RESUMEN
Kruppel-like factors (KLFs) are a set of transcription factors (TFs) involved in the regulation of many basic biological processes, and recent studies suggested that nanoparticles (NPs) were capable to change KLFs in different models even at non-cytotoxic concentrations. In this study, we repeatedly exposed 3D Caco-2 spheroids and mice to TiO2 NPs, one of the most frequently used metal oxide NPs, and investigated the changes of KLF-signaling pathways based on RNA-sequencing. Although the internalization of TiO2 NPs did not induce cytotoxicity in vitro, repeated exposure (three times within 7 days) to 15.7 ng/ml TiO2 NPs increased KLF4 but decreased KLF6. Consistently, KLF4/KLF6-regulated gene ontology terms were altered, including those involved in the regulation of gene expression. We further verified that repeated exposure to 15.7 ng/ml TiO2 NPs increased the expression of KLF4 and proto-oncogene, bHLH transcription factor (MYC), but decreased the expression of KLF6 and activating transcription factor 3 (ATF3). But with the increase of NP concentrations, the expression of these genes was decreased. In mice following intragastrical exposure to 4.39 and 43.9 mg/kg TiO2 NPs (once a day for 5 continuous days), we observed increased expression of klf4, klf6, myc, and atf3, along with morphological changes of intestines. We concluded that repeated exposure to low levels of TiO2 NPs altered KLF-signaling pathways in intestinal cells both in vitro and in vivo.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Humanos , Animales , Ratones , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Células CACO-2 , Nanopartículas/toxicidad , Titanio/toxicidad , Nanopartículas del Metal/toxicidad , IntestinosRESUMEN
MoS2 nanosheets (NSs) are novel 2D nanomaterials (NMs) being used in many important fields. Recently, we proposed the need to evaluate the influences of NMs on Kruppel-like factors (KLFs) even if these materials are relatively biocompatible. In this study, we investigated the influences of MoS2 NSs or bulk on KLF4 signaling pathway in 3D Caco-2 spheroids in vitro and mouse intestines in vivo. Through the analysis of our previous RNA-sequencing data, we found that exposure to MoS2 NSs or bulk activated KLF4 expression in 3D Caco-2 spheroids. Consistently, these materials also activated KLF4-related gene ontology (GO) terms and down-regulated a panel of KLF4-downstream genes. To verify these findings, we repeatedly exposed mice to MoS2 NSs or bulk materials via intragastrical administration (1 mg/kg bodyweight, once a day, for 4 days). It was shown that oral exposure to these materials decreased bodyweight, leading to relatively higher organ coefficients. As expected, exposure to both types of materials increased Mo elements as well as other trace elements, such as Zn, Fe, and Mn in mouse intestines. The exposure also induced morphological changes of intestines, such as shortening of intestinal villi and decreased crypt depth, which may result in decreased intestinal lipid staining. Consistent with RNA-sequencing data, we found that material exposure increased KLF4 protein staining in mouse intestines and decreased two KLF4 downstream proteins, namely extracellular signal-regulated kinase (ERK) and serine/threonine kinase (AKT). We concluded that MoS2 materials were capable to activate KLF4-signaling pathway in intestines both in vivo and in vitro.
Asunto(s)
Factor 4 Similar a Kruppel , Molibdeno , Humanos , Ratones , Animales , Molibdeno/toxicidad , Células CACO-2 , Intestinos , ARNRESUMEN
Previously we reported the cytoprotective effects of polyphenols rich in hydroxyl groups against ZnO nanoparticles (NPs). This study used RNA-sequencing to evaluate the toxicity of ZnO NPs and epigallocatechin gallate (EGCG) to 3D Caco-2 spheroids. EGCG altered the colloidal stability of ZnO NPs, shown as the changes of atomic force microscopic height, solubility in cell culture medium, and hydrodynamic sizes. EGCG almost completely reversed ZnO NP-induced cytotoxicity, and consistently, alleviated ZnO NP-induced gene ontology (GO) terms and genes related with apoptosis. EGCG also modestly decreased intracellular Zn ions and changed GO terms and genes related with endocytosis/exocytosis in ZnO NP-exposed spheroids. Meanwhile, EGCG changed ZnO NP-induced alteration of GO terms and genes related with the functions of mitochondria, endoplasmic reticulum and lysosomes. We concluded that EGCG alleviated the cytotoxicity of ZnO NPs to 3D Caco-2 spheroids by altering NPs' colloidal properties and the pathways related with internalization and organelle dysfunction.
Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Células CACO-2 , Catequina/análogos & derivados , Humanos , Solubilidad , Óxido de Zinc/toxicidadRESUMEN
The influence of food components on nanoparticle (NP) internalization indicates a need to investigate the behaviors of NPs in a complex system. This study measured the changes of TiO2 NP colloidal stability and quenching of anthocyanin fluorescence to indicate NP-anthocyanin interactions, and cytotoxicity, oxidative stress, expression of ABC transporters and intracellular Ti concentrations in 3D Caco-2 spheroids co-exposed to NPs and anthocyanins to indicate the influence of anthocyanins on NP bio-effects. The anthocyanins were observed to have minimal impacts on colloidal properties of TiO2 NPs. Meanwhile, NP-anthocyanin co-exposure did not induce cytotoxicity or oxidative stress. The fluorescence quenching study indicated the binding of anthocyanins onto TiO2 NPs, and the binding affinity was inversely correlated with NP internalization into 3D Caco-2 spheroids. This may be partially related with the up-regulation of ABC transporters. Our results may provide novel insights into understanding the interactions of NPs and anthocyanins with human intestinal cells.