Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 733
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375207

RESUMEN

Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.

2.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37943791

RESUMEN

Jhanas are profound states of mind achieved through advanced meditation, offering valuable insights into the nature of consciousness and tools to enhance well-being. Yet, its neurophenomenology remains limited due to methodological difficulties and the rarity of advanced meditation practitioners. We conducted a highly exploratory study to investigate the neurophenomenology of jhanas in an intensively sampled adept meditator case study (4 hr 7T fMRI collected in 27 sessions) who performed jhana meditation and rated specific aspects of experience immediately thereafter. Linear mixed models and correlations were used to examine relations among brain activity and jhana phenomenology. We identified distinctive patterns of brain activity in specific cortical, subcortical, brainstem, and cerebellar regions associated with jhana. Furthermore, we observed correlations between brain activity and phenomenological qualities of attention, jhanic qualities, and narrative processing, highlighting the distinct nature of jhanas compared to non-meditative states. Our study presents the most rigorous evidence yet that jhana practice deconstructs consciousness, offering unique insights into consciousness and significant implications for mental health and well-being.


Asunto(s)
Meditación , Humanos , Meditación/psicología , Estado de Conciencia , Atención , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen
3.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39183364

RESUMEN

47,XXX (Triple X syndrome) is a sex chromosome aneuploidy characterized by the presence of a supernumerary X chromosome in affected females and is associated with a variable cognitive, behavioral, and psychiatric phenotype. The effect of a supernumerary X chromosome in affected females on intracortical microstructure is currently unknown. Therefore, we conducted 7 Tesla structural MRI and compared T1 (ms), as a proxy for intracortical myelin (ICM), across laminae of 21 adult women with 47,XXX and 22 age-matched typically developing females using laminar analyses. Relationships between phenotypic traits and T1 values in 47,XXX were also investigated. Adults with 47,XXX showed higher bilateral T1 across supragranular laminae in the banks of the superior temporal sulcus, and in the right inferior temporal gyrus, suggesting decreases of ICM primarily within the temporal cortex in 47,XXX. Higher social functioning in 47,XXX was related to larger inferior temporal gyrus ICM content. Our findings indicate an effect of a supernumerary X chromosome in adult-aged women on ICM across supragranular laminae within the temporal cortex. These findings provide insight into the role of X chromosome dosage on ICM across laminae. Future research is warranted to further explore the functional significance of altered ICM across laminae in 47,XXX.


Asunto(s)
Imagen por Resonancia Magnética , Vaina de Mielina , Humanos , Femenino , Adulto , Vaina de Mielina/metabolismo , Imagen por Resonancia Magnética/métodos , Adulto Joven , Aberraciones Cromosómicas Sexuales , Persona de Mediana Edad , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/metabolismo , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/genética , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/diagnóstico por imagen , Cromosomas Humanos X/genética , Trisomía/genética , Corteza Cerebral/diagnóstico por imagen
4.
J Neurosci ; 43(16): 2874-2884, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36948584

RESUMEN

The hierarchically organized structures of the medial temporal lobe are critically important for episodic memory function. Accumulating evidence suggests dissociable information processing pathways are maintained throughout these structures including in the medial and lateral entorhinal cortex. Cortical layers provide an additional dimension of dissociation as the primary input to the hippocampus derives from layer 2 neurons in the entorhinal cortex, whereas the deeper layers primarily receive output from the hippocampus. Here, novel high-resolution T2-prepared functional MRI methods were successfully used to mitigate susceptibility artifacts typically affecting MRI signals in this region providing uniform sensitivity across the medial and lateral entorhinal cortex. During the performance of a memory task, healthy human subjects (age 25-33 years, mean age 28.2 ± 3.3 years, 4 female) showed differential functional activation in the superficial and deep layers of the entorhinal cortex associated with task-related encoding and retrieval conditions, respectively. The methods provided here offer an approach to probe layer-specific activation in normal cognition and conditions contributing to memory impairment.SIGNIFICANCE STATEMENT This study provides new evidence for differential neuronal activation in the superficial versus deep layers of the entorhinal cortex associated with encoding and retrieval memory processes, respectively, in cognitively normal adults. The study further shows that this dissociation can be observed in both the medial and the lateral entorhinal cortex. The study was achieved by using a novel functional MRI method allowing us to measure robust functional MRI signals in both the medial and lateral entorhinal cortex that was not possible in previous studies. The methodology established here in healthy human subjects lays a solid foundation for subsequent studies investigating layer-specific and region-specific changes in the entorhinal cortex associated with memory impairment in various conditions such as Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Memoria Episódica , Adulto , Humanos , Femenino , Adulto Joven , Corteza Entorrinal/diagnóstico por imagen , Corteza Entorrinal/fisiología , Lóbulo Temporal/fisiología , Hipocampo/diagnóstico por imagen , Hipocampo/fisiología , Trastornos de la Memoria
5.
J Neurosci ; 43(42): 7028-7040, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37669861

RESUMEN

Parkinson's disease (PD) and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals and are linked with worse prognosis, and lack improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus (LC) noradrenergic system. Here we test the hypothesis that structural variation of the LC explains response inhibition deficits in PSP and PD. Twenty-four people with idiopathic PD, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls undertook a stop-signal task and ultrahigh field 7T magnetization-transfer-weighted imaging of the LC. Parameters of "race models" of go- versus stop-decisions were estimated using hierarchical Bayesian methods to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between LC integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. PSP caused a distinct pattern of abnormalities in inhibitory control with a paradoxically reduced threshold for go responses, but longer nondecision times, and more lapses of attention. The variation in response inhibition correlated with the variability of LC integrity across participants in both clinical groups. Structural imaging of the LC, coupled with behavioral modeling in parkinsonian disorders, confirms that LC integrity is associated with response inhibition and LC degeneration contributes to neurobehavioral changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimization of noradrenergic treatment is likely to benefit from stratification according to LC integrity.SIGNIFICANCE STATEMENT Response inhibition deficits contribute to clinical symptoms and poor outcomes in people with Parkinson's disease and progressive supranuclear palsy. We used cognitive modeling of performance of a response inhibition task to identify disease-specific mechanisms of abnormal inhibitory control. Response inhibition in both patient groups was associated with the integrity of the noradrenergic locus coeruleus, which we measured in vivo using ultra-high field MRI. We propose that the imaging biomarker of locus coeruleus integrity provides a trans-diagnostic tool to explain individual differences in response inhibition ability beyond the classic nosological borders and diagnostic criteria. Our data suggest a potential new stratified treatment approach for Parkinson's disease and progressive supranuclear palsy.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/psicología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Locus Coeruleus , Teorema de Bayes
6.
Neurobiol Dis ; 190: 106372, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061397

RESUMEN

Gait disturbance is a manifestation of cerebral small vessel disease (CSVD). The posterolateral thalamus (PL), whose blood is mainly supplied by the P2 segment of posterior cerebral artery (P2-PCA), plays pivotal roles in gait regulation. We investigated the influence of the distance between P2-PCA and PL on gait with varying CSVD burden. 71 participants were divided into low and high CSVD burden groups. The distance from P2-PCA to PL was measured using 7 T TOF-MRA and categorized into an immediate or distant PCA-to-thalamus pattern. Functional connectivity (FC) and voxel-based morphometry were assessed to evaluate functional and structural alterations. In the low CSVD burden group, immediate PCA-to-thalamus supply strongly correlates with longer step length and higher wave phase time percent, and exhibited enhanced FCs in left supplementary motor area, right precentral cortex (PreCG.R). While in the high CSVD burden group, no association between PCA-to-thalamus pattern and gait was found, and we observed reduced FC in PreCG.R with immediate PCA-to-thalamus pattern. Higher CSVD burden was associated with decreased gray matter density in bilateral thalamus. However, no significant structural thalamic change was observed between the two types of PCA-to-thalamus patterns in all patients. Our study demonstrated patients with immediate PCA-to-thalamus supply exhibited better gait performance in low CSVD burden populations, which also correlated with enhanced FCs in motor-related cortex, indicating the beneficial effects of the immediate PCA-to-thalamus supply pattern. In the higher burden CSVD populations, the effects of PCA-to-thalamus pattern on gait are void, attributable to the CSVD-related thalamic destruction and impairment of thalamus-related FC.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Arteria Cerebral Posterior , Humanos , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Sustancia Gris , Imagen por Resonancia Magnética , Tálamo/diagnóstico por imagen
7.
Hum Brain Mapp ; 45(12): e26816, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39169546

RESUMEN

Although 7 T MRI research has contributed much to our understanding of multiple sclerosis (MS) pathology, most prior data has come from small, single-center studies with varying methods. In order to truly know if such findings have widespread applicability, multicenter methods and studies are needed. To address this, members of the North American Imaging in MS (NAIMS) Cooperative worked together to create a multicenter collaborative study of 7 T MRI in MS. In this manuscript, we describe the methods we have developed for the purpose of pooling together a large, retrospective dataset of 7 T MRIs acquired in multiple MS studies at five institutions. To date, this group has contributed five-hundred and twenty-eight 7 T MRI scans from 350 individuals with MS to a common data repository, with plans to continue to increase this sample size in the coming years. We have developed unified methods for image processing for data harmonization and lesion identification/segmentation. We report here our initial observations on intersite differences in acquisition, which includes site/device differences in brain coverage and image quality. We also report on the development of our methods and training of image evaluators, which resulted in median Dice Similarity Coefficients for trained raters' annotation of cortical and deep gray matter lesions, paramagnetic rim lesions, and meningeal enhancement between 0.73 and 0.82 compared to final consensus masks. We expect this publication to act as a resource for other investigators aiming to combine multicenter 7 T MRI datasets for the study of MS, in addition to providing a methodological reference for all future analysis projects to stem from the development of this dataset.


Asunto(s)
Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Adulto , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Procesamiento de Imagen Asistido por Computador/métodos
8.
Hum Brain Mapp ; 45(3): e26597, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38375948

RESUMEN

Although functional magnetic resonance imaging (fMRI) is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0 . Increasing field strength enables higher spatial resolution and improved sensitivity to blood oxygenation level-dependent (BOLD) signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D echo-planar imaging (EPI) protocols, which differ in sensitivity to spatial and temporal B0 inhomogeneity. The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. All protocols used 3 mm slice thickness. For each protocol, the BOLD response to 13 10-s noxious thermal stimuli applied to the right thumb was acquired in a 10-min fMRI run. Image quality, temporal signal to noise ratio (SNR), and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment. PRACTITIONER POINTS: First stimulus task fMRI results in the spinal cord at 7 T. Single-shot 0.75 mm 2D EPI produced the highest mean z-statistic. Multi-shot 0.60 mm 2D EPI provided the best-localized activation and least distortion.


Asunto(s)
Médula Cervical , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Médula Cervical/diagnóstico por imagen , Imagen Eco-Planar/métodos , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
9.
Hum Brain Mapp ; 45(7): e26666, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726831

RESUMEN

Advanced meditation such as jhana meditation can produce various altered states of consciousness (jhanas) and cultivate rewarding psychological qualities including joy, peace, compassion, and attentional stability. Mapping the neurobiological substrates of jhana meditation can inform the development and application of advanced meditation to enhance well-being. Only two prior studies have attempted to investigate the neural correlates of jhana meditation, and the rarity of adept practitioners has largely restricted the size and extent of these studies. Therefore, examining the consistency and reliability of observed brain responses associated with jhana meditation can be valuable. In this study, we aimed to characterize functional magnetic resonance imaging (fMRI) reliability within a single subject over repeated runs in canonical brain networks during jhana meditation performed by an adept practitioner over 5 days (27 fMRI runs) inside an ultra-high field 7 Tesla MRI scanner. We found that thalamus and several cortical networks, that is, the somatomotor, limbic, default-mode, control, and temporo-parietal, demonstrated good within-subject reliability across all jhanas. Additionally, we found that several other relevant brain networks (e.g., attention, salience) showed noticeable increases in reliability when fMRI measurements were adjusted for variability in self-reported phenomenology related to jhana meditation. Overall, we present a preliminary template of reliable brain areas likely underpinning core neurocognitive elements of jhana meditation, and highlight the utility of neurophenomenological experimental designs for better characterizing neuronal variability associated with advanced meditative states.


Asunto(s)
Imagen por Resonancia Magnética , Meditación , Red Nerviosa , Humanos , Reproducibilidad de los Resultados , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Adulto , Masculino , Femenino , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen
10.
Magn Reson Med ; 92(6): 2392-2403, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39136249

RESUMEN

PURPOSE: Advancing the development of 7 T MRI for spinal cord imaging is crucial for the enhanced diagnosis and monitoring of various neurodegenerative diseases and traumas. However, a significant challenge at this field strength is the transmit field inhomogeneity. Such inhomogeneity is particularly problematic for imaging the small, deep anatomical structures of the cervical spinal cord, as it can cause uneven signal intensity and elevate the local specific absorption ratio, compromising image quality. This multisite study explores several RF shimming techniques in the cervical spinal cord. METHODS: Data were collected from 5 participants between two 7 T sites with a custom 8Tx/20Rx parallel transmission coil. We explored two radiofrequency (RF) shimming approaches from an MRI vendor and four from an open-source toolbox, showcasing their ability to enhance transmit field and signal homogeneity along the cervical spinal cord. RESULTS: The circularly polarized (CP), coefficient of variation (CoV), and specific absorption rate (SAR) efficiency shim modes showed the highest B1 + efficiency, and the vendor-based "patient" and "volume" modes showed the lowest B1 + efficiency. The coefficient of variation method produced the highest CSF/spinal cord contrast on T2*-weighted scans (ratio of 1.27 ± 0.03), and the lowest variation of that contrast along the superior-inferior axis. CONCLUSION: The study's findings highlight the potential of RF shimming to advance 7 T MRI's clinical utility for central nervous system imaging by enabling more homogenous and efficient spinal cord imaging. Additionally, the research incorporates a reproducible Jupyter Notebook, enhancing the study's transparency and facilitating peer verification.


Asunto(s)
Médula Cervical , Imagen por Resonancia Magnética , Ondas de Radio , Humanos , Imagen por Resonancia Magnética/métodos , Médula Cervical/diagnóstico por imagen , Masculino , Femenino , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Médula Espinal/diagnóstico por imagen , Algoritmos
11.
Magn Reson Med ; 92(3): 890-899, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38469953

RESUMEN

PURPOSE: To investigate the feasibility of downfield MR spectroscopic imaging (DF-MRSI) in the human brain at 7T. METHODS: A 7T DF-MRSI pulse sequence was implemented based on the previously described methodology at 3T, with 3D phase-encoding, 1 3 ‾ 3 1 ‾ $$ 1\overline{3}3\overline{1} $$ spectral-spatial excitation, and frequency selective refocusing. Data were pre-processed followed by analysis using the "LCModel" software package, and metabolite maps created from the LCModel results. Total scan time, including brain MRI and a water-reference MRSI, was 24 min. The sequence was tested in 10 normal volunteers. Estimated metabolite levels and uncertainty values (Cramer Rao lower bounds, CRLBs) for nine downfield peaks were compared between seven different brain regions, anterior cingulate cortex (ACC), centrum semiovale (CSO), corpus callosum (CC), cerebellar vermis (CV), dorsolateral prefrontal cortex (DLPFC), posterior cingulate cortex (PCC), and thalamus (Thal). RESULTS: DF peaks were relatively uniformly distributed throughout the brain, with only a small number of peaks showing any significant regional variations. Most DF peaks had average CRLB<25% in most brain regions. Average SNR values were higher for the brain regions ACC and DLPFC (˜7 ± 0.95, mean ± SD) while in a range of 3.4-6.0 for other brain regions. Average linewidth (FWHM) values were greater than 35 Hz in the ACC, CV, and Thal, and 22 Hz in CC, CSO, DLPFC, and PCC. CONCLUSION: High-field DF-MRSI is able to spatially map exchangeable protons in the human brain at high resolution and with near whole-brain coverage in acceptable scan times, and in the future may be used to study metabolism of brain tumors or other neuropathological disorders.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Adulto , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Voluntarios Sanos , Algoritmos , Programas Informáticos , Adulto Joven
12.
Magn Reson Med ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323238

RESUMEN

PURPOSE: Echo planar time-resolved imaging (EPTI) is a new imaging approach that addresses the limitations of EPI by providing high-resolution, distortion- and T2/ T 2 * $$ {\mathrm{T}}_2^{\ast } $$  blurring-free imaging for functional MRI (fMRI). However, as in all multishot sequences, intershot phase variations induced by physiological processes can introduce temporal instabilities to the reconstructed time-series data. This study aims to reduce these instabilities in multishot EPTI. THEORY AND METHODS: In conventional multishot EPTI, the time intervals between the shots comprising each slice can introduce intershot phase variations. Here, the fast low-angle excitation echo-planar technique (FLEET), in which all shots of each slice are acquired consecutively with minimal time delays, was combined with a variable flip angle (VFA) technique to improve intershot consistency and maximize signal. A recursive Shinnar-Le Roux RF pulse design algorithm was used to generate pulses for different shots to produce consistent slice profiles and signal intensities across shots. Blipped controlled aliasing in parallel imaging simultaneous multislice was also combined with the proposed VFA-FLEET EPTI to improve temporal resolution and increase spatial coverage. RESULTS: The temporal stability of VFA-FLEET EPTI was compared with conventional EPTI at 7 T. The results demonstrated that VFA-FLEET can provide spatial-specific increase of temporal stability. We performed high-resolution task-fMRI experiments at 7 T using VFA-FLEET EPTI, and reliable BOLD responses to a visual stimulus were detected. CONCLUSION: The intershot phase variations induced by physiological processes in multishot EPTI can manifest as specific spatial patterns of physiological noise enhancement and lead to reduced temporal stability. The VFA-FLEET technique can substantially reduce these physiology-induced instabilities in multishot EPTI acquisitions. The proposed method provides sufficient stability and sensitivity for high-resolution fMRI studies.

13.
Magn Reson Med ; 91(5): 1893-1907, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38115573

RESUMEN

PURPOSE: The inflow-based vascular-space-occupancy (iVASO) MRI was originally developed in a single-slice mode to measure arterial cerebral blood volume (CBVa). When vascular crushers are applied in iVASO, the signals can be sensitized predominantly to small pial arteries and arterioles. The purpose of this study is to perform a systematic optimization and evaluation of a 3D iVASO sequence on both 3 T and 7 T for the quantification of CBVa values in the human brain. METHODS: Three sets of experiments were performed in three separate cohorts. (1) 3D iVASO MRI protocols were compared to single-slice iVASO, and the reproducibility of whole-brain 3D iVASO MRI was evaluated. (2) The effects from different vascular crushers in iVASO were assessed. (3) 3D iVASO MRI results were evaluated in arterial and venous blood vessels identified using ultrasmall-superparamagnetic-iron-oxides-enhanced MRI to validate its arterial origin. RESULTS: 3D iVASO scans showed signal-to-noise ratio (SNR) and CBVa measures consistent with single-slice iVASO with reasonable intrasubject reproducibility. Among the iVASO scans performed with different vascular crushers, the whole-brain 3D iVASO scan with a motion-sensitized-driven-equilibrium preparation with two binomial refocusing pulses and an effective TE of 50 ms showed the best suppression of macrovascular signals, with a relatively low specific absorption rate. When no vascular crusher was applied, the CBVa maps from 3D iVASO scans showed large CBVa values in arterial vessels but well-suppressed signals in venous vessels. CONCLUSION: A whole-brain 3D iVASO MRI scan was optimized for CBVa measurement in the human brain. When only microvascular signals are desired, a motion-sensitized-driven-equilibrium-based vascular crusher with binomial refocusing pulses can be applied in 3D iVASO.


Asunto(s)
Volumen Sanguíneo Cerebral , Imagen por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Arterias
14.
Magn Reson Med ; 91(6): 2498-2507, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38247050

RESUMEN

PURPOSE: To mitigate B 1 + $$ {B}_1^{+} $$ inhomogeneity at 7T for multi-channel transmit arrays using unsupervised deep learning with convolutional neural networks (CNNs). METHODS: Deep learning parallel transmit (pTx) pulse design has received attention, but such methods have relied on supervised training and did not use CNNs for multi-channel B 1 + $$ {B}_1^{+} $$ maps. In this work, we introduce an alternative approach that facilitates the use of CNNs with multi-channel B 1 + $$ {B}_1^{+} $$ maps while performing unsupervised training. The multi-channel B 1 + $$ {B}_1^{+} $$ maps are concatenated along the spatial dimension to enable shift-equivariant processing amenable to CNNs. Training is performed in an unsupervised manner using a physics-driven loss function that minimizes the discrepancy of the Bloch simulation with the target magnetization, which eliminates the calculation of reference transmit RF weights. The training database comprises 3824 2D sagittal, multi-channel B 1 + $$ {B}_1^{+} $$ maps of the healthy human brain from 143 subjects. B 1 + $$ {B}_1^{+} $$ data were acquired at 7T using an 8Tx/32Rx head coil. The proposed method is compared to the unregularized magnitude least-squares (MLS) solution for the target magnetization in static pTx design. RESULTS: The proposed method outperformed the unregularized MLS solution for RMS error and coefficient-of-variation and had comparable energy consumption. Additionally, the proposed method did not show local phase singularities leading to distinct holes in the resulting magnetization unlike the unregularized MLS solution. CONCLUSION: Proposed unsupervised deep learning with CNNs performs better than unregularized MLS in static pTx for speed and robustness.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Humanos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Encéfalo/diagnóstico por imagen
15.
Magn Reson Med ; 91(4): 1608-1624, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38102807

RESUMEN

PURPOSE: MP2RAGE parameter optimization is redefined to allow more time-efficient MR acquisitions, whereas the T1 -based synthetic imaging framework is used to obtain on-demand T1 -weighted contrasts. Our aim was to validate this concept on healthy volunteers and patients with multiple sclerosis, using plug-and-play parallel-transmission brain imaging at 7 T. METHODS: A "time-efficient" MP2RAGE sequence was designed with optimized parameters including TI and TR set as small as possible. Extended phase graph formalism was used to set flip-angle values to maximize the gray-to-white-matter contrast-to-noise ratio (CNR). Several synthetic contrasts (UNI, EDGE, FGATIR, FLAWSMIN , FLAWSHCO ) were generated online based on the acquired T1 maps. Experimental validation was performed on 4 healthy volunteers at various spatial resolutions. Clinical applicability was evaluated on 6 patients with multiple sclerosis, scanned with both time-efficient and conventional MP2RAGE parameterizations. RESULTS: The proposed time-efficient MP2RAGE protocols reduced acquisition time by 40%, 30%, and 19% for brain imaging at (1 mm)3 , (0.80 mm)3 and (0.65 mm)3 , respectively, when compared with conventional parameterizations. They also provided all synthetic contrasts and comparable contrast-to-noise ratio on UNI images. The flexibility in parameter selection allowed us to obtain a whole-brain (0.45 mm)3 acquisition in 19 min 56 s. On patients with multiple sclerosis, a (0.67 mm)3 time-efficient acquisition enhanced cortical lesion visualization compared with a conventional (0.80 mm)3 protocol, while decreasing the scan time by 15%. CONCLUSION: The proposed optimization, associated with T1 -based synthetic contrasts, enabled substantial decrease of the acquisition time or higher spatial resolution scans for a given time budget, while generating all typical brain contrasts derived from MP2RAGE.


Asunto(s)
Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología
16.
Magn Reson Med ; 91(6): 2358-2373, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38193277

RESUMEN

PURPOSE: Spoke pulses improve excitation homogeneity in parallel-transmit MRI. We propose an efficient global optimization algorithm, Bayesian optimization of gradient trajectory (BOGAT), for single-slice and simultaneous multislice imaging. THEORY AND METHODS: BOGAT adds an outer loop to optimize kT-space positions. For each position, the RF coefficients are optimized (e.g., with magnitude least squares) and the cost function evaluated. Bayesian optimization progressively estimates the cost function. It automatically chooses the kT-space positions to sample, to achieve fast convergence, often coming close to the globally optimal spoke positions. We investigated the typical features of spokes cost functions by a grid search with field maps comprising 85 slabs from 14 volunteers. We tested BOGAT in this database, and prospectively in a phantom and in vivo. We compared the vendor-provided Fourier transform approach with the same magnitude least squares RF optimizer. RESULTS: The cost function is nonconvex and seen empirically to be piecewise smooth with discontinuities where the underlying RF optimum changes sharply. BOGAT converged to within 10% of the global minimum cost within 30 iterations in 93% of slices in our database. BOGAT achieved up to 56% lower flip angle RMS error (RMSE) or 55% lower pulse energy in phantoms versus the Fourier transform approach, and up to 30% lower RMSE and 29% lower energy in vivo with 7.8 s extra computation. CONCLUSION: BOGAT efficiently estimated near-global optimum spoke positions for the two-spoke tests, reducing flip-angle RMSE and/or pulse energy in a computation time (˜10 s), which is suitable for online optimization.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Humanos , Teorema de Bayes , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Análisis de los Mínimos Cuadrados , Encéfalo/diagnóstico por imagen
17.
Magn Reson Med ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344348

RESUMEN

PURPOSE: Neurochemicals of interest quantified by MRS are often composites of overlapping signals. At higher field strengths (i.e., 7T), there is better separation of these signals. As the availability of higher field strengths is increasing, it is important to re-evaluate the separability of overlapping metabolite signals. METHODS: This study compares the ability of stimulated echo acquisition mode (STEAM-8; TE = 8 ms), short-TE semi-LASER (sLASER-34; TE = 34 ms), and long-TE semi-LASER (sLASER-105; TE = 105 ms) acquisitions to separate the commonly acquired neurochemicals at 7T (Glx, consisting of glutamate and glutamine; total N-acetyl aspartate, consisting of N-acetyl aspartate and N-acetylaspartylglutamate; total creatine, consisting of creatine and phosphocreatine; and total choline, consisting of choline, phosphocholine, and glycerophosphocholine). RESULTS: sLASER-34 produced the lowest fit errors for most neurochemicals; however, STEAM-8 had better within-subject reproducibility and required fewer subjects to detect a change between groups. However, this is dependent on the neurochemical of interest. CONCLUSION: We recommend short-TE STEAM for separation of most standard neurochemicals at 7T over short-TE or long-TE sLASER.

18.
Magn Reson Med ; 92(2): 869-880, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38469911

RESUMEN

PURPOSE: Ultra-high field MRI offers unprecedented detail for noninvasive visualization of the human brain. However, brain imaging is challenging at 7T due to the B 1 + $$ {}_1^{+} $$ field inhomogeneity, which results in signal intensity drops in temporal lobes and a bright region in the brain center. This study aims to evaluate using a metasurface to improve brain imaging at 7T and simplify the investigative workflow. METHODS: Two flexible metasurfaces comprising a periodic structure of copper strips and parallel-plate capacitive elements printed on an ultra-thin substrate were optimized for brain imaging and implemented via PCB. We considered two setups: (1) two metasurfaces located near the temporal lobes and (2) one metasurface placed near the occipital lobe. The effect of metasurface placement on the transmit efficiency and specific absorption rate was evaluated via electromagnetic simulation studies with voxelized models. In addition, their impact on signal-to-noise ratio (SNR) and diagnostic image quality was assessed in vivo for two male and one female volunteers. RESULTS: Placement of metasurfaces near the regions of interest led to an increase in homogeneity of the transmit field by 5% and 10.5% in the right temporal lobe and occipital lobe for a male subject, respectively. SAR efficiency values changed insignificantly, dropping by less than 8% for all investigated setups. In vivo studies also confirmed the numerically predicted improvement in field distribution and receive sensitivity in the desired ROI. CONCLUSION: Optimized metasurfaces enable homogenizing transmit field distribution in the brain at 7T. The proposed lightweight and flexible structure can potentially provide MR examination with higher diagnostic value images.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Relación Señal-Ruido , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Masculino , Femenino , Diseño de Equipo , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Simulación por Computador , Adulto , Algoritmos
19.
Magn Reson Med ; 92(2): 605-617, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38440807

RESUMEN

PURPOSE: Directly imaging the function of cerebral perforating arteries could provide valuable insight into the pathology of cerebral small vessel diseases (cSVD). Arterial pulsatility has been identified as a useful biomarker for assessing vascular dysfunction. In this study, we investigate the feasibility and reliability of using dual velocity encoding (VENC) phase-contrast MRI (PC-MRI) to measure the pulsatility of cerebral perforating arteries at 7 T. METHODS: Twenty participants, including 12 young volunteers and 8 elder adults, underwent high-resolution 2D PC-MRI scans with VENCs of 20 cm/s and 40 cm/s at 7T. The sensitivity of perforator detection and the reliability of pulsatility measurement of cerebral perforating arteries using dual-VENC PC-MRI were evaluated by comparison with the single-VENC data. The effects of temporal resolution in the PC-MRI acquisition and aging on the pulsatility measurements were investigated. RESULTS: Compared to the single VENCs, dual-VENC PC-MRI provided improved sensitivity of perforator detection and more reliable pulsatility measurements. Temporal resolution impacted the pulsatility measurements, as decreasing temporal resolution led to an underestimation of pulsatility. Elderly adults had elevated pulsatility in cerebral perforating arteries compared to young adults, but there was no difference in the number of detected perforators between the two age groups. CONCLUSION: Dual-VENC PC-MRI is a reliable imaging method for the assessment of pulsatility of cerebral perforating arteries, which could be useful as a potential imaging biomarker of aging and cSVD.


Asunto(s)
Arterias Cerebrales , Imagen por Resonancia Magnética , Flujo Pulsátil , Humanos , Femenino , Masculino , Adulto , Anciano , Reproducibilidad de los Resultados , Arterias Cerebrales/diagnóstico por imagen , Arterias Cerebrales/fisiología , Flujo Pulsátil/fisiología , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Angiografía por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos
20.
Magn Reson Med ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39370873

RESUMEN

PURPOSE: To compare the myelin water fraction (MWF) measurements between 3 T and 7 T and between in vivo and ex vivo human brains, and to investigate the relationship between multi-echo gradient-echo (mGRE)-based 3D MWF and myelin content using histological staining, which has not been validated in the human brain. METHODS: In this study, we performed 3D mGRE-based MWF measurements on five ex vivo human brain hemispheres and five healthy volunteers at 3 T and 7 T with 1 mm isotropic resolution. The data were fitted with the T 2 * $$ {\mathrm{T}}_2^{\ast } $$ based on a three compartment complex-valued model to estimate MWF. We obtained myelin basic protein (MBP) staining from two tissue blocks and co-registered the MWF map and histology image for voxel-wise correlation between the two. RESULTS: The MWF values measured from 7 T were overall higher than 7 T, but data between the two field strength demonstrated high correlations both in vivo (r = 0.88) and ex vivo (r = 0.83) across 19 white matter regions. Moreover, the MWF measurements showed a good agreement between in vivo and ex vivo assessments at 3 T (r = 0.61) and 7 T (r = 0.54). Based on MBP staining, the MWF values exhibited strong positive correlations with myelin content on both 3 T (r = 0.68 and r = 0.78 for the two tissue blocks) and 7 T (r = 0.64 and r = 0.82 for the two tissue blocks). CONCLUSION: The findings demonstrated that the mGRE-based MWF mapping can be used to quantify myelin content in the human brain, despite the field-strength dependency of the measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA