Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351895

RESUMEN

The experimental demonstration of a p-type 2D WSe2 transistor with a ferroelectric perovskite BaTiO3 gate oxide is presented. The 30 nm thick BaTiO3 gate stack shows a robust ferroelectric hysteresis with a remanent polarization of 20 µC/cm2 and further enables a capacitance equivalent thickness of 0.5 nm in the hybrid WSe2/BaTiO3 stack due to its high dielectric constant of 323. We demonstrate one of the best ON currents for perovskite gate 2D transistors in the literature. This is enabled by high-quality epitaxial growth of BaTiO3 and a single 2D layer transfer based fabrication method that is shown to be amenable to silicon platforms. This demonstration is an important milestone toward the integration of crystalline complex oxides with 2D channel materials for scaled CMOS and low-voltage ferroelectric logic applications.

2.
Nano Lett ; 24(35): 10892-10898, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39167086

RESUMEN

While experimental realization of multiple charge-density waves (CDWs) has been ascribed to monolayer 1T-NbTe2, their atomic structures are still largely unclear, preventing a deep understanding of their novel electronic structures. Here, comparing first-principles-calculated orbital textures with reported STM measurements, we successfully identify multiple CDWs in monolayer NbTe2. Surprisingly, we reveal that both 1T/1H phases could exist in monolayer NbTe2, which was incognizant before. Particularly, we find that the experimentally observed 4 × 1 and 4 × 4 CDWs could be attributed to 1H stacking, while the observed 19×19 phase could possess 1T stacking. The existence of 1T/1H phases results in competition between CDW, spin-density wave (SDW), and ferromagnetism in 1H stacking under an external field and results in CDW-induced quantum phase transitions from a Kramers-Weyl fermion to a topological insulator in 1T stacking. Our study suggests NbTe2 as an exotic platform to investigate the interplay between CDW, SDW, and topological phases, which are largely unexplored in current experiments.

3.
Nano Lett ; 24(13): 3882-3889, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38527217

RESUMEN

We develop analytical models of optical-field-driven electron tunneling from the edge and surface of free-standing two-dimensional (2D) materials. We discover a universal scaling between the tunneling current density (J) and the electric field near the barrier (F): In(J/|F|ß) ∝ 1/|F| with ß values of 3/2 and 1 for edge emission and vertical surface emission, respectively. At ultrahigh values of F, the current density exhibits an unexpected high-field saturation effect due to the reduced dimensionality of the 2D material, which is absent in the traditional bulk material. Our calculation reveals the dc bias as an efficient method for modulating the optical-field tunneling subcycle emission characteristics. Importantly, our model is in excellent agreement with a recent experiment on graphene. Our results offer a useful framework for understanding optical-field tunneling emission from 2D materials, which are helpful for the development of optoelectronics and emerging petahertz vacuum nanoelectronics.

4.
Small ; 20(35): e2309499, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38624172

RESUMEN

Various semiconductor devices have been developed based on 2D heterojunction materials owing to their distinctive optoelectronic properties. However, to achieve efficient charge transfer at their interface remains a major challenge. Herein, an alloy heterojunction concept is proposed. The sulfur vacancies in ZnIn2S4 are filled with selenium atoms of PdSe2. This chemically bonded heterojunction can significantly enhance the separation of photocarriers, providing notable advantages in the field of photoelectric conversion. As a demonstration, a two-terminal photodetector based on the PdSe2/ZnIn2S4 heterojunction materials is fabricated. The photodetector exhibits stable operation in ambient conditions, showcasing superior performance in terms of large photocurrent, high responsivity (48.8 mA W-1) and detectivity (1.98 × 1011 Jones). To further validate the excellent optoelectronic performance of the heterojunction, a tri-terminal phototransistor is also fabricated. Benefiting from gate voltage modulation, the photocurrent is amplified to milliampere level, and the responsivity is increased to 229.14 mA W-1. These findings collectively demonstrate the significant potential of the chemically bonded PdSe2/ZnIn2S4 alloy heterojunction for future optoelectronic applications.

5.
Small ; : e2404986, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308318

RESUMEN

Hydrogen boride (HB) sheet is a new class of 2D materials comprising hydrogen and boron, synthesized through ion-exchange and exfoliation techniques. HB sheets can release hydrogen (H2) under light irradiation and is predicted to be a promising H2 storage material. However, its application is limited to the UV region. One approach to enable a visible-light-driven system is the utilization of plasmonic metallic nanoparticles. The present study reports H2 release from copper (Cu) nanoparticle-modified HB sheet (HB/Cu) under visible-light irradiation. Copper nanoparticles possess unique and strong plasmonic responses in the visible-light range, making them ideal light absorbers in this system. HB/Cu nanocomposites are synthesized using a simple mixture of copper acetate and HB sheets in acetonitrile, where HB sheets reduced copper ions to metal copper nanoparticles. The photoirradiation results shows that HB/Cu nanocomposites released more H2 than the bare HB sheets under visible-light irradiation. This is probably due to the plasmonic photothermal effect of copper metal, which enhances H2 generation from the HB sheets. This material offers a viable and cost-effective approach for developing visible-light-sensitive systems.

6.
Small ; : e2402527, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888122

RESUMEN

Aqueous zinc-iodine batteries are promising candidates for large-scale energy storage due to their high energy density and low cost. However, their development is hindered by several drawbacks, including zinc dendrites, anode corrosion, and the shuttle of polyiodides. Here, the design of 2D-shaped tungsten boride nanosheets with abundant borophene subunits-based active sites is reported to guide the (002) plane-dominated deposition of zinc while suppressing side reactions, which facilitates interfacial nucleation and uniform growth of zinc. Meanwhile, the interfacial d-band orbits of tungsten sites can further enhance the anchoring of polyiodides on the surface, to promote the electrocatalytic redox conversion of iodine. The resulting tungsten boride-based I2 cathodes in zinc-iodine cells exhibit impressive cyclic stability after 5000 cycles at 50 C, which accelerates the practical applications of zinc-iodine batteries.

7.
Small ; : e2405174, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39072996

RESUMEN

Two-dimensional (2D) van der Waals heterostructures endow individual 2D material with the novel functional structures, intriguing compositions, and fantastic interfaces, which efficiently provide a feasible route to overcome the intrinsic limitations of single 2D components and embrace the distinct features of different materials. However, the construction of 2D heterostructures with uniform heterointerfaces still poses significant challenges. Herein, a universal in-situ interfacial growth strategy is designed to controllably prepare a series of MXene-based tin selenides/sulfides with 2D van der Waals homogeneous heterostructures. Molten salt etching by-products that are usually recognized as undesirable impurities, are reasonably utilized by us to efficiently transform into different 2D nanostructures via in-situ interfacial growth. The obtained MXene-based 2D heterostructures present sandwiched structures and lamellar interlacing networks with uniform heterointerfaces, which demonstrate the efficient conversion from 3D composite to 2D heterostructures. Such 2D heterostructures significantly enhance charge transfer efficiency, chemical reversibility, and overall structural stability in the electrochemical process. Taking 2D-SnSe2/MXene anode as a representative, it delivers outstanding lithium storage performance with large reversible capacities and ultrahigh capacity retention of over 97% after numerous cycles at 0.2, 1.0, and 10.0 A g-1 current density, which suggests its tremendous application potential in lithium-ion batteries.

8.
Small ; : e2402857, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934535

RESUMEN

2D materials (2DMs), known for their atomically ultrathin structure, exhibit remarkable electrical and optical properties. Similarly, molecular self-assembled monolayers (SAMs) with comparable atomic thickness show an abundance of designable structures and properties. The strategy of constructing electronic devices through unique heterostructures formed by van der Waals assembly between 2DMs and molecular SAMs not only enables device miniaturization, but also allows for convenient adjustment of their structures and functions. In this review, the fundamental structures and fabrication methods of three different types of electronic devices dominated by 2DM-SAM heterojunctions with varying architectures are timely elaborated. Based on these heterojunctions, their fundamental functionalities and characteristics, as well as the regulation of their performance by external stimuli, are further discussed.

9.
Small ; 20(27): e2308182, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308386

RESUMEN

The electrochemical reduction of nitrate to ammonia is an effective method for mitigating nitrate pollution and generating ammonia. To design superior electrocatalysts, it is essential to construct a reaction site with high activity. Herein, a simple two-step method is applied to in situ reduce amorphous copper over boron-doped SnS2 nanosheets(denoted as aCu@B-SnS2-x. DFT calculations reveal the combination of amorphous copper and B-doping strategy can construct Cu-B active twins and introduce sulfur vacancies on the surface of the inert SnS2, the active twins can efficiently adsorb nitrate and forcibly separate oxygen atoms from nitrate under the assistance of the exposed Sn atom, leading to strong nitrate adsorption. Benefiting from this, aCu@B-SnS2-x exhibited an ultrahigh NH3 FE of 94.6% at -0.67 V versus RHE and the highest NH3 yield rate of 0.55 mmol h-1 mg-1 cat (9350 µg h-1 mg-1 cat) at -0.77 V versus RHE under alkaline conditions. Besides, aCu@B-SnS2-x is confirmed to remain active after various stability tests, suggesting the practicality of utilizing aCu@B-SnS2-x in industrial applications. This work highlights the feasibility of enhanced nitrate-to-ammonia conversion efficiency by combining the doping method and amorphous metal.

10.
Nanotechnology ; 35(20)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38306693

RESUMEN

Two-dimensional (2D) materials are attracting attention because of their outstanding physical, chemical, and electrical properties for applications of various future devices such as back-end-of-line field effect transistor (BEOL FET). Among many 2D materials, tin disulfide (SnS2) material is advantageous for low temperature process due to low melting point that can be used for flexible devices and back-end-of-line (BEOL) devices that require low processing temperature. However, low temperature synthesis method has a poor crystallinity for applying to various semiconductor industries. Hence, many studies of improving crystallinity of tin disulfide film are studied for enhancing the quality of film. In this work, we propose a precursor multi-dosing method before deposition of SnS2. This precursor pre-treatment was conducted by atomic layer deposition cycles for more adsorption of precursors to the substrate before deposition. The film quality was analyzed by x-ray diffraction, Raman, transmission electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy. As a result, more adsorbates by precursor pre-treatment induce higher growth rate and better crystallinity of film.

11.
Nanotechnology ; 35(19)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38306686

RESUMEN

Piezoresistive layered two-dimensional (2D) crystals offer intriguing promise as pressure sensors for microelectromechanical systems (MEMS) due to their remarkable strain-induced conductivity modulation. However, integration of the conventional chemical vapor deposition grown 2D thin films onto a micromachined silicon platform requires a complex transfer process, which degrades their strain-sensing performance. In this study, we present a differential pressure sensor built on a transfer-free piezoresistive PdSe2polycrystalline film deposited on a SiNxmembrane by plasma-enhanced selenization of a metal film at a temperature as low as 200 °C. Based on the resistance change and finite element strain analysis of the film under membrane deflection, we show that a 7.9 nm thick PdSe2film has a gauge factor (GF) of -43.3, which is ten times larger than that of polycrystalline silicon. The large GF enables the development of a diaphragm pressure sensor with a high sensitivity of 3.9 × 10-4kPa-1within the differential pressure range of 0-60 kPa. In addition, the sensor with a Wheatstone bridge circuit achieves a high voltage sensitivity of 1.04 mV·kPa-1, a rapid response time of less than 97 ms, and small output voltage variation of 8.1 mV in the temperature range of 25 °C to 55 °C. This transfer-free and low-temperature grown PdSe2piezoresistive thin film is promising for MEMS transducer devices.

12.
Nanotechnology ; 35(14)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38096582

RESUMEN

Among two-dimensional (2D) transition metal dichalcogenides (TMDs), MoTe2is predestined for phase-engineering applications due to the small difference in free energy between the semiconducting H-phase and metallic 1T'-phase. At the same time, the complete picture of the phase evolution originating from point defects in single-layer of semiconducting H-MoTe2via Mo6Te6nanowires to cubic molybdenum has not yet been reported so far, and it is the topic of the present study. The occurring phase transformations in single-layer H-MoTe2were initiated by 40-80 kV electrons in the spherical and chromatic aberration-corrected high-resolution transmission electron microscope and/or when subjected to high temperatures. We analyse the damage cross-section at voltages between 40 kV and 80 kV and relate the results to previously published values for other TMDs. Then we demonstrate that electron beam irradiation offers a route to locally transform freestanding single-layer H-MoTe2into one-dimensional (1D) Mo6Te6nanowires. Combining the experimental data with the results of first-principles calculations, we explain the transformations in MoTe2single-layers and Mo6Te6nanowires by an interplay of electron-beam-induced energy transfer, atom ejection, and oxygen absorption. Further, the effects emerging from electron irradiation are compared with those produced byin situannealing in a vacuum until pure molybdenum crystals are obtained at temperatures of about 1000 °C. A detailed understanding of high-temperature solid-to-solid phase transformation in the 2D limit can provide insights into the applicability of this material for future device fabrication.

13.
Nanotechnology ; 35(48)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39208809

RESUMEN

The distinctive multi-ring structure and remarkable electrical characteristics of biphenylene render it a material of considerable interest, notably for its prospective utilization as an anode material in lithium-ion batteries. However, understanding the mechanical traits of biphenylene is essential for its application, particularly due to the volumetric fluctuations resulting from lithium ion insertion and extraction during charging and discharging cycles. In this regard, this study investigates the performance of pristine biphenylene and materials embedded with various types of hole defects under uniaxial tension utilizing molecular dynamics simulations. Specifically, from the stress‒strain curves, we obtained key mechanical properties, including toughness, strength, Young's modulus and fracture strain. It was observed that various near-circular hole (including circular, square, hexagonal, and octagonal) defects result in remarkably similar properties. A more quantitative scaling analysis revealed that, in comparison with the exact shape of the defect, the area of the defect is more critical for determining the mechanical properties of biphenylene. Our finding might be beneficial to the defect engineering of two-dimensional materials.

14.
Ecotoxicol Environ Saf ; 270: 115823, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176180

RESUMEN

Two-dimensional materials have recently gained significant awareness. A representative of such materials, black phosphorous (BP), earned attention based on its comprehensive application potential. The presented study focuses on the mode of cellular response underlying the BP interaction with Chlamydomonas reinhardtii as an algal model organism. We observed noticeable ROS formation and changes in outer cellular topology after 72 h of incubation at 5 mg/L BP. Transcriptome profiling was employed to examine C. reinhardtii response after exposure to 25 mg/L BP for a deeper understanding of the associated processes. The RNA sequencing has revealed a comprehensive response with abundant transcript downregulation. The mode of action was attributed to cell wall disruption, ROS elevation, and chloroplast disturbance. Besides many other dysregulated genes, the cell response involved the downregulation of GH9 and gametolysin within a cell wall, pointing to a shift to discrete manipulation with resources. The response also included altered expression of the PRDA1 gene associated with redox governance in chloroplasts implying ROS disharmony. Altered expression of the Cre-miR906-3p, Cre-miR910, and Cre-miR914 pointed to those as potential markers in stress response studies.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolismo , Transcriptoma , Fósforo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Comprensión , Cloroplastos/genética , Cloroplastos/metabolismo
15.
Nano Lett ; 23(17): 8378-8384, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37651712

RESUMEN

The discovery of graphene and its excellent properties inspired the search for more two-dimensional (2D) materials. Understanding the structures and properties of the smallest repeating units as well as crystal 2D materials is helpful for designing 2D materials. As germanium tends to form three-dimensional structures, the preparation of germanium-based 2D nanomaterials is still a challenge. Herein, we report a Ge3O3 cluster with the potential to construct a germanium oxide 2D nanostructure. We conduct a combined anion photoelectron spectroscopy and theoretical study on Ge3O3-/0. The structure of Ge3O3- is a Cs symmetric nonplanar six-membered ring, while that of Ge3O3 is a D3h symmetric planar six-membered ring. Chemical bonding analyses reveal that Ge3O3 exhibits π aromaticity. First-principle results suggest that a buckled honeycomb 2D nanostructure with a wide band gap of 3.14 eV may be produced based on Ge3O3, which is promising in optoelectronic applications especially in blue, violet, and ultraviolet regions.

16.
Nano Lett ; 23(11): 4837-4843, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37191568

RESUMEN

Energy transfer processes may be engineered in van der Waals heterostructures by taking advantage of the atomically abrupt, Å-scale, and topologically tailorable interfaces within them. Here, we prepare heterostructures comprised of 2D WSe2 monolayers interfaced with dibenzotetraphenylperiflanthene (DBP)-doped rubrene, an organic semiconductor capable of triplet fusion. We fabricate these heterostructures entirely through vapor deposition methods. Time-resolved and steady-state photoluminescence measurements reveal rapid subnanosecond quenching of WSe2 emission by rubrene and fluorescence from guest DBP molecules at 612 nm (λexc = 730 nm), thus providing clear evidence of photon upconversion. The dependence of the upconversion emission on excitation intensity is consistent with a triplet fusion mechanism, and maximum efficiency (linear regime) of this process occurs at threshold intensities as low as 110 mW/cm2, which is comparable to the integrated solar irradiance. This study highlights the potential for advanced optoelectronic applications employing vdWHs which leverage strongly bound excitons in monolayer TMDs and organic semiconductors.

17.
Nano Lett ; 23(4): 1152-1158, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36662611

RESUMEN

Recently, nonvolatile resistive switching memory effects have been actively studied in two-dimensional (2D) transition metal dichalcogenides and boron nitrides to advance future memory and neuromorphic computing applications. Here, we report on radiofrequency (RF) switches utilizing hexagonal boron nitride (h-BN) memristors that afford operation in the millimeter-wave (mmWave) range. Notably, silver (Ag) electrodes to h-BN offer outstanding nonvolatile bipolar resistive switching characteristics with a high ON/OFF switching ratio of 1011 and low switching voltage below 0.34 V. In addition, the switch exhibits a low insertion loss of 0.50 dB and high isolation of 23 dB across the D-band spectrum (110 to 170 GHz). Furthermore, the S21 insertion loss can be tuned through five orders of current compliance magnitude, which increases the application prospects for atomic switches. These results can enable the switch to become a key component for future reconfigurable wireless and 6G communication systems.

18.
Nano Lett ; 23(10): 4274-4281, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37159934

RESUMEN

The intrinsic weak and highly nonlocal dielectric screening of two-dimensional materials is well-known to lead to high sensitivity of their optoelectronic properties to environment. Less studied theoretically is the role of free carriers in those properties. Here, we use ab initio GW and Bethe-Salpeter equation calculations, with a rigorous treatment of dynamical screening and local-field effects, to study the doping dependence of the quasiparticle and optical properties of a monolayer transition-metal dichalcogenide, 2H MoTe2. We predict a quasiparticle band gap renormalization of several hundreds of meV for experimentally attainable carrier densities and a similarly sizable decrease in the exciton binding energy. This results in an almost constant excitation energy for the lowest-energy exciton resonance with an increasing doping density. Using a newly developed and generally applicable plasmon-pole model and a self-consistent solution of the Bethe-Salpeter equation, we reveal the importance of accurately capturing both dynamical and local-field effects to understand detailed photoluminescence measurements.

19.
Nano Lett ; 23(12): 5617-5624, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37289519

RESUMEN

High light absorption (∼15%) and strong photoluminescence (PL) emission in monolayer (1L) transition metal dichalcogenides (TMDs) make them ideal candidates for optoelectronic device applications. Competing interlayer charge transfer (CT) and energy transfer (ET) processes control the photocarrier relaxation pathways in TMD heterostructures (HSs). In TMDs, long-distance ET can survive up to several tens of nm, unlike the CT process. Our experiment shows that an efficient ET occurs from the 1Ls WSe2-to-MoS2 with an interlayer hexagonal boron nitride (hBN), due to the resonant overlapping of the high-lying excitonic states between the two TMDs, resulting in enhanced HS MoS2 PL emission. This type of unconventional ET from the lower-to-higher optical bandgap material is not typical in the TMD HSs. With increasing temperature, the ET process becomes weaker due to the increased electron-phonon scattering, destroying the enhanced MoS2 emission. Our work provides new insight into the long-distance ET process and its effect on the photocarrier relaxation pathways.

20.
Nano Lett ; 23(14): 6292-6300, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37410894

RESUMEN

As a novel two-dimensional material, violet phosphorus (VP) has attracted a considerable amount of attention due to its high carrier mobility, anisotropy, wide band gap, stability, and easy stripping properties. In this work, the microtribological properties of partially oxidized VP (oVP) and the mechanism of reducing friction and wear as additives in oleic acid (OA) oil were studied systematically. When adding oVP to OA, the coefficient of friction (COF) decreased from 0.084 to 0.014 with the steel-to-steel pair, and the ultralow shearing strength tribofilm consisting of amorphous carbon and phosphorus oxides that formed resulted in the reductions of COF and wear rate individually by 83.3% and 53.9%, respectively, compared with those of pure OA. The results extended the application scenarios for VP in the design of lubricant additives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA