Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(3): 650-665.e15, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33031742

RESUMEN

Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.


Asunto(s)
Endocannabinoides/metabolismo , Enterobacteriaceae/patogenicidad , Animales , Ácidos Araquidónicos/química , Ácidos Araquidónicos/metabolismo , Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Citrobacter rodentium/patogenicidad , Colon/microbiología , Colon/patología , Endocannabinoides/química , Infecciones por Enterobacteriaceae/microbiología , Femenino , Microbioma Gastrointestinal , Glicéridos/química , Glicéridos/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/metabolismo , Salmonella/patogenicidad , Virulencia
2.
Annu Rev Pharmacol Toxicol ; 63: 1-13, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35850522

RESUMEN

After a traumatic childhood in Europe during the Second World War, I found that scientific research in Israel was a pleasure beyond my expectations. Over the last 65 year, I have worked on the chemistry and pharmacology of natural products. During the last few decades, most of my research has been on plant cannabinoids, the endogenous cannabinoids arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, and endogenous anandamide-like compounds, all of which are involved in a wide spectrum of physiological reactions. Two plant cannabinoids, Δ9-tetrahydrocannabinol and cannabidiol, are approved drugs. However, the endogenous cannabinoids and the anandamide-like constituents have not yet been well investigated in humans. For me, intellectual freedom-the ability to do research based on my own scientific interests-has been the most satisfying part of my working life. Looking back over the 91 years of my long life, I conclude that I have been lucky, very lucky, both personally and scientifically.


Asunto(s)
Cannabinoides , Humanos , Niño , Cannabinoides/farmacología , Endocannabinoides/farmacología , Endocannabinoides/metabolismo , Alcamidas Poliinsaturadas/farmacología , Alcamidas Poliinsaturadas/metabolismo , Dronabinol/farmacología
3.
Psychol Med ; : 1-11, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38389452

RESUMEN

BACKGROUND: Interactions between the endocannabinoid system (ECS) and neurotransmitter systems might mediate the risk of developing a schizophrenia spectrum disorder (SSD). Consequently, we investigated in patients with SSD and healthy controls (HC) the relations between (1) plasma concentrations of two prototypical endocannabinoids (N-arachidonoylethanolamine [anandamide] and 2-arachidonoylglycerol [2-AG]) and (2) striatal dopamine synthesis capacity (DSC), and glutamate and y-aminobutyric acid (GABA) levels in the anterior cingulate cortex (ACC). As anandamide and 2-AG might reduce the activity of these neurotransmitters, we hypothesized negative correlations between their plasma levels and the abovementioned neurotransmitters in both groups. METHODS: Blood samples were obtained from 18 patients and 16 HC to measure anandamide and 2-AG plasma concentrations. For all subjects, we acquired proton magnetic resonance spectroscopy scans to assess Glx (i.e. glutamate plus glutamine) and GABA + (i.e. GABA plus macromolecules) concentrations in the ACC. Ten patients and 14 HC also underwent [18F]F-DOPA positron emission tomography for assessment of striatal DSC. Multiple linear regression analyses were used to investigate the relations between the outcome measures. RESULTS: A negative association between 2-AG plasma concentration and ACC Glx concentration was found in patients (p = 0.008). We found no evidence of other significant relationships between 2-AG or anandamide plasma concentrations and dopaminergic, glutamatergic, or GABAergic measures in either group. CONCLUSIONS: Our preliminary results suggest an association between peripheral 2-AG and ACC Glx levels in patients.

4.
Neurourol Urodyn ; 43(5): 1207-1216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38533637

RESUMEN

AIMS: Activation of the endocannabinoid system by monoacylglycerol lipase (MAGL) blockade may affect the lower urinary tract function. We investigated the effect of an MAGL inhibitor, MJN110, on neurogenic lower urinary tract dysfunction (LUTD) in the mouse model of spinal cord injury (SCI). METHODS: Female C57BL/6 mice that underwent spinal cord transection at T8-10 level were divided into three groups consisting of (1) vehicle-treated SCI mice, (2) 5 mg/kg, or (3) 10 mg/kg of MJN110-treated SCI mice. MJN110 and vehicle were administered intraperitoneally for 7 days from 4 weeks after spinal cord transection. We then conducted awake cystometrograms and compared urodynamic parameters between three groups. The expression of cannabinoid (CB) receptors, TRP receptors, and inflammatory cytokines in L6-S1 dorsal root ganglia (DRG) or the bladder mucosa were evaluated and compared among three groups. Changes in the level of serum 2-arachidonoylglycerol (2-AG) and bladder MAGL were also evaluated. RESULTS: In the cystometrogram, detrusor overactivity (DO) parameters, such as the number of nonvoiding contraction (NVC), a ratio of time to the 1st NVC to intercontraction interval (ICI), and NVC integrals were improved by MJN110 treatment, and some effects were dose dependent. Although MJN110 did not improve voiding efficiency, it decreased bladder capacity, ICI, and residual urine volume compared to vehicle injection. MJN110 treatment groups had lower CB2, TRPV1, TRPA1, and inflammatory cytokines mRNA levels in DRG and bladder mucosa. Serum 2-AG was increased, and bladder MAGL was decreased after MAGL inhibitor treatment. CONCLUSIONS: MAGL inhibition improved LUTD including attenuation of DO after SCI. Thus, MAGL can be a therapeutic target for neurogenic LUTD after SCI.


Asunto(s)
Ratones Endogámicos C57BL , Monoacilglicerol Lipasas , Traumatismos de la Médula Espinal , Vejiga Urinaria , Urodinámica , Animales , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Femenino , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/fisiopatología , Urodinámica/efectos de los fármacos , Ratones , Modelos Animales de Enfermedad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Receptores de Cannabinoides/metabolismo , Receptores de Cannabinoides/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Endocannabinoides/metabolismo , Citocinas/metabolismo , Vejiga Urinaria Neurogénica/tratamiento farmacológico , Vejiga Urinaria Neurogénica/fisiopatología , Vejiga Urinaria Neurogénica/etiología , Síntomas del Sistema Urinario Inferior/tratamiento farmacológico , Síntomas del Sistema Urinario Inferior/fisiopatología , Síntomas del Sistema Urinario Inferior/etiología , Carbamatos , Succinimidas
5.
J Fluoresc ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280054

RESUMEN

SiO2@Ag nanocomposite (NC) has been synthesized by the chemical reduction and StÓ§ber method for Metal-enhanced fluorescence (MEF) of Rhodmine 6G (R6G) and Surface-enhanced Raman spectroscopy (SERS) of Malachite green (MG). As-synthesized SiO2@Ag NC indicated SiO2 nanosphere (NS) and Ag nanoparticle (NP) morphologies. The SiO2@Ag NC was high quality with a well-defined crystallite phase with average sizes of 24 nm and 132 nm for Ag NP and SiO2 NC, respectively. By using SiO2@Ag NC, the photoluminescence (PL) intensity of the R6G (at 59.17 ppm) was increased approximately 133 times. The SERS of the MG (at 1.0 ppm) with SiO2@Ag NC as substrate clearly observed vibrational modes in MG dye at 798, 916, 1172, 1394, and 1616 cm-1. As a result, the SERS enhancement factor (EFSERS) at 1172 cm-1 obtained 6.3 × 106. This initial study points to the potential of SiO2@Ag NC as a promising material for MEF and SERS substrates to detect dyes at low concentrations.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38502208

RESUMEN

Determining peripheral modulation of the endocannabinoid system (ECS) may be important for differentiating individuals with schizophrenia. Such differentiation can also be extended to subgroups of individuals, those who use cannabis and antipsychotic medications, particularly those who are treatment resistant. Patients and controls were recruited from the outpatient clinic of the Psychosis Group of the University of São Paulo, Brazil. A final sample of 93 individuals was divided into 3 groups: patients with schizophrenia using clozapine (treatment-resistant) (n = 29), patients with schizophrenia using another antipsychotic (n = 31), and controls (n = 33). By measuring the proteins and metabolites involved in the ECS pathways in the peripheral blood, AEA (anandamide), 2-AG (2-arachidonoyl ethanolamine), and CB2 receptor (peripheral) were quantified. Individuals reporting lifetime cannabis use had lower 2-AG plasma levels (p = 0.011). Regarding the CB2 receptor, the values of patients with schizophrenia and controls were similar, but those of patients using antipsychotics other than clozapine differed (p = 0.022). In generalized linear models to control for confounders, the use of cannabis remained the only factor that significantly influenced 2-AG levels. The relationship for non-clozapine antipsychotics as the only factor related to CB2 changes was marginally significant. We found for the first time that cannabis use and non-clozapine antipsychotic medication are potentially involved in the modulation of the ECS, specifically influencing 2-AG endocannabinoid and CB2 receptor levels. More studies regarding the ECS are needed since it has been increasingly related to the physiopathology of schizophrenia.

7.
Nutr J ; 23(1): 61, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862960

RESUMEN

BACKGROUND: The Mediterranean diet (MedDiet) has demonstrated efficacy in preventing age-related cognitive decline and modulating plasma concentrations of endocannabinoids (eCBs) and N-acylethanolamines (NAEs, or eCB-like compounds), which are lipid mediators involved in multiple neurological disorders and metabolic processes. Hypothesizing that eCBs and NAEs will be biomarkers of a MedDiet intervention and will be related to the cognitive response, we investigated this relationship according to sex and apolipoprotein E (APOE) genotype, which may affect eCBs and cognitive performance. METHODS: This was a prospective cohort study of 102 participants (53.9% women, 18.8% APOE-ɛ4 carriers, aged 65.6 ± 4.5 years) from the PREDIMED-Plus-Cognition substudy, who were recruited at the Hospital del Mar Research Institute (Barcelona). All of them presented metabolic syndrome plus overweight/obesity (inclusion criteria of the PREDIMED-Plus) and normal cognitive performance at baseline (inclusion criteria of this substudy). A comprehensive battery of neuropsychological tests was administered at baseline and after 1 and 3 years. Plasma concentrations of eCBs and NAEs, including 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and N-docosahexaenoylethanolamine (DHEA), were also monitored. Baseline cognition, cognitive changes, and the association between eCBs/NAEs and cognition were evaluated according to gender (crude models), sex (adjusted models), and APOE genotype. RESULTS: At baseline, men had better executive function and global cognition than women (the effect size of gender differences was - 0.49, p = 0.015; and - 0.42, p = 0.036); however, these differences became nonsignificant in models of sex differences. After 3 years of MedDiet intervention, participants exhibited modest improvements in memory and global cognition. However, greater memory changes were observed in men than in women (Cohen's d of 0.40 vs. 0.25; p = 0.017). In men and APOE-ε4 carriers, 2-AG concentrations were inversely associated with baseline cognition and cognitive changes, while in women, cognitive changes were positively linked to changes in DHEA and the DHEA/AEA ratio. In men, changes in the OEA/AEA and OEA/PEA ratios were positively associated with cognitive changes. CONCLUSIONS: The MedDiet improved participants' cognitive performance but the effect size was small and negatively influenced by female sex. Changes in 2-AG, DHEA, the OEA/AEA, the OEA/PEA and the DHEA/AEA ratios were associated with cognitive changes in a sex- and APOE-dependent fashion. These results support the modulation of the endocannabinoid system as a potential therapeutic approach to prevent cognitive decline in at-risk populations. TRIAL REGISTRATION: ISRCTN89898870.


Asunto(s)
Cognición , Dieta Mediterránea , Endocannabinoides , Genotipo , Síndrome Metabólico , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Amidas , Apolipoproteínas E/genética , Ácidos Araquidónicos/sangre , Biomarcadores/sangre , Cognición/fisiología , Dieta Mediterránea/estadística & datos numéricos , Endocannabinoides/sangre , Etanolaminas/sangre , Glicéridos/sangre , Síndrome Metabólico/genética , Ácidos Oléicos/sangre , Ácidos Palmíticos/sangre , Alcamidas Poliinsaturadas/sangre , Estudios Prospectivos , Factores Sexuales
8.
Mikrochim Acta ; 191(6): 353, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809482

RESUMEN

Organic pollutant detection has caused widespread concern regarding due to their potential environmental and human health risks. In this work, a nitrogen-doped titanium dioxide/silver oxide (N-TiO2/Ag2O) composite has been designed as a sensitive photoelectrochemical (PEC) monitoring platform of organic dyes. Sensitive determination relies on the outstanding PEC performance of N-TiO2/Ag2O. The improved PEC performance stems from the effective separation of photocarriers and the extended light response range provided by the narrowing bandgap and a p-n junction with N-TiO2/Ag2O. The N-TiO2/Ag2O electrode exhibits a photocurrent density of up to 2.2 mA/cm2, demonstrating three times increase compared with the photocurrent density observed with the pure TiO2 film. The linear detection range for rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) is 0.2 ng/mL to 10 µg/mL with an ultrasensitive detection limit of 0.2 ng/mL without bias voltage. Due to the outstanding photocurrent density and sensitive response to organic pollutants, the N-TiO2/Ag2O PEC sensor provided a promising analytical method to detect environmental organic dyes.

9.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732230

RESUMEN

Cannabinoid receptors CB1R and CB2R are G-protein coupled receptors acted upon by endocannabinoids (eCBs), namely 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (AEA), with unique pharmacology and modulate disparate physiological processes. A genetically encoded GPCR activation-based sensor that was developed recently-GRABeCB2.0-has been shown to be capable of monitoring real-time changes in eCB levels in cultured cells and preclinical models. However, its responsiveness to exogenous synthetic cannabinoid agents, particularly antagonists and allosteric modulators, has not been extensively characterized. This current study expands upon the pharmacological characteristics of GRABeCB2.0 to enhance the understanding of fluorescent signal alterations in response to various functionally indiscriminate cannabinoid ligands. The results from this study could enhance the utility of the GRABeCB2.0 sensor for in vitro as well as in vivo studies of cannabinoid action and may aid in the development of novel ligands.


Asunto(s)
Endocannabinoides , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Humanos , Receptor Cannabinoide CB2/metabolismo , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Células HEK293 , Ligandos , Glicéridos/farmacología , Técnicas Biosensibles/métodos , Moduladores de Receptores de Cannabinoides/farmacología , Animales , Ácidos Araquidónicos/farmacología , Ácidos Araquidónicos/metabolismo
10.
Glia ; 71(1): 36-43, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36408881

RESUMEN

In the last decades, astrocytes have emerged as important regulatory cells actively involved in brain function by exchanging signaling with neurons. The endocannabinoid (eCB) signaling is widely present in many brain areas, being crucially involved in multiple brain functions and animal behaviors. The present review presents and discusses current evidence demonstrating that astrocytes sense eCBs released during neuronal activity and subsequently release gliotransmitters that regulate synaptic transmission and plasticity. The eCB signaling to astrocytes and the synaptic regulation mediated by astrocytes activated by eCBs are complex phenomena that exhibit exquisite spatial and temporal properties, a wide variety of downstream signaling mechanisms, and a large diversity of functional synaptic outcomes. Studies investigating this topic have revealed novel regulatory processes of synaptic function, like the lateral regulation of synaptic transmission and the active involvement of astrocytes in the spike-timing dependent plasticity, originally thought to be exclusively mediated by the coincident activity of pre- and postsynaptic neurons, following Hebbian rules for associative learning. Finally, the critical influence of astrocyte-mediated eCB signaling on animal behavior is also discussed.


Asunto(s)
Endocannabinoides , Plasticidad Neuronal , Animales , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Transducción de Señal/fisiología , Astrocitos/fisiología
11.
Am J Epidemiol ; 192(3): 438-447, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36345134

RESUMEN

Point-of-care antigen tests are an important tool for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection, yet are less clinically sensitive than real-time reverse-transcription polymerase chain reaction (RT-PCR), affecting their efficacy as screening procedures. Our goal in this analysis was to see whether we could improve this sensitivity by considering antigen test results in combination with other relevant information, namely exposure status and reported symptoms. In November 2020, we collected 3,419 paired upper respiratory specimens tested by RT-PCR and the Abbott BinaxNOW (Abbott Laboratories, Abbott Park, Illinois) antigen test at 2 community testing sites in Pima County, Arizona. We used symptom, exposure, and antigen-testing data to evaluate the sensitivity and specificity of various symptom definitions in predicting RT-PCR positivity. Our analysis yielded 6 novel multisymptom case definitions with and without antigen test results, the best of which overall achieved a Youden's J index of 0.66, as compared with 0.53 for antigen testing alone. Using a random forest as a guide, we show that this definition, along with our others, does not lose the ability to generalize well to new data despite achieving optimal performance in our sample. Our methodology is broadly applicable, and our code is publicly available to aid public health practitioners in developing or fine-tuning their own case definitions.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Arizona , Salud Pública , Sensibilidad y Especificidad , Antígenos Virales
12.
Eur J Neurol ; 30(10): 3212-3220, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37337838

RESUMEN

BACKGROUND AND PURPOSE: The endocannabinoid system (ECS) has been found altered in patients with multiple sclerosis (MS). However, whether the ECS alteration is present in the early stage of MS remains unknown. First, we aimed to compare the ECS profile between newly diagnosed MS patients and healthy controls (HCs). Next, we explored the association of the ECS, biomarkers of inflammation, and clinical parameters in newly diagnosed MS patients. METHODS: Whole blood gene expression of ECS components and levels of endocannabinoids in plasma were measured by real-time quantitative polymerase chain reaction and ultra-high-pressure liquid chromatography-mass spectrometry, respectively, in 66 untreated MS patients and 46 HCs. RESULTS: No differences were found in the gene expression or plasma levels of the selected ECS components between newly diagnosed MS patients and HCs. Interferon-γ, encoded by the gene IFNG, correlated positively (ρ = 0.60) with the expression of G protein-coupled receptor 55 (GPR55), and interleukin1ß (IL1B) correlated negatively (ρ = -0.50) with cannabinoid receptor 2 (CNR2) in HCs. CONCLUSIONS: We found no alteration in the peripheral ECS between untreated patients with MS and HC. Furthermore, our results indicate that the ECS has a minor overall involvement in the early stage of MS on inflammatory markers and clinical parameters when compared with HCs.


Asunto(s)
Endocannabinoides , Esclerosis Múltiple , Humanos , Endocannabinoides/genética , Endocannabinoides/metabolismo , Endocannabinoides/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Inflamación , Espectrometría de Masas , Biomarcadores
13.
Appetite ; 189: 106998, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562755

RESUMEN

To investigate changes in subjective psychological factors and dietary intake during sleep restriction, we carried out a randomized crossover trial with a 3-day sleep restriction condition (SR; 5 h of sleep) and control sleep condition (CS; 8 h of sleep). Days 3 and 4 involved free-living and laboratory (in the morning) conditions, respectively. Subjective psychological factors (hunger, appetite, desire for sweets and fatty foods, sleepiness, and fatigue) were assessed using a 0.0-10.0 cm visual analog scale (VAS) every hour throughout the day on day 3, and at 8:00 a.m. on day 4. Dietary intake on day 3 was assessed on the basis of the food purchased and eaten. Fasting blood samples were collected at 8:00 a.m. on day 4. Dietary intake during the ad libitum breakfast was assessed on day 4. The participants were 13 women and 11 men (mean age, 21.4 ± 1.0 years; mean body mass index, 19.8 ± 1.7 kg/m2). The areas under the curve 0-16 h after waking for hunger, desire for fatty foods, sleepiness, and fatigue were higher in the SR than CS on day 3 (P < 0.05). Energy and carbohydrate intakes from snacks (daytime and nighttime) on day 3 were higher in the SR than CS (P < 0.05) but total dietary intake on day 3 was not different between the conditions (P > 0.05). The 2-arachidonoylglycerol level was different between the conditions (P < 0.05), but was not associated with sweet taste preference, dietary intake, or the active ghrelin level on day 4 (P > 0.05). In conclusion, ratings for subjective psychological factors and energy and carbohydrate intakes from snacks increased in association with sleep restriction under free-living conditions.


Asunto(s)
Apetito , Somnolencia , Masculino , Humanos , Femenino , Adulto Joven , Adulto , Estudios Cruzados , Ingestión de Energía , Hambre , Ingestión de Alimentos , Sueño , Carbohidratos
14.
Ann Gen Psychiatry ; 22(1): 11, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932421

RESUMEN

BACKGROUND: The serotonergic and the endocannabinoid system are involved in the etiology of depression. Depressive patients exhibit low serotonergic activity and decreased level of the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2AG). Since the cannabinoid (CB) 1 receptor is activated by endogenous ligands such as AEA and 2AG, whose concentration are controlled by the fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, respectively, we investigated the effects on serotonergic utilization. In this study, we investigated the impact of the rs1049353 single-nucleotide polymorphism (SNP) of the cannabinoid receptor 1 (CNR1) gene, which codes the endocannabinoid CB1 receptor, and the rs324420 SNP of the FAAH gene on the serotonergic and endocannabinoid system in 59 healthy volunteers. METHODS: Serotonergic activity was measured by loudness dependence of auditory-evoked potentials (LDAEP). Plasma concentrations of AEA, 2AG and its inactive isomer 1AG were determined by mass spectrometry. Genotyping of two SNPs (rs1049353, rs344420) was conducted by polymerase chain reaction (PCR) and differential enzymatic analysis with the PCR restriction fragment length polymorphism method. RESULTS: Genotype distributions by serotonergic activity or endocannabinoid concentration showed no differences. However, after detailed consideration of the CNR1-A-allele-carriers, a reduced AEA (A-allele-carrier M = 0.66, SD = 0.24; GG genotype M = 0.72, SD = 0.24) and 2AG (A-allele-carriers M = 0.70, SD = 0.33; GG genotype M = 1.03, SD = 0.83) plasma concentration and an association between the serotonergic activity and the concentrations of AEA and 2AG has been observed. CONCLUSIONS: Our results suggest that carriers of the CNR1-A allele may be more susceptible to developing depression.

15.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36834575

RESUMEN

In this report, we describe the kinetics characteristics of the diacylglycerol lipase-α (DGLα) located at the nuclear matrix of nuclei derived from adult cortical neurons. Thus, using high-resolution fluorescence microscopy, classical biochemical subcellular fractionation, and Western blot techniques, we demonstrate that the DGLα enzyme is located in the matrix of neuronal nuclei. Furthermore, by quantifying the 2-arachidonoylglycerol (2-AG) level by liquid chromatography and mass spectrometry when 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) was exogenously added as substrate, we describe the presence of a mechanism for 2-AG production through DGLα dependent biosynthesis with an apparent Km (Kmapp) of 180 µM and a Vmax of 1.3 pmol min-1 µg-1 protein. We also examined the presence of enzymes with hydrolytic and oxygenase activities that are able to use 2-AG as substrate, and described the localization and compartmentalization of the major 2-AG degradation enzymes, namely monoacylglycerol lipase (MGL), fatty acid amide hydrolase (FAAH), α/ß-hydrolase domain 12 protein (ABHD12) and cyclooxygenase-2 (COX2). Of these, only ABHD12 exhibited the same distribution with respect to chromatin, lamin B1, SC-35 and NeuN as that described for DGLα. When 2-AG was exogenously added, we observed the production of arachidonic acid (AA), which was prevented by inhibitors (but not specific MGL or ABHD6 inhibitors) of the ABHD family. Overall, our results expand knowledge about the subcellular distribution of neuronal DGLα, and provide biochemical and morphological evidence to ensure that 2-AG is produced in the neuronal nuclear matrix. Thus, this work paves the way for proposing a working hypothesis about the role of 2-AG produced in neuronal nuclei.


Asunto(s)
Endocannabinoides , Neuronas , Ratas , Animales , Endocannabinoides/metabolismo , Neuronas/metabolismo , Monoacilglicerol Lipasas/metabolismo , Matriz Nuclear , Encéfalo/metabolismo
16.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38203706

RESUMEN

Mounting evidence supports the role of the endocannabinoid system in neurophysiology, including blood-brain barrier (BBB) function. Recent work has demonstrated that activation of endocannabinoid receptors can mitigate insults to the BBB during neurological disorders like traumatic brain injury, cortical spreading depression, and stroke. As alterations to the BBB are associated with worsening clinical outcomes in these conditions, studies herein sought to examine the impact of endocannabinoid depletion on BBB integrity. Barrier integrity was investigated in vitro via bEnd.3 cell monolayers to assess endocannabinoid synthesis, barrier function, calcium influx, junctional protein expression, and proteome-wide changes. Inhibition of 2-AG synthesis using DAGLα inhibition and siRNA inhibition of DAGLα led to loss of barrier integrity via altered expression of VE-cadherin, which could be partially rescued by exogenous application of 2-AG. Moreover, the deleterious effects of DAGLα inhibition on BBB integrity showed both calcium and PKC (protein kinase C)-dependency. These data indicate that disruption of 2-AG homeostasis in brain endothelial cells, in the absence of insult, is sufficient to disrupt BBB integrity thus supporting the role of the endocannabinoid system in neurovascular disorders.


Asunto(s)
Antígenos CD , Cadherinas , Células Endoteliales , Proteoma , Calcio , Endocannabinoides/farmacología , Calcio de la Dieta
17.
J Environ Manage ; 348: 119259, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827077

RESUMEN

Composites of magnetic biochar derived from spent coffee grounds were prepared using MoS2 decorated by plasmonic silver nanoparticles (MoS2-Ag), which were used for the bioremediation Cr6+ ions. The composites were characterized by electron microscopy, X-ray diffraction, Raman, and UV-VIS spectroscopy. The bioremediation of Cr6+ ions was enhanced almost two times compared to microalgae, Spirulina maxima. Such an increased activity is attributed to heterojunction formation of Biochar@MoS2-Ag composite due to the synergetic effects of surface plasmon resonance of AgNPs inducing amplified local electric field, thus simultaneously increasing the absorption of MoS2 under visible or near-infrared light. The combination of Biochar@MoS2-Ag and Spirulina maxima powder was effective for the separation (microalga-based absorption and accumulation of Cr6+ ions) of photo-induced carriers (composite-assisted to breakdown Cr6+ ions). This study offers efficient eco-friendly treatment of Cr6+ ions by reporting the first enhanced bioremediation of Cr(VI) ions by microalgae using MoS2-Ag-modified biochar obtained from consumed coffee grounds.


Asunto(s)
Nanopartículas del Metal , Microalgas , Molibdeno , Café , Biodegradación Ambiental , Plata/química , Fenómenos Magnéticos , Iones
18.
Molecules ; 28(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771083

RESUMEN

When creating titanium-containing bone implants, the bioactive coatings that promote their rapid engraftment are important. The engraftment rate of titanium implants with bone tissue depends significantly on the modification of the implant surface. It is achieved by changing either the relief or the chemical composition of the surface layer, as well as a combination of these two factors. In this work, we studied the creation of composite coatings with a two-level (the micro- and nanolevel) hierarchy of the surface relief, which have bioactive and bactericidal properties, which are promising for bone implantation. Using the developed non-lithographic template electrochemical synthesis, a composite coating on titanium with a controlled surface structure was created based on an island-type TiO2 film, silver and hydroxyapatite (HAp). This TiO2/Ag/HAp composite coating has a developed surface relief at the micro- and nanolevels and has a significant cytological response and the ability to accelerate osteosynthesis, and also has an antibacterial effect. Thus, the developed biomaterial is suitable for production of dental and orthopedic implants with improved biomedical properties.


Asunto(s)
Materiales Biocompatibles Revestidos , Titanio , Titanio/farmacología , Titanio/química , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Huesos , Antibacterianos/farmacología , Antibacterianos/química , Durapatita/farmacología , Durapatita/química , Propiedades de Superficie
19.
J Infect Dis ; 226(12): 2118-2128, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-35594905

RESUMEN

BACKGROUND: Point-of-care and decentralized testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to inform public health responses. Performance evaluations in priority use cases such as contact tracing can highlight trade-offs in test selection and testing strategies. METHODS: A prospective diagnostic accuracy study was conducted among close contacts of coronavirus disease 2019 (COVID-19) cases in Brazil. Two anterior nares swabs (ANS), a nasopharyngeal swab (NPS), and saliva were collected at all visits. Vaccination history and symptoms were assessed. Household contacts were followed longitudinally. Three rapid antigen tests and 1 molecular method were evaluated for usability and performance against reference reverse-transcription polymerase chain reaction (RT-PCR) on nasopharyngeal swab specimens. RESULTS: Fifty index cases and 214 contacts (64 household) were enrolled. Sixty-five contacts were RT-PCR positive during ≥1 visit. Vaccination did not influence viral load. Gamma variants were most prevalent; Delta variants emerged increasingly during implementation. The overall sensitivity of evaluated tests ranged from 33% to 76%. Performance was higher among symptomatic cases and those with cycle threshold (Ct) values <34 and lower among oligosymptomatic or asymptomatic cases. Assuming a 24-hour time to results for RT-PCR, the cumulative sensitivity of an anterior nares swab rapid antigen test was >70% and almost 90% after 4 days. CONCLUSIONS: The near-immediate time to results for antigen tests significantly offsets lower analytical sensitivity in settings where RT-PCR results are delayed or unavailable.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , Estudios Prospectivos , Trazado de Contacto , Sensibilidad y Especificidad
20.
J Neurosci ; 41(46): 9521-9538, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34620719

RESUMEN

KCNQ-Kv7 channels are found at the axon initial segment of pyramidal neurons, where they control cell firing and membrane potential. In oriens lacunosum moleculare (O-LM) interneurons, these channels are mainly expressed in the dendrites, suggesting a peculiar function of Kv7 channels in these neurons. Here, we show that Kv7 channel activity is upregulated following induction of presynaptic long-term synaptic depression (LTD) in O-LM interneurons from rats of both sex, thus resulting in a synergistic long-term depression of intrinsic excitability (LTD-IE). Both LTD and LTD-IE involve endocannabinoid (eCB) biosynthesis for induction. However, although LTD is dependent on cannabinoid type 1 receptors, LTD-IE is not. Molecular modeling shows a strong interaction of eCBs with Kv7.2/3 channel, suggesting a persistent action of these lipids on Kv7 channel activity. Our data thus unveil a major role for eCB synthesis in triggering both synaptic and intrinsic depression in O-LM interneurons.SIGNIFICANCE STATEMENT In principal cells, Kv7 channels are essentially located at the axon initial segment. In contrast, in O-LM interneurons, Kv7 channels are highly expressed in the dendrites, suggesting a singular role of these channels in O-LM cell function. Here, we show that LTD of excitatory inputs in O-LM interneurons is associated with an upregulation of Kv7 channels, thus resulting in a synergistic LTD of LTD-IE. Both forms of plasticity are mediated by the biosynthesis of eCBs. Stimulation of CB1 receptors induces LTD, whereas the direct interaction of eCBs with Kv7 channels induces LTD-IE. Our results thus provide a previously unexpected involvement of eCBs in long-lasting plasticity of intrinsic excitability in GABAergic interneurons.


Asunto(s)
Endocannabinoides/metabolismo , Interneuronas/metabolismo , Canales de Potasio KCNQ/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Animales , Femenino , Hipocampo/metabolismo , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA