Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.024
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557192

RESUMEN

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Asunto(s)
Adenosina Trifosfatasas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Ratas , Ratones , Animales , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Línea Celular , Cromatina , Mamíferos/genética , Antagonistas de Receptores Androgénicos , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
2.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35666622

RESUMEN

Sea urchins are premier model organisms for the study of early development. However, the lengthy generation times of commonly used species have precluded application of stable genetic approaches. Here, we use the painted sea urchin Lytechinus pictus to address this limitation and to generate a homozygous mutant sea urchin line. L. pictus has one of the shortest generation times of any currently used sea urchin. We leveraged this advantage to generate a knockout mutant of the sea urchin homolog of the drug transporter ABCB1, a major player in xenobiotic disposition for all animals. Using CRISPR/Cas9, we generated large fragment deletions of ABCB1 and used these readily detected deletions to rapidly genotype and breed mutant animals to homozygosity in the F2 generation. The knockout larvae are produced according to expected Mendelian distribution, exhibit reduced xenobiotic efflux activity and can be grown to maturity. This study represents a major step towards more sophisticated genetic manipulation of the sea urchin and the establishment of reproducible sea urchin animal resources.


Asunto(s)
Lytechinus , Xenobióticos , Animales , Técnicas Genéticas , Larva/genética , Lytechinus/genética , Erizos de Mar/genética
3.
Hum Genomics ; 18(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38173046

RESUMEN

BACKGROUND: Clopidogrel is a widely prescribed prodrug that requires activation via specific pharmacogenes to exert its anti-platelet function. Genetic variations in the genes encoding its transporter, metabolizing enzymes, and target receptor lead to variability in its activation and platelet inhibition and, consequently, its efficacy. This variability increases the risk of secondary cardiovascular events, and therefore, some variations have been utilized as genetic biomarkers when prescribing clopidogrel. METHODS: Our study examined clopidogrel-related genes (CYP2C19, ABCB1, PON1, and P2Y12R) in a cohort of 298 healthy Emiratis individuals. The study used whole exome sequencing (WES) data to comprehensively analyze pertinent variations of these genes, including their minor allele frequencies, haplotype distribution, and their resulting phenotypes. RESULTS: Our data shows that approximately 37% (n = 119) of the cohort are likely to benefit from the use of alternative anti-platelet drugs due to their classification as intermediate or poor CYP2C19 metabolizers. Additionally, more than 50% of the studied cohort exhibited variants in ABCB1, PON1, and P2YR12 genes, potentially influencing clopidogrel's transport, enzymatic clearance, and receptor performance. CONCLUSIONS: Recognizing these alleles and genotype frequencies may explain the clinical differences in medication response across different ethnicities and predict adverse events. Our findings underscore the need to consider genetic variations in prescribing clopidogrel, with potential implications for implementing personalized anti-platelet therapy among Emiratis based on their genetic profiles.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Inhibidores de Agregación Plaquetaria , Humanos , Clopidogrel/uso terapéutico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Inhibidores de Agregación Plaquetaria/farmacología , Citocromo P-450 CYP2C19/genética , Ticlopidina/uso terapéutico , Ticlopidina/farmacología , Emiratos Árabes Unidos , Hidrocarburo de Aril Hidroxilasas/genética , Genotipo , Arildialquilfosfatasa/genética
4.
Drug Resist Updat ; 76: 101112, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924997

RESUMEN

AIMS: Despite aggressive treatment, the recurrence of glioma is an inevitable occurrence, leading to unsatisfactory clinical outcomes. A plausible explanation for this phenomenon is the phenotypic alterations that glioma cells undergo aggressive therapies, such as TMZ-therapy. However, the underlying mechanisms behind these changes are not well understood. METHODS: The TMZ chemotherapy resistance model was employed to assess the expression of intercellular adhesion molecule-1 (ICAM1) in both in vitro and in vivo settings. The potential role of ICAM1 in regulating TMZ chemotherapy resistance was investigated through knockout and overexpression techniques. Furthermore, the mechanism underlying ICAM1-mediated TMZ chemotherapy resistance was examined using diverse molecular biological methods, and the lipid raft protein was subsequently isolated to investigate the cellular subcomponents where ICAM1 operates. RESULTS: Acquired TMZ resistant (TMZ-R) glioma models heightened production of intercellular adhesion molecule-1 (ICAM1) in TMZ-R glioma cells. Additionally, we observed a significant suppression of TMZ-R glioma proliferation upon inhibition of ICAM1, which was attributed to the enhanced intracellular accumulation of TMZ. Our findings provide evidence supporting the role of ICAM1, a proinflammatory marker, in promoting the expression of ABCB1 on the cell membrane of TMZ-resistant cells. We have elucidated the mechanistic pathway by which ICAM1 modulates phosphorylated moesin, leading to an increase in ABCB1 expression on the membrane. Furthermore, our research has revealed that the regulation of moesin by ICAM1 was instrumental in facilitating the assembly of ABCB1 exclusively on the lipid raft of the membrane. CONCLUSIONS: Our findings suggest that ICAM1 is an important mediator in TMZ-resistant gliomas and targeting ICAM1 may provide a new strategy for enhancing the efficacy of TMZ therapy against glioma.

5.
Drug Resist Updat ; 73: 101065, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367548

RESUMEN

AIMS: To investigate the collateral sensitivity (CS) of ABCB1-positive multidrug resistant (MDR) colorectal cancer cells to the survivin inhibitor MX106-4C and the mechanism. METHODS: Biochemical assays (MTT, ATPase, drug accumulation/efflux, Western blot, RT-qPCR, immunofluorescence, flow cytometry) and bioinformatic analyses (mRNA-sequencing, reversed-phase protein array) were performed to investigate the hypersensitivity of ABCB1 overexpressing colorectal cancer cells to MX106-4C and the mechanisms. Synergism assay, long-term selection, and 3D tumor spheroid test were used to evaluate the anti-cancer efficacy of MX106-4C. RESULTS: MX106-4C selectively killed ABCB1-positive colorectal cancer cells, which could be reversed by an ABCB1 inhibitor, knockout of ABCB1, or loss-of-function ABCB1 mutation, indicating an ABCB1 expression and function-dependent mechanism. MX106-4C's selective toxicity was associated with cell cycle arrest and apoptosis through ABCB1-dependent survivin inhibition and activation on caspases-3/7 as well as modulation on p21-CDK4/6-pRb pathway. MX106-4C had good selectivity against ABCB1-positive colorectal cancer cells and retained this in multicellular tumor spheroids. In addition, MX106-4C could exert a synergistic anti-cancer effect with doxorubicin or re-sensitize ABCB1-positive cancer cells to doxorubicin by reducing ABCB1 expression in the cell population via long-term exposure. CONCLUSIONS: MX106-4C selectively kills ABCB1-positive MDR colorectal cancer cells via a novel ABCB1-dependent survivin inhibition mechanism, providing a clue for designing CS compound as an alternative strategy to overcome ABCB1-mediated colorectal cancer MDR.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Survivin/genética , Survivin/metabolismo , Survivin/farmacología , Resistencia a Múltiples Medicamentos/genética , Sensibilidad Colateral al uso de Fármacos , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Antineoplásicos/uso terapéutico , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/farmacología
6.
Biochem Biophys Res Commun ; 691: 149314, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38039831

RESUMEN

P: -glycoprotein (P-gp/ABCB1) overexpression is one of the primary causes of multidrug resistance (MDR). Therefore, it is crucial to discover effective pharmaceuticals to combat multidrug resistance mediated by ABCB1. Pemigatinib is a selective the fibroblast growth factor receptor (FGFR) inhibitor that is used to treat a variety of solid tumors, Clinical Trials for Urothelial Carcinoma (NCT02872714) completed its research on Pemigatinib. This study aimed to determine whether Pemigatinib can reverse ABCB1-mediated multidrug resistance, as well as its mechanism of action. Pemigatinib substantially reversed ABCB1-mediated multidrug resistance, as determined by a CCK8 assay, and immunofluorescence experiments revealed that Pemigatinib had no effect on the intracellular localization of ABCB1. Pemigatinib was discovered to increase intracellular drug accumulation, thereby reversing multidrug resistance. In addition, Docking analysis revealed that Pemigatinib and ABCB1 have a high affinity for one another. This study concludes that Pemigatinib is capable of reversing the multidrug resistance mediated by ABCB1, offering ideas and references for the clinical application of Pemigatinib.


Asunto(s)
Antineoplásicos , Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Subfamilia B de Transportador de Casetes de Unión a ATP
7.
Toxicol Appl Pharmacol ; 484: 116866, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367674

RESUMEN

BACKGROUND: ABC transporter-mediated multidrug resistance (MDR) remains a major obstacle for cancer pharmacological treatment. Some tyrosine kinase inhibitors (TKIs) have been shown to reverse MDR. The present study was designed to evaluate for the first time whether foretinib, a multitargeted TKI, can circumvent ABCB1 and ABCG2-mediated MDR in treatment-resistant cancer models. METHODS: Accumulation of fluorescent substrates of ABCB1 and ABCG2 in ABCB1-overexpressing MES-SA/DX5 and ABCG2-overexpressing MCF-7/MX and their parenteral cells was evaluated by flow cytometry. The growth inhibitory activity of single and combination therapy of foretinib and chemotherapeutic drugs on MDR cells was examined by MTT assay. Analysis of combined interaction effects was performed using CalcuSyn software. RESULTS: It was firstly proved that foretinib increased the intracellular accumulation of rhodamine 123 and mitoxantrone in MES-SA/DX5 and MCF-7/MX cancer cells, with accumulation ratios of 12 and 2.2 at 25 µM concentration, respectively. However, it did not affect the accumulation of fluorescent substrates in the parental cells. Moreover, foretinib synergistically improved the cytotoxic effects of doxorubicin and mitoxantrone. The means of combination index (CI) values at fraction affected (Fa) values of 0.5, 0.75, and 0.9 were 0.64 ± 0.08 and 0.47 ± 0.09, in MES-SA/DX5 and MCF-7/MX cancer cells, respectively. In silico analysis also suggested that the drug-binding domain of ABCB1 and ABCG2 transporters could be considered as potential target for foretinib. CONCLUSION: Overall, our results suggest that foretinib can target MDR-linked ABCB1 and ABCG2 transporters in clinical cancer therapy.


Asunto(s)
Anilidas , Antineoplásicos , Neoplasias , Quinolinas , Humanos , Proteínas Proto-Oncogénicas c-met/farmacología , Mitoxantrona/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Resistencia a Antineoplásicos , Resistencia a Múltiples Medicamentos , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Proteínas de Neoplasias , Subfamilia B de Transportador de Casetes de Unión a ATP
8.
Toxicol Appl Pharmacol ; 485: 116911, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38527694

RESUMEN

The highly selective Spleen Tyrosine Kinase (SYK) inhibitors entospletinib and lanraplenib disrupt kinase activity and inhibit immune cell functions. They are developed for treatment of B-cell malignancies and autoimmunity diseases. The impact of P-gp/ABCB1 and BCRP/ABCG2 efflux transporters, OATP1a/1b uptake transporters and CYP3A drug-metabolizing enzymes on the oral pharmacokinetics of these drugs was assessed using mouse models. Entospletinib and lanraplenib were orally administered simultaneously at moderate dosages (10 mg/kg each) to female mice to assess the possibility of examining two structurally and mechanistically similar drugs at the same time, while reducing the number of experimental animals and sample-processing workload. The plasma pharmacokinetics of both drugs were not substantially restricted by Abcb1 or Abcg2. The brain-to-plasma ratios of entospletinib in Abcb1a/b-/-, Abcg2-/- and Abcb1a/b;Abcg2-/- mice were 1.7-, 1.8- and 2.9-fold higher, respectively, compared to those in wild-type mice. For lanraplenib these brain-to-plasma ratios were 3.0-, 1.3- and 10.4-fold higher, respectively. This transporter-mediated restriction of brain penetration for both drugs could be almost fully inhibited by coadministration of the dual ABCB1/ABCG2 inhibitor elacridar, without signs of acute toxicity. Oatp1a/b and human CYP3A4 did not seem to affect the pharmacokinetics of entospletinib and lanraplenib, but mouse Cyp3a may limit lanraplenib plasma exposure. Unexpectedly, entospletinib and lanraplenib increased each other's plasma exposure by 2.6- to 2.9-fold, indicating a significant drug-drug interaction. This interaction was, however, unlikely to be mediated through any of the studied transporters or CYP3A. The obtained insights may perhaps help to further improve the safety and efficacy of entospletinib and lanraplenib.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Encéfalo , Indazoles , Morfolinas , Inhibidores de Proteínas Quinasas , Pirazinas , Animales , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Femenino , Ratones , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Quinasa Syk/antagonistas & inhibidores , Quinasa Syk/metabolismo , Ratones Noqueados , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Ratones Endogámicos C57BL , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Administración Oral
9.
Cancer Cell Int ; 24(1): 244, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003454

RESUMEN

Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule ß-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.

10.
FASEB J ; 37(1): e22657, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459147

RESUMEN

Investigations on placental P-glycoprotein (P-gp) regulation could provide more therapeutic targets for individualized and safe pharmacotherapy during pregnancy. The role of long noncoding RNA (lncRNA) on placental P-gp regulation is lacking. The present study was carried out to investigate the regulation and underlying mechanisms of lncRNA urothelial carcinoma associated 1 (UCA1) on P-gp in Bewo cells. lncRNA UCA1 inhibition or overexpression could decrease or increase ABCB1 mRNA expression, P-gp expression and its cellular efflux function, respectively. RNA-FISH revealed that lncRNA UCA1 was mainly located in the cytoplasm of Bewo cells. MicroRNA array was applied and 10 significant miRNAs was identified after lncRNA UCA1 inhibition. Databases of LncTarD, LncRNA2Target, and miRcode were further used to search potential target miRNAs of lncRNA UCA1 and miR-16-5p was screened out. Thereafter, we confirmed that miR-16-5p expression was significantly upregulated or reduced after lncRNA UCA1 knockdown or overexpression, respectively. Furthermore, we also proved that ABCB1 mRNA expression, P-gp expression and its cellular efflux function was enhanced or reduced after miR-16-5p inhibition or overexpression, respectively. The rescue experiment further indicated that miR-16-5p was involved in the positive regulation of lncRNA UCA1 on the expression and function of P-gp. Lastly, dual-luciferase reporter system, RNA-binding protein immunoprecipitation and RNA pull-down assays were performed to explore the relationships among lncRNA UCA1, miR-16-5p, and ABCB1. It was found that lncRNA UCA1(1103-1125) could directly interact with miR-16-5p and miR-16-5p could directly target ABCB1 coding DNA sequence region (882-907). In conclusion, LncRNA UCA1 could promote the expression and function of P-gp by sponging miR-16-5p in BeWo cells.


Asunto(s)
Carcinoma de Células Transicionales , MicroARNs , ARN Largo no Codificante , Neoplasias de la Vejiga Urinaria , Embarazo , Humanos , Femenino , ARN Largo no Codificante/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Placenta , Subfamilia B de Transportador de Casetes de Unión a ATP , MicroARNs/genética , ARN Mensajero
11.
Cell Commun Signal ; 22(1): 325, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872211

RESUMEN

BACKGROUND: Multidrug resistance (MDR) limits successful cancer chemotherapy. P-glycoprotein (P-gp), BCRP and MRP1 are the key triggers of MDR. Unfortunately, no MDR modulator was approved by FDA to date. Here, we will investigate the effect of BI-2865, a pan-KRAS inhibitor, on reversing MDR induced by P-gp, BCRP and MRP1 in vitro and in vivo, and its reversal mechanisms will be explored. METHODS: The cytotoxicity of BI-2865 and its MDR removal effect in vitro were tested by MTT assays, and the corresponding reversal function in vivo was assessed through the P-gp mediated KBv200 xenografts in mice. BI-2865 induced alterations of drug discharge and reservation in cells were estimated by experiments of Flow cytometry with fluorescent doxorubicin, and the chemo-drug accumulation in xenografts' tumor were analyzed through LC-MS. Mechanisms of BI-2865 inhibiting P-gp substrate's efflux were analyzed through the vanadate-sensitive ATPase assay, [125I]-IAAP-photolabeling assay and computer molecular docking. The effects of BI-2865 on P-gp expression and KRAS-downstream signaling were detected via Western blotting, Flow cytometry and/or qRT-PCR. Subcellular localization of P-gp was visualized by Immunofluorescence. RESULTS: We found BI-2865 notably fortified response of P-gp-driven MDR cancer cells to the administration of chemo-drugs including paclitaxel, vincristine and doxorubicin, while such an effect was not observed in their parental sensitive cells and BCRP or MRP1-driven MDR cells. Importantly, the mice vivo combination study has verified that BI-2865 effectively improved the anti-tumor action of paclitaxel without toxic injury. In mechanism, BI-2865 prompted doxorubicin accumulating in carcinoma cells by directly blocking the efflux function of P-gp, which more specifically, was achieved by BI-2865 competitively binding to the drug-binding sites of P-gp. What's more, at the effective MDR reversal concentrations, BI-2865 neither varied the expression and location of P-gp nor reduced its downstream AKT or ERK1/2 signaling activity. CONCLUSIONS: This study uncovered a new application of BI-2865 as a MDR modulator, which might be used to effectively, safely and specifically improve chemotherapeutic efficacy in the clinical P-gp mediated MDR refractory cancers.


Asunto(s)
Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Ratones , Línea Celular Tumoral , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Doxorrubicina/farmacología , Ratones Endogámicos BALB C , Femenino
12.
BMC Neurol ; 24(1): 216, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914966

RESUMEN

BACKGROUND: Clopidogrel has been the primary choice of antiplatelet in ischemic stroke that inhibits adenosine diphosphate (ADP)-induced platelet aggregation. P-glycoprotein (P-gp) multidrug resistance-1 (MDR1) is a transmembrane efflux transporter in intestinal cells that plays a significant role in clopidogrel absorption, therefore may affect platelet aggregation. P-gp is encoded by the ABCB1 gene. This study aims to evaluate the effect of ABCB1 polymorphism on clopidogrel response variability in ischemic stroke patients and its genotype frequency. METHODS: A cross-sectional study was conducted in ischemic stroke patients who received clopidogrel between 2020 and 2023 in RSUI/RSCM. All subjects were assessed for ABCB1 polymorphisms C3435T and C1236T. Platelet aggregation were measured using VerifyNow PRU. Clopidogrel response variability was classified into unresponsive (> 208 PRU), responsive (95-208 PRU), and bleeding risk (< 95 PRU). RESULTS: 124 subjects enrolled in this study, with 12,9% of subjects classified as non-responsive/resistant, 49,5% as responsive, and 41,9% as bleeding risk. ABCB1 C1236T homozygote wildtype (CC) was associated with 3,76 times higher bleeding risk than other variants (p = 0,008; 95%CI 1,41 - 10,07). Genotype frequency of ABCB1 C3435T homozygote wildtype, heterozygote, and homozygote variants were 35,9%, 43,5% and 16,9%, respectively; while the genotype frequency of ABCB1 C1236T were 17,8%, 39,5%, and 42,7%, respectively. CONCLUSION: ABCB1 C1236T homozygote wildtype was associated with 3,76 times higher bleeding risk than other variants. The most common genotype frequency of ABCB1 C1236T was homozygote variant; while for ABCB1 C3435T was heterozygote.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Clopidogrel , Accidente Cerebrovascular Isquémico , Inhibidores de Agregación Plaquetaria , Humanos , Clopidogrel/uso terapéutico , Clopidogrel/administración & dosificación , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Estudios Transversales , Masculino , Femenino , Persona de Mediana Edad , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/genética , Anciano , Inhibidores de Agregación Plaquetaria/uso terapéutico , Polimorfismo de Nucleótido Simple/genética , Genotipo , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/genética
13.
Mol Biol Rep ; 51(1): 191, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270743

RESUMEN

BACKGROUND: Epilepsy is a common neurological disease but around 30% of patients fail to respond to antiepileptic drug (AED) treatment. Genetic variation of the ATP-binding cassette subfamily B, member 1 (ABCB1) gene, a drug efflux transporter may infer treatment resistance by decreasing gastrointestinal absorption and preventing AED entry into the brain. This study examined the impact of ABCB1 genetic variants on carbamazepine responsiveness. MATERIALS AND METHODS: Genomic DNA was extracted from whole blood of 104 epileptic patients. Genotyping of 3 ABCB1 variants (c.C3435T, c.G2677T/A and c.C1236T) was undertaken using validated TaqMan allelic discrimination assays. Plasma carbamazepine levels were measured at 3 and 6 months following the initial dose using high-performance liquid chromatography (HPLC) alongside clinical outcomes evaluation. RESULTS: Nonresponse to carbamazepine (CBZ) was associated significantly with the ABCB1 variants c.C3435T, c.G2677T/A, c.C1236T and TTT, TTC haplotypes (P < 0.05). There was no significant association between variants and plasma CBZ level (P > 0.05). CONCLUSIONS: Our results showed that variant alleles of the ABCB1 gene and TTT, TTC haplotypes were significantly associated with CBZ resistance without affecting the plasma level of carbamazepine. The findings of this study may help to predict patient's response to treatment ultimately it will improve the personalized and evidence based treatment choice of patients with epilepsy.


Asunto(s)
Epilepsia , Humanos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Carbamazepina/uso terapéutico , Anticonvulsivantes/uso terapéutico , Alelos , Encéfalo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-38809397

RESUMEN

PURPOSE: Hepatotoxicity has emerged as a major cause of statin treatment interruption. Although organic anion-transporting polypeptide 1B1 (SLCO1B1), multidrug resistance protein 1 (ABCB1), and breast cancer resistance protein (ABCG2) have been identified as transporters of statins, knowledge of their role in statin-associated hepatotoxicity remains limited. Therefore, we aimed to conduct a comprehensive analysis to elucidate the association between hepatotoxicity and SLCO1B1, ABCB1, and ABCG2 polymorphisms. METHODS: This study retrospectively analyzed prospectively collected samples. We selected 10 single nucleotide polymorphisms (SNPs) of SLCO1B1, 9 SNPs of ABCB1, and 12 SNPs of ABCG2. We developed two models for multivariable analyses (Model I: clinical factors only; Model II: both clinical and genetic factors), and the attributable risk (%) of variables in Model II was determined. RESULTS: Among 851 patients, 66 (7.8%) developed hepatotoxicity. In Model I, lipophilic statins, atrial fibrillation (Afib), and diabetes mellitus showed a significant association with hepatotoxicity. In Model II, lipophilic statins and Afib, SLCO1B1 rs11045818 A allele, SLCO1B1 rs4149035 T allele, and ABCG2 rs2622629 TT genotype were associated with higher hepatotoxicity risk. Among them, the SLCO1B1 rs11045818 A allele exhibited the highest attributable risk (93.2%). The area under the receiver operating characteristic curve in Model I was 0.62 (95% CI: 0.55-0.69), and it was increased to 0.71 in Model II (95% CI: 0.64-0.77). CONCLUSION: This study investigated the correlation between hepatotoxicity and polymorphisms of transporter genes in patients taking statins. The findings could help improve personalized treatments for patients receiving statin therapy.

15.
Acta Pharmacol Sin ; 45(5): 1060-1076, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228910

RESUMEN

Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. Schematic diagram showing that triptolide overcomes paclitaxel resistance by mediating inhibition of the HNF1A/SHH/ABCB1 axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Diterpenos , Resistencia a Antineoplásicos , Compuestos Epoxi , Proteínas Hedgehog , Factor Nuclear 1-alfa del Hepatocito , Neoplasias Pulmonares , Paclitaxel , Fenantrenos , Compuestos Epoxi/farmacología , Compuestos Epoxi/uso terapéutico , Humanos , Fenantrenos/farmacología , Fenantrenos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Diterpenos/farmacología , Diterpenos/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Hedgehog/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Animales , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Ratones Desnudos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Ratones , Ratones Endogámicos BALB C , Células A549
16.
Neurol Sci ; 45(4): 1635-1643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37875597

RESUMEN

Juvenile myoclonic epilepsy (JME) is the most common of the generalized genetic epilepsies, with multiple causal and susceptibility genes; however, its etiopathogenesis is mainly unknown. The toxic effects caused by xenobiotics in cells occur during their metabolic transformation, mainly by enzymes belonging to cytochrome P450. The elimination of these compounds by transporters of the ABC type protects the central nervous system, but their accumulation causes neuronal damage, resulting in neurological diseases. The present study has sought the association between single nucleotide genetic variants of the CYP2C9, CYP2C19, and ABCB1 genes and the development of JME in patients compared to healthy controls. The CC1236 and GG2677 genotypes of ABCB1 in women; allele G 2677, genotypes GG 2677 and CC 3435 in men; the CYP2C19*2A allele, and the CYP2C19*3G/A genotype in both sexes were found to be risk factors for JME. Furthermore, carriers of the TTGGCC genotype combination of the ABCB1 gene (1236/2677/3435) have a 10.5 times higher risk of developing JME than non-carriers. Using the STRING database, we found an interaction between the proteins encoded by these genes and other possible proteins. These findings indicate that the CYP450 system and ABC transporters could interact with other genes in the JME.


Asunto(s)
Epilepsia Generalizada , Epilepsia Mioclónica Juvenil , Masculino , Humanos , Femenino , Epilepsia Mioclónica Juvenil/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C19/genética , Genotipo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética
17.
Can J Psychiatry ; 69(3): 183-195, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37796764

RESUMEN

OBJECTIVES: Treatment-emergent sexual dysfunction is frequently reported by individuals with major depressive disorder (MDD) on antidepressants, which negatively impacts treatment adherence and efficacy. We investigated the association of polymorphisms in pharmacokinetic genes encoding cytochrome-P450 drug-metabolizing enzymes, CYP2C19 and CYP2D6, and the transmembrane efflux pump, P-glycoprotein (i.e., ABCB1), on treatment-emergent changes in sexual function (SF) and sexual satisfaction (SS) in the Canadian Biomarker Integration Network in Depression 1 (CAN-BIND-1) sample. METHODS: A total of 178 adults with MDD received treatment with escitalopram (ESC) from weeks 0-8 (Phase I). At week 8, nonresponders were augmented with aripiprazole (ARI) (i.e., ESC + ARI, n = 91), while responders continued ESC (i.e., ESC-Only, n = 80) from weeks 8-16 (Phase II). SF and SS were evaluated using the sex effects (SexFX) scale at weeks 0, 8, and 16. We assessed the primary outcomes, SF and SS change for weeks 0-8 and 8-16, using repeated measures mixed-effects models. RESULTS: In ESC-Only, CYP2C19 intermediate metabolizer (IM) + poor metabolizers (PMs) showed treatment-related improvements in sexual arousal, a subdomain of SF, from weeks 8-16, relative to CYP2C19 normal metabolizers (NMs) who showed a decline, F(2,54) = 8.00, p < 0.001, q = 0.048. Specifically, CYP2C19 IM + PMs reported less difficulty with having and sustaining vaginal lubrication in females and erection in males, compared to NMs. Furthermore, ESC-Only females with higher concentrations of ESC metabolite, S-desmethylcitalopram (S-DCT), and S-DCT/ESC ratio in serum demonstrated more decline in SF (r = -0.42, p = 0.004, q = 0.034) and SS (r = -0.43, p = 0.003, q = 0.034), respectively, which was not observed in males. ESC-Only females also demonstrated a trend for a correlation between S-DCT and sexual arousal change in the same direction (r = -0.39, p = 0.009, q = 0.052). CONCLUSIONS: CYP2C19 metabolizer phenotypes may be influencing changes in sexual arousal related to ESC monotherapy. Thus, preemptive genotyping of CYP2C19 may help to guide selection of treatment that circumvents selective serotonin reuptake inhibitor-related sexual dysfunction thereby improving outcomes for patients. Additionally, further research is warranted to clarify the role of S-DCT in the mechanisms underlying ESC-related changes in SF and SS. This CAN-BIND-1 study was registered on clinicaltrials.gov (Identifier: NCT01655706) on 27 July 2012.


Asunto(s)
Citocromo P-450 CYP2D6 , Trastorno Depresivo Mayor , Adulto , Masculino , Femenino , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Aripiprazol/efectos adversos , Escitalopram , Citalopram/efectos adversos , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Depresión , Canadá , Biomarcadores , Subfamilia B de Transportador de Casetes de Unión a ATP
18.
Drug Resist Updat ; 71: 101011, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865067

RESUMEN

The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.


Asunto(s)
Reposicionamiento de Medicamentos , Neoplasias , Humanos , Transportadoras de Casetes de Unión a ATP/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas de Transporte de Membrana , Resistencia a Múltiples Medicamentos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Proteínas de Neoplasias/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética
19.
Drug Resist Updat ; 71: 101004, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37660590

RESUMEN

ATP-binding cassette (ABC) transporters such as ABCB1, ABCG2, and ABCC1 are the major players in drug efflux-mediated multidrug resistance (MDR), which severely affects the efficacy of chemotherapy. Several synthetic compounds block the drug transport by ABC transporters; however, they exhibit a narrow therapeutic window, and produce side effects in non-target normal tissues. Conversely, the downregulation of the expression of ABC drug transporters seems to be a promising strategy to reverse MDR in cancer cells. Several signaling pathways, such as NF-κB, STAT3, Gli, NICD, YAP/TAZ, and Nrf2 upregulate the expression of ABC drug transporters in drug-resistant cancers. Recently, natural medicinal compounds have gained importance to overcome the ABC drug-efflux pump-mediated MDR in cancer. These compounds target transcription factors and the associated signal transduction pathways, thereby downregulating the expression of ABC transporters in drug-resistant cancer cells. Several potent natural compounds have been identified as lead candidates to synergistically enhance chemotherapeutic efficacy, and a few of them are already in clinical trials. Therefore, modulation of signal transduction pathways using natural medicinal compounds for the reversal of ABC drug transporter-mediated MDR in cancer is a novel approach for improving the efficiency of the existing chemotherapeutics. In this review, we discuss the modulatory role of natural medicinal compounds on cellular signaling pathways that regulate the expression of ABC transporters in drug-resistant cancer cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Neoplasias , Humanos , Transportadoras de Casetes de Unión a ATP/genética , FN-kappa B , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Resistencia a Múltiples Medicamentos , Transducción de Señal
20.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791151

RESUMEN

P-glycoprotein (P-GP) is a transporter molecule expressed on the apical surface of capillary endothelial cells of the Blood-Brain Barrier (BBB), whose activity heavily influences drug distribution, including antidepressants. This transporter is encoded by ABCB1 gene, and genetic variations within ABCB1 gene have been proposed to affect drug efflux and have been previously associated with depression. In this context, we aimed to evaluate the role of C1236T, G2677TA and C3435T ABCB1 genetic polymorphisms in antidepressant treatment phenotypes from a cohort of patients harboring Major Depressive Disorder. Patients enrolled in the study consisted of 80 individuals with Major Depressive Disorder, who took part in a 27-month follow-up study at HML, Portugal. To investigate the correlation between ABCB1 polymorphisms and antidepressant response phenotypes, DNA was extracted from peripheral blood, and C1236T, C3435T and G2677TA polymorphisms were genotyped with TaqMan® SNP Genotyping Assays. Despite the fact that the evaluated polymorphisms (C1236T, C3435T and G2677TA) were not associated with treatment resistant depression, or relapse, we observed that patients carrying TT genotype of the C3435T polymorphism remit earlier than the ones carrying CC or CT genotypes (10.2 weeks vs. 14.9 and 21.3, respectively, p = 0.028, Log-rank test). Since we found an association with C3435T and time to remission, and not to the absence of remission, we suggest that this polymorphism could have an impact on antidepressant drug distribution, and thus influence on the time to remission will occur, without influencing the risk of remission itself.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Antidepresivos , Trastorno Depresivo Mayor , Polimorfismo de Nucleótido Simple , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Femenino , Antidepresivos/uso terapéutico , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Masculino , Persona de Mediana Edad , Adulto , Portugal , Fenotipo , Genotipo , Estudios de Cohortes , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA