how warming affects the gut microbiota of these vulnerable lizards, which remains unclear. To determine how the microbial communities change in crocodile lizards in response to warming, we analyzed the gut microbiota under five temperature conditions (22°C, 24°C, 26°C, 28°C, and 30°C) using 16S rRNA high-throughput sequencing. Results showed that the dominant phyla, Proteobacteria and Bacteroidetes, in gut microbiota were not significantly affected by temperature variations, but increasing temperature altered the structure and increased the community richness of the gut microbiota. In addition, warming changed the abundance of Pseudomonas aeruginosa and Actinobacteria, which may have negative effects on the physiological health of the crocodile lizards. Functional prediction analysis demonstrated that the functional pathways enriched in crocodile lizards were mainly related to metabolism, with no significant differences observed in these pathways at KEGG pathway level 1 after warming. These results provide valuable insights into the ecological adaptations and regulatory mechanisms employed by crocodile lizards in response to warming, which may be of benefit for their conservation.

11.
Pathog Dis ; 812023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37715299

RESUMEN

Bald sea urchin disease (BSUD) is most likely a bacterial infection that occurs in a wide range of sea urchin species and causes the loss of surface appendages. The disease has a variety of additional symptoms, which may be the result of the many bacteria that are associated with BSUD. Previous studies have investigated causative agents of BSUD, however, there are few reports on the surface microbiome associated with the infection. Here, we report changes to the surface microbiome on purple sea urchins in a closed marine aquarium that contracted and then recovered from BSUD in addition to the microbiome of healthy sea urchins in a separate aquarium. 16S rRNA gene sequencing shows that microhabitats of different aquaria are characterized by different microbial compositions, and that diseased, recovered, and healthy sea urchins have distinct microbial compositions, which indicates that there is a correlation between microbial shifts and recovery from disease.

12.
Theriogenology ; 196: 97-105, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36413869

RESUMEN

Pyometra is a common and high-incidence reproductive system disease in female dogs, and its development involves both hormonal and bacterial factors. Characterization of the endometrial microbiome in healthy dogs and diseased dogs with pyometra remains unclear at present, however. In this study, dogs with pyometra were identified based on the clinical examinations, hematology examinations, vaginal smears and uterine histopathology. The endometrial samples of healthy dogs (n = 30) and diseased dogs (n = 41) were then collected and sequenced by 16S rRNA high-throughput sequencing technology. Dogs with pyometra suffered from inflammation, and their endometrial microbial diversity (ACE and Chao 1 indices) was significantly lower than that of healthy dogs (P < 0.05). The endometrial samples of both groups were enriched in four phyla (Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria), with a greater abundance of Firmicutes in diseased dogs (P < 0.05). At the genus level, the most prevalent microbes in diseased dogs belonged to Pseudomonas, Escherichia-Shigella, Mycoplasma, Enterococcus, Haemophilus, Vibrio and Ralstonia, with lower levels of Mycoplasma, Enterococcus and Haemophilus in the healthy control. Principal co-ordinates analysis and non-metric multi-dimensional scaling showed that the endometrial microbiome of diseased dogs clustered separately from that of the healthy controls (P < 0.05). In the LDA effect size analysis, 18 members of the endometrial microbiome were screened. Of these, the bacterial species Pseudomonas_aeruginosa and microbes within the genera Mycoplasma, Enterococcus and Haemophilus were found to be enriched in the uteruses of diseased dogs. Furthermore, the Random Forests model further confirmed that Mycoplasma and Haemophilus could be considered as biomarkers of diseased endometrium. In conclusion, this study provided a theoretical basis for the development of probiotic preparation in the future.


Asunto(s)
Estado de Salud , Femenino , Perros , Animales , ARN Ribosómico 16S/genética
13.
Parasit Vectors ; 16(1): 462, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115028

RESUMEN

BACKGROUND: Toxocara canis is a roundworm that resides in the gastrointestinal tract of dogs and causes various pathological changes. The dog's intestinal system consists of a diverse and dynamic bacterial community that has extensive effects on intestinal physiology, immunity and metabolics. In the case of intestinal parasites, interactions with the host intestinal flora are inevitable during the process of parasitism. METHODS: We studied the role of T. canis in regulating the composition and diversity of the intestinal flora of the host by high-throughput sequencing of the 16S ribosomal RNA gene and various bioinformatics analyses. RESULTS: The α-diversity analysis showed that Toxocara canis infection resulted in a significant decrease in the abundance and diversity of host intestinal flora. The ß-diversity analysis showed that the intestinal flora of infected dogs was similar to that carried by T. canis. Analysis of the microflora composition and differences at the phylum level showed that the ratio of Firmicutes to Bacteroidetes (F/B ratio) increased with T. canis infection. Analysis of species composition and differences at the genus level revealed that the proportion of some of the pathogenic bacteria, such as Clostridium sensu stricto and Staphylococcus, increased after T. canis infection. CONCLUSIONS: Toxocara canis infection affected the composition and diversity of the flora in the host intestinal tract. These results not only shed light on the potential mechanism of T. canis invasion and long-term survival in the intestinal tract, but also provide a new basis for the development of anthelmintic drugs.


Asunto(s)
Canidae , Enfermedades de los Perros , Microbioma Gastrointestinal , Toxocara canis , Toxocariasis , Animales , Perros , Toxocara canis/genética , Toxocariasis/parasitología , ARN Ribosómico 16S/genética , Bacterias/genética , Enfermedades de los Perros/parasitología
14.
Evol Bioinform Online ; 19: 11769343231175269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324163

RESUMEN

Based on the important role of antibiotic treatment in the research of the interaction between Wolbachia and insect hosts, this study aimed to identify the most suitable antibiotic and concentration for Wolbachia elimination in the P. xylostella, and to investigate the effect of Wolbachia and antibiotic treatment on the bacterial community of P. xylostella. Our results showed that the Wolbachia-infected strain was plutWB1 of supergroup B in the P. xylostella population collected in Nepal in this study; 1 mg/mL rifampicin could remove Wolbachia infection in P. xylostella after 1 generation of feeding treatment and the toxic effect was relatively low; among the 29 samples of adult P. xylostella in our study (10 WU samples, 10 WA samples, and 9 WI samples), 52.5% of the sequences were of Firmicutes and 47.5% were of Proteobacteria, with the dominant genera being mainly Carnobacterium (46.2%), Enterobacter (10.1%), and Enterococcus (6.2%); Moreover, antibiotic removal of Wolbachia infection in P. xylostella and transfer to normal conditions for 10 generations no longer significantly affected the bacterial community of P. xylostella. This study provides a theoretical basis for the elimination method of Wolbachia in the P. xylostella, as well as a reference for the elimination method of Wolbachia in other Wolbachia-infected insect species, and a basis for the study of the extent and duration of the effect of antibiotic treatment on the bacterial community of the P. xylostella.

15.
Front Cell Infect Microbiol ; 13: 1007505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293209

RESUMEN

Objective: To examine gut microbiotal diversity in the Han Chinese and Yugur populations of Sunan County, Gansu Province, living in the same environmental conditions, and to analyze possible causes of differences in diversity. Methods: We selected 28 people, ages 18-45 years old, all of whom were third-generation pure Yugur or Han Chinese from Sunan County. Fresh fecal samples were collected, and total bacterial deoxyribonucleic acid (DNA) was extracted. We performed 16S ribosomal ribonucleic acid (16S rRNA) high-throughput sequencing (HTS) and bioinformatics to study the relationships among between gut microbiota structure, genetics, and dietary habits in Yugur and Han Chinese subjects. Results: We found 350 differential operational taxonomic units (OTUs) in Han Chinese and Yugur gut microbiota, proving that gut microbiota differed between the two populations. That were less abundant among Yugurs than Han Chinese were Prevotella_9 and Alloprevotella. That were more abundant among Yugurs than Han Chinese were Anaerostipes and Christensenellaceae_R-7_group. And they were significantly associated with a high-calorie diet In addition. we found differences in predicted gut microbiota structural functions (The main functions were metabolic and genetic information) between the two populations. Conclusion: Yugur subjects demonstrated differences in gut microbiotal structure from Han Chinese subjects, and this difference influenced by dietary and may be influenced by genetic influences. This finding will provide a fundamental basis for further study of the relationships among gut microbiota, dietary factors, and disease in Sunan County.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Adulto Joven , Adolescente , Adulto , Persona de Mediana Edad , ARN Ribosómico 16S/genética , China , Microbioma Gastrointestinal/genética , Pueblo Asiatico , Bacterias/genética , Heces/microbiología
16.
Animals (Basel) ; 13(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37835748

RESUMEN

Currently, researchers use bacterial culture and targeted PCR methods to classify, culture, and identify the pathogens causing abscess diseases. However, this method is limited by factors such as the type of culture medium and culture conditions, making it challenging to screen and proliferate many bacteria effectively. Fortunately, with the development of high-throughput sequencing technology, pathogen identification at the genetic level has become possible. Not only can this approach overcome the limitations of bacterial culture, but it can also accurately identify the types and relative abundance of pathogens. In this study, we used high-throughput sequencing of 16S rRNA to identify the pathogens in purulent fluid samples. Our results not only confirmed the presence of the main pathogen reported by previous researchers, Trueperella pyogenes, but also other obligate anaerobes, Fusobacterium necrophorum and Bacteroides fragilis as the dominant pathogens causing abscess diseases for the first time. Therefore, our findings suggest that high-throughput sequencing technology has the potential to replace traditional bacterial culture and targeted PCR methods.

17.
Sci Total Environ ; 859(Pt 2): 160335, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36414069

RESUMEN

Under the influence of water diversion, the microbial community composition of estuarine waters and sediments might have complex spatiotemporal variations. Microbial interactions with N are significant for lake water quality. Therefore, the largest lake receiving seasonal water diversion in the North China Plain was selected as the study area. Based on 16S rRNA high-throughput sequencing and metagenomic sequencing techniques, this study analysed temporal (June-December) and spatial (estuary-pelagic zone) changes in the microbial community and functional gene composition of water and sediment. The results showed that the water microbial community composition had temporality, while sediment microbes had spatiality. The main causes of temporality in the aquatic microbial community were temperature and nitrate-N concentration, while those of sediment were flow velocity and N content. Additionally, there were complex interactions between microbial communities and N. In water, temporal variation in the relative abundance of N-related functional genes might have indirectly contributed to inorganic N composition in June (nitrite-N > ammonia-N > nitrate-N) and August (nitrite-N > nitrate-N > ammonia-N). High nitrate-N concentrations in December influenced the microbial community composition. In sediment, the estuary had higher N functional genes than the pelagic estuary, creating a relatively active N cycle and reducing total N levels in the estuary. This study revealed a potentially overlooked N sink and a flow velocity threshold that has great impacts on microbial community composition. This research contributes to a deeper understanding of the estuarine N cycle under the influence of water diversions, with implications for the calculation of global N balances and the management of lake water environments.


Asunto(s)
Sedimentos Geológicos , Nitrógeno , Nitrógeno/análisis , ARN Ribosómico 16S/genética , Amoníaco/análisis , Nitratos/análisis , Bacterias/genética , Lagos , Compuestos Orgánicos
18.
Int J Food Microbiol ; 364: 109531, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35033975

RESUMEN

Listeria monocytogenes (Lm) outbreaks and recalls associated with fresh produce in recent years have heightened concerns and demands from industry and consumers to more effectively mitigate the contamination risk of this foodborne pathogen on fresh produce. In this study, the growth of Lm and indigenous bacteria on fresh-cut cantaloupe and romaine lettuce held at refrigerated (4 °C) and abusive (10-24 °C) temperatures was determined by both culture dependent and independent methods. Composition and dynamics of bacterial communities on Lm inoculated and non-inoculated samples were analyzed by 16S rRNA high-throughput sequencing. Fresh-cut cantaloupe provided favorable growth conditions for Lm proliferation (1.7 and >6 log increase at refrigerated and abusive temperatures, respectively) to overtake indigenous bacteria. The Lm population also increased on fresh-cut lettuce, but the growth rate was lower than that of the total mesophilic bacteria, resulting in 0.4 and >2 log increase at refrigerated and abusive temperatures. Microbial diversity of fresh-cut cantaloupe was significantly lower than that of fresh-cut romaine lettuce. The Shannon index of microbial communities on cantaloupe declined after storage, but it was not significantly changed on lettuce samples. Shifts in the bacterial microbiome on cantaloupe were mainly affected by Lm inoculation, while both inoculation and storage temperature played significant roles on lettuce bacterial communities. Multiple indigenous bacteria, including Leuconostoc and Weissella spp., were negatively correlated to Lm abundance on romaine lettuce, and were determined by bioassay as potential anti-listerial species. Data derived from this study contribute to better understanding of the relationship between Lm and indigenous microbiota on fresh-cut produce during storage.


Asunto(s)
Cucumis melo , Listeria monocytogenes , Microbiota , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Manipulación de Alimentos , Microbiología de Alimentos , Lactuca , ARN Ribosómico 16S , Temperatura
19.
mSphere ; 7(5): e0030722, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36173121

RESUMEN

Intertidal macroalgae face periodic water loss and rehydration caused by daily tidal changes. However, the effect of water loss stress on algal epiphytic bacteria has not yet been reported. In this study, the effects of water loss stress on the epiphytic bacteria community of Sargassum thunbergii were analyzed, and the different responses of epiphytic bacteria to water loss stress were compared between male and female algae. The results showed that after water loss stress, the diversity of the epiphytic bacterial community of S. thunbergii first decreased and then increased. Among the dominant taxa, the abundance of Cyanobacteria decreased significantly, whereas the abundance of Portibacter and Aquimarina first increased and then decreased. Additionally, the indicator species and the abundance of predicted functional genes related to carbon, nitrogen, and sulfur metabolism both changed significantly. More importantly, when the epiphytic bacteria were analyzed separately according to the algal sex, the changes in algal epiphytic bacterial community structure and indicator species were more significant, and there were sexual differences. Therefore, it was concluded that water loss stress has a significant effect on the community structure and function of the epiphytic bacteria on S. thunbergii. Meanwhile, the epiphytic bacteria community of two sexes of S. thunbergii differed in the response to water loss stress. IMPORTANCE Periodic water loss caused by the tide is an important environmental factor that is faced by intertidal macroalgae, but the impact of periodic water loss on the epiphytic bacterial communities associated with macroalgae is still unknown. Through this study, we found that the diversity, the relative abundance of dominant taxa, the indicator species, and the abundance of the predicted functional genes in the epiphytic bacteria on S. thunbergii changed with the time of water loss. Moreover, male and female S. thunbergii exhibited different responses to water loss stress. This study not only paves the way for the delineation of the interactions between S. thunbergii and its epiphytic bacteria but also provides new insights for the mechanisms of the adaptation and evolution of macroalgae in the intertidal zone.


Asunto(s)
Sargassum , Algas Marinas , Femenino , Masculino , Humanos , Sargassum/genética , Bacterias/genética , Algas Marinas/microbiología , Agua , Nitrógeno , Carbono , Azufre
20.
Food Chem X ; 15: 100441, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36132744

RESUMEN

The effects of cinnamaldehyde microcapsules on the concentration of cinnamaldehyde and its metabolites in plasma, urine, and feces, the antioxidant capacity, and the intestinal flora in male C57/BL6 mice were evaluated by oral administration for 7 weeks. Microencapsulation significantly increased the contents of cinnamaldehyde, cinnamyl alcohol, and methyl cinnamate in plasma and decreased those in urine and feces excretion (p < 0.05). In addition, microencapsulated cinnamaldehyde improved antioxidant capacity in liver, duodenum, and colon. Furthermore, 16S rRNA gene sequencing data suggested that microencapsulated cinnamaldehyde significantly improved the gut microbial richness and diversity, increased  the abundance of Bacteroides, Bacteroidetes/Firmicutes, unclassified_f_Lachnospiraceae, Lactobacillus, and Blautia genera, and decreased in Ruminococcaceae_UCG-014, Faecalibaculum, norank_f_Muribaculaceae, and Gordonibacter genera, which was accompanied by the increased contents of butyric acid in feces. Therefore, microencapsulated cinnamaldehyde may increase its bioavailability and regulate the balance of intestinal flora.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA