Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924024

RESUMEN

Abscisic acid (ABA) signaling is crucial for plant responses to various abiotic stresses. The Arabidopsis (Arabidopsis thaliana) transcription factor ABA INSENSITIVE 5 (ABI5) is a central regulator of ABA signaling. ABI5 BINDING PROTEIN 1 (AFP1) interacts with ABI5 and facilitates its 26S-proteasome-mediated degradation, although the detailed mechanism has remained unclear. Here, we report that an ABA-responsive U-box E3 ubiquitin ligase, PLANT U-BOX 35 (PUB35), physically interacts with AFP1 and ABI5. PUB35 directly ubiquitinated ABI5 in a bacterially reconstituted ubiquitination system and promoted ABI5 protein degradation in vivo. ABI5 degradation was enhanced by AFP1 in response to ABA treatment. Phosphorylation of the T201 and T206 residues in ABI5 disrupted the ABI5-AFP1 interaction and affected the ABI5-PUB35 interaction and PUB35-mediated degradation of ABI5 in vivo. Genetic analysis of seed germination and seedling growth showed that pub35 mutants were hypersensitive to ABA as well as to salinity and osmotic stresses, whereas PUB35 overexpression lines were hyposensitive. Moreover, abi5 was epistatic to pub35, whereas the pub35-2 afp1-1 double mutant showed a similar ABA response to the two single mutants. Together, our results reveal a PUB35-AFP1 module involved in fine-tuning ABA signaling through ubiquitination and 26S-proteasome-mediated degradation of ABI5 during seed germination and seedling growth.

2.
J Cell Sci ; 137(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587458

RESUMEN

Talin (herein referring collectively to talin 1 and 2) couples the actomyosin cytoskeleton to integrins and transmits tension to the extracellular matrix. Talin also interacts with numerous additional proteins capable of modulating the actin-integrin linkage and thus downstream mechanosignaling cascades. Here, we demonstrate that the scaffold protein Caskin2 interacts directly with the R8 domain of talin through its C-terminal LD motif. Caskin2 also associates with the WAVE regulatory complex to promote cell migration in an Abi1-dependent manner. Furthermore, we demonstrate that the Caskin2-Abi1 interaction is regulated by growth factor-induced phosphorylation of Caskin2 on serine 878. In MCF7 and UACC893 cells, which contain an amplification of CASKIN2, Caskin2 localizes in plasma membrane-associated plaques and around focal adhesions in cortical microtubule stabilization complexes. Taken together, our results identify Caskin2 as a novel talin-binding protein that might not only connect integrin-mediated adhesion to actin polymerization but could also play a role in crosstalk between integrins and microtubules.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Movimiento Celular , Proteínas del Citoesqueleto , Unión Proteica , Talina , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Células MCF-7 , Microtúbulos/metabolismo , Fosforilación , Talina/metabolismo
3.
Plant J ; 119(2): 676-688, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38683723

RESUMEN

Stomatal immunity plays an important role during bacterial pathogen invasion. Abscisic acid (ABA) induces plants to close their stomata and halt pathogen invasion, but many bacterial pathogens secrete phytotoxin coronatine (COR) to antagonize ABA signaling and reopen the stomata to promote infection at early stage of invasion. However, the underlining mechanism is not clear. SAD2 is an importin ß family protein, and the sad2 mutant shows hypersensitivity to ABA. We discovered ABI1, which negatively regulated ABA signaling and reduced plant sensitivity to ABA, was accumulated in the plant nucleus after COR treatment. This event required SAD2 to import ABI1 to the plant nucleus. Abolition of SAD2 undermined ABI1 accumulation. Our study answers the long-standing question of how bacterial COR antagonizes ABA signaling and reopens plant stomata during pathogen invasion.


Asunto(s)
Ácido Abscísico , Aminoácidos , Proteínas de Arabidopsis , Arabidopsis , Indenos , Estomas de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estomas de Plantas/fisiología , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácido Abscísico/metabolismo , Indenos/metabolismo , Indenos/farmacología , Aminoácidos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Pseudomonas syringae/fisiología , Pseudomonas syringae/patogenicidad , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Núcleo Celular/metabolismo , Fosfoproteínas Fosfatasas
4.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35686643

RESUMEN

In contrast to desiccation-tolerant orthodox seeds, recalcitrant seeds are desiccation sensitive and are unable to survive for a prolonged time. Here, our analyses of Oryza species with contrasting seed desiccation tolerance reveals that PROTEIN L-ISOASPARTYL METHYLTRANSFERASE (PIMT), an enzyme that repairs abnormal isoaspartyl (isoAsp) residues in proteins, acts as a key player that governs seed desiccation tolerance to orthodox seeds but is ineffective in recalcitrant seeds. We observe that, unlike the orthodox seed of Oryza sativa, desiccation intolerance of the recalcitrant seeds of Oryza coarctata are linked to reduced PIMT activity and increased isoAsp accumulation due to the lack of coordinated action of ABA and ABI transcription factors to upregulate PIMT during maturation. We show that suppression of PIMT reduces, and its overexpression increases, seed desiccation tolerance and seed longevity in O. sativa. Our analyses further reveal that the ABI transcription factors undergo isoAsp formation that affect their functional competence; however, PIMT interacts with and repairs isoAsp residues and facilitates their functions. Our results thus illustrate a new insight into the mechanisms of acquisition of seed desiccation tolerance and longevity by ABI transcription factors and the PIMT module.


Asunto(s)
Oryza , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa , Secuencia de Aminoácidos , Desecación , Oryza/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/química , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/metabolismo , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
J Biol Chem ; 299(12): 105481, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38041932

RESUMEN

Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Oxígeno Singlete/metabolismo , Transcriptoma , Estomas de Plantas/metabolismo
6.
Plant J ; 113(5): 934-953, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36582182

RESUMEN

Seed longevity, the capacity to remain alive during dry storage, is pivotal to germination performance and is essential for preserving genetic diversity. It is acquired during late maturation concomitantly with seed degreening and the de-differentiation of chloroplasts into colorless, non-photosynthetic plastids, called eoplasts. As chlorophyll retention leads to poor seed performance upon sowing, these processes are important for seed vigor. However, how these processes are regulated and connected to the acquisition of seed longevity remains poorly understood. Here, we show that such a role is at least provided by ABSCISIC ACID INSENSITIVE 4 (ABI4) in the legume Medicago truncatula. Mature seeds of Mtabi4 mutants contained more chlorophyll than wild-type seeds and exhibited a 75% reduction in longevity and reduced dormancy. MtABI4 was necessary to stimulate eoplast formation, as evidenced by the significant delay in the dismantlement of photosystem II during the maturation of mutant seeds. Mtabi4 seeds also exhibited transcriptional deregulation of genes associated with retrograde signaling and transcriptional control of plastid-encoded genes. Longevity was restored when Mtabi4 seeds developed in darkness, suggesting that the shutdown of photosynthesis during maturation, rather than chlorophyll degradation per se, is a requisite for the acquisition of longevity. Indeed, the shelf life of stay green mutant seeds that retained chlorophyll was not affected. Thus, ABI4 plays a role in coordinating the dismantlement of chloroplasts during seed development to avoid damage that compromises the acquisition of seed longevity. Analysis of Mtabi4 Mtabi5 double mutants showed synergistic effects on chlorophyll retention and longevity, suggesting that they act via parallel pathways.


Asunto(s)
Ácido Abscísico , Medicago truncatula , Ácido Abscísico/metabolismo , Medicago truncatula/fisiología , Factores de Transcripción/metabolismo , Semillas/metabolismo , Germinación/genética , Regulación de la Expresión Génica de las Plantas
7.
Biochem Biophys Res Commun ; 723: 150190, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838447

RESUMEN

Soil salinity pose a significant challenge to global agriculture, threatening crop yields and food security. Understanding the salt tolerance mechanisms of plants is crucial for improving their survival under salt stress. AFP2, a negative regulator of ABA signaling, has been shown to play a crucial role in salt stress tolerance during seed germination. Mutations in AFP2 gene lead to increased sensitivity to salt stress. However, the underline mechanisms by which AFP2 regulates seed germination under salt stress remain elusive. In this study, we identified a protein interaction between AFP2 and SOS2, a Ser/Thr protein kinase known to play a critical role in salt stress response. Using a combination of genetic, biochemical, and physiological approaches, we investigated the role of the SOS2-AFP2 module in regulating seed germination under salt stress. Our findings reveal that SOS2 physically interacts with AFP2 and stabilizes it, leading to the degradation of the ABI5 protein, a negative transcription factor in seed germination under salt stress. This study sheds light on previously unknown connections within salt stress and ABA signaling, paving the way for novel strategies to enhance plant resilience against environmental challenges.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Germinación , Estrés Salino , Semillas , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteolisis/efectos de los fármacos , Tolerancia a la Sal/genética , Semillas/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/genética , Transducción de Señal/efectos de los fármacos
8.
J Transl Med ; 22(1): 514, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812032

RESUMEN

The aging process of the kidneys is accompanied with several structural diseases. Abnormal fiber formation disrupts the balance of kidney structure and function, causing to end-stage renal disease and subsequent renal failure. Despite this, the precise mechanism underlying renal damage in aging remains elusive. In this study, ABI3BP gene knockout mice were used to investigate the role of ABI3BP in renal aging induced by irradiation. The results revealed a significant increase in ABI3BP expression in HK2 cells and kidney tissue of aging mice, with ABI3BP gene knockout demonstrating a mitigating effect on radiation-induced cell aging. Furthermore, the study observed a marked decrease in Klotho levels and an increase in ferroptosis in renal tissue and HK2 cells following irradiation. Notably, ABI3BP gene knockout not only elevated Klotho expression but also reduced ferroptosis levels. A significant negative correlation between ABI3BP and Klotho was established. Further experiments demonstrated that Klotho knockdown alleviated the aging inhibition caused by ABI3BP downregulation. This study identifies the upregulation of ABI3BP in aged renal tubular epithelial cells, indicating a role in promoting ferroptosis and inducing renal aging by inhibiting Klotho expression.


Asunto(s)
Envejecimiento , Ferroptosis , Riñón , Proteínas Klotho , Ratones Noqueados , Animales , Humanos , Masculino , Ratones , Envejecimiento/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Línea Celular , Glucuronidasa/metabolismo , Riñón/metabolismo , Riñón/patología , Proteínas Klotho/metabolismo , Ratones Endogámicos C57BL
9.
New Phytol ; 241(3): 1334-1347, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38053494

RESUMEN

The transition from vegetative to reproductive growth, known as flowering, is a critical developmental process in flowering plants to ensure reproductive success. This process is strictly controlled by various internal and external cues; however, the underlying molecular regulatory mechanisms need to be further characterized. Here, we report a plant-specific protein, FCS-LIKE ZINC FINGER PROTEIN 13 (FLZ13), which functions as a hitherto unknown negative modulator of flowering time in Arabidopsis thaliana. Biochemical analysis showed that FLZ13 directly interacts with FLOWERING LOCUS C (FLC), a major flowering repressor, and that FLZ13 largely depends on FLC to repress the transcription of two core flowering integrators: FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1. In addition, FLZ13 works together with ABSCISIC ACID INSENSITIVE 5 to activate FLC expression to delay flowering. Taken together, our findings suggest that FLZ13 is an important component of the gene regulatory network for flowering time control in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
10.
New Phytol ; 241(6): 2464-2479, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38287207

RESUMEN

Abscisic acid (ABA) and gibberellins (GA) antagonistically mediate several biological processes, including seed germination, but the molecular mechanisms underlying ABA/GA antagonism need further investigation, particularly any role mediated by a transcription factors module. Here, we report that the DELLA protein RGL2, a repressor of GA signaling, specifically interacts with ABI4, an ABA signaling enhancer, to act as a transcription factor complex to mediate ABA/GA antagonism. The rgl2, abi3, abi4 and abi5 mutants rescue the non-germination phenotype of the ga1-t. Further, we demonstrate that RGL2 specifically interacts with ABI4 to form a heterodimer. RGL2 and ABI4 stabilize one another, and GA increases the ABI4-RGL2 module turnover, whereas ABA decreases it. At the transcriptional level, ABI4 enhances the RGL2 expression by directly binding to its promoter via the CCAC cis-element, and RGL2 significantly upregulates the transcriptional activation ability of ABI4 toward its target genes, including ABI5 and RGL2. Abscisic acid promotes whereas GA inhibits the ability of ABI4-RGL2 module to activate transcription, and ultimately ABA and GA antagonize each other. Genetic analysis demonstrated that both ABI4 and RGL2 are essential for the activity of this transcription factor module. These results suggest that the ABI4-RGL2 module mediates ABA/GA antagonism by functioning as a double agent.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Germinación , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Giberelinas/farmacología , Giberelinas/metabolismo , Semillas/genética
11.
J Vasc Surg ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866374

RESUMEN

BACKGROUND: Only a few small studies have shown the association between high ankle-brachial pressure index (ABI >1.4) and adverse cardiovascular (CV) events and mortality. Although there is abundant literature depicting the association between ABI and overall systemic atherosclerosis, it typically focuses on low ABI. Furthermore, historically, many studies focusing on peripheral artery disease have excluded high ABI participants. We aimed to study the mortality outcomes of persons with high ABI in the National Health and Nutrition Examination Survey (NHANES). METHODS: We obtained ABI from participants aged ≥40 years for survey years 1999 to 2004. We defined low a ABI as ≤0.9, normal ABI as 0.9 to 1.4, and high ABI as >1.4 or if the ankle pressures were >245 mm Hg. Demographics, various comorbidities, and laboratory test results were obtained at the time of the survey interview. Multivariable adjusted hazard ratios (HRs) along with 95% confidence intervals (CIs) were calculated for CV and all-cause mortality via Cox proportional hazards regression. Mortality was linked to all NHANES participants for follow-up through December 31, 2019, by the Centers for Disease Control and Prevention. RESULTS: We identified 7639 NHANES participants with available ABI. Of these, 6787 (89%) had a normal ABI, 646 (8%) had a low ABI, and 206 (3%) had elevated ABI. Of participants with high ABI, 50% were men, 15% were African Americans, 10% were current smokers, 56% had hypertension, 33% had diabetes, 15% had chronic kidney disease (CKD), and 18% had concomitant coronary artery disease (CAD). Diabetes (odds ratio [OR], 2.4; 95% CI, 1.7-3.2), CAD (OR, 1.6; 95% CI, 1.0-2.4), and CKD (OR, 1.5; 95% CI, 1.0-2.3) at baseline were associated with having a high ABI, respectively. A high ABI was associated independently with elevated CV (HR, 2.6; 95% CI, 2.1-3.1; P < .0001) and all-cause mortality (HR, 2.5; 95% CI, 2.2-2.8; P < .0001) after adjusting for covariates, including diabetes, CKD, CAD, current smoking, cancer, and hypertension. CONCLUSIONS: A high ABI is associated with an elevated CV and all-cause mortality, similar to patients with PAD. High ABI participants should receive the same attention and aggressive medical therapies as patients with PAD.

12.
J Exp Bot ; 75(8): 2481-2493, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280208

RESUMEN

The plant hormone abscisic acid (ABA) is an important regulator of plant growth and development and plays a crucial role in both biotic and abiotic stress responses. ABA modulates flowering time, but the precise molecular mechanism remains poorly understood. Here we report that ABA INSENSITIVE 2 (ABI2) is the only phosphatase from the ABA-signaling core that positively regulates the transition to flowering in Arabidopsis. Loss-of-function abi2-2 mutant shows significantly delayed flowering both under long day and short day conditions. Expression of floral repressor genes such as FLOWERING LOCUS C (FLC) and CYCLING DOF FACTOR 1 (CDF1) was significantly up-regulated in abi2-2 plants while expression of the flowering promoting genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was down-regulated. Through genetic interactions we further found that ost1-3 and abi5-1 mutations are epistatic to abi2-2, as both of them individually rescued the late flowering phenotype of abi2-2. Interestingly, phosphorylation and protein stability of ABA INSENSITIVE 5 (ABI5) were enhanced in abi2-2 plants suggesting that ABI2 dephosphorylates ABI5, thereby reducing protein stability and the capacity to induce FLC expression. Our findings uncovered the unexpected role of ABI2 in promoting flowering by inhibiting ABI5-mediated FLC expression in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Quinasas/metabolismo
13.
J Exp Bot ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770693

RESUMEN

Plants combat dehydration stress through several adaptive measures including root architectural changes. Here we show that when exposed to varying levels of dehydration stress, primary root growth in Arabidopsis is modulated by regulating root meristem activity. ABA in concert with auxin signalling perceives the stress level and adapts primary root growth accordingly. ABI3, the ABA responsive transcription factor stands at the intersection of ABA and auxin signalling and fine tunes primary root growth in response to dehydration stress. Under low ABA or dehydration stress, induction of ABI3 expression promotes auxin signalling by decreasing expression of SHY2, a negative regulator of auxin response. This further enhances the expression of auxin transporter gene PIN1 and cell cycle gene CYCB1;1, resulting in an increase in primary root meristem size and root length. Higher levels of dehydration stress or ABA repress ABI3 expression and promote ABI5 expression. This elevates SHY2 expression, thereby impairing primary root meristem activity and retarding root growth. Notably, ABI5 can promote SHY2 expression only in the absence of ABI3. Such ABA concentration dependent expression of ABI3 therefore functions as a regulatory sensor of dehydration stress levels and orchestrates primary root growth by coordinating its downstream regulon.

14.
J Exp Bot ; 75(13): 3932-3945, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38602261

RESUMEN

ABSCISIC ACID INSENSITIVE5 (ABI5), a key regulator of the abscisic acid (ABA) signalling pathway, plays a fundamental role in seed germination and post-germinative development. However, the molecular mechanism underlying the repression function of ABI5 remains to be elucidated. In this study, we demonstrate that the conserved eukaryotic WD40 repeat protein Receptor for Activated C Kinase 1 (RACK1) is a novel negative regulator of ABI5 in Arabidopsis. The RACK1 loss-of-function mutant is hypersensitive to ABA, while this phenotype is rescued by a mutation in ABI5. Moreover, overexpression of RACK1 suppresses ABI5 transcriptional activation activity for ABI5-targeted genes. RACK1 may also physically interact with ABI5 and facilitate its degradation. Furthermore, we found that RACK1 and the two substrate receptors CUL4-based E3 ligases (DWA1 and DWA2) function together to mediate the turnover of ABI5, thereby efficiently reducing ABA signalling in seed germination and post-germinative growth. In addition, molecular analyses demonstrated that ABI5 may bind to the promoter of RACK1 to repress its expression. Collectively, our findings suggest that RACK1 and ABI5 might form a feedback loop to regulate the homeostasis of ABA signalling in acute seed germination and early plant development.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Germinación , Receptores de Cinasa C Activada , Semillas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Receptores de Cinasa C Activada/metabolismo , Receptores de Cinasa C Activada/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo , Semillas/fisiología , Ácido Abscísico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Transducción de Señal
15.
J Exp Bot ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660968

RESUMEN

The exogenous light cues and the phytohormone Abscisic acid (ABA) regulate several aspects of plant growth and development. In recent years, the role of the crosstalk between the light and ABA signaling pathways in regulating different physiological processes has become increasingly evident. This includes the regulation of germination and early seedling development, control of stomatal development and conductance, growth and development of roots, buds, branches, and regulation of flowering. Light and ABA signaling cascades have various convergence points at both DNA and protein levels. The molecular crosstalk involves several light signaling factors like HY5, COP1, PIFs and BBXs that integrate with ABA signaling components like the PYL receptors and ABI5. Especially, ABI5 and PIF4 promoters serve as key "hotspots" for the integration of these two pathways. Plants acquired both light and ABA signaling pathways before they colonized land almost 500 million years ago. In this review, we discuss the recent advances in the interplay of light and ABA signaling regulating plant development and provide an overview of the evolution of these two pathways.

16.
Cancer Cell Int ; 24(1): 222, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937761

RESUMEN

Triple negative breast cancer (TNBC) is a type of cancer that lacks receptor expression and has complex molecular mechanisms. Recent evidence shows that the ubiquitin-protease system is closely related to TNBC. In this study, we obtain a key ubiquitination regulatory substrate-ABI2 protein by bioinformatics methods, which is also closely related to the survival and prognosis of TNBC. Further, through a series of experiments, we demonstrated that ABI2 expressed at a low level in TNBC tumors, and it has the ability to control cell cycle and inhibit TNBC cell migration, invasion and proliferation. Molecular mechanism studies proved E3 ligase CBLC could increase the ubiquitination degradation of ABI2 protein. Meanwhile, RNA-seq and IP experiments indicated that ABI2, acting as a crucial factor of tumor suppression, can significantly inhibit PI3K/Akt signaling pathway via the interaction with Rho GTPase RAC1. Finally, based on TNBC drug target ABI2, we screened and found that FDA-approved drug Colistimethate sodium(CS) has significant potential in suppressing the proliferation of TNBC cells and inducing cell apoptosis, making it a promising candidate for impeding the progression of TNBC.

17.
J Surg Res ; 299: 290-297, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788465

RESUMEN

INTRODUCTION: More than 1.2 million pulmonary artery catheters (PACs) are used in cardiac patients per annum within the United States. However, it is contraindicated in traditional 1.5 and 3T magnetic resonance imaging (MRI) scans. We aimed to test preclinical and clinical safety of using this imaging modality given the potential utility of needing it in the clinical setting. METHODS: We conducted two phantom experiments to ensure that the electromagnetic field power deposition associated with bare and jacketed PACs was safe and within the acceptable limit established by the Food and Drug Administration. The primary end points were the safety and feasibility of performing Point-of-Care (POC) MRI without imaging-related adverse events. We performed a preclinical computational electromagnetic simulation and evaluated these findings in nine patients with PACs on veno-arterial extracorporeal membrane oxygenation. RESULTS: The phantom experiments showed that the baseline point specific absorption rate through the head averaged 0.4 W/kg. In both the bare and jacketed catheters, the highest net specific absorption rates were at the neck entry point and tip but were negligible and unlikely to cause any heat-related tissue or catheter damage. In nine patients (median age 66, interquartile range 42-72 y) with veno-arterial extracorporeal membrane oxygenation due to cardiogenic shock and PACs placed for close hemodynamic monitoring, POC MRI was safe and feasible with good diagnostic imaging quality. CONCLUSIONS: Adult ECMO patients with PACs can safely undergo point-of-care low-field (64 mT) brain MRI within a reasonable timeframe in an intensive care unit setting to assess for acute brain injury that might otherwise be missed with conventional head computed tomography.


Asunto(s)
Encéfalo , Cateterismo de Swan-Ganz , Oxigenación por Membrana Extracorpórea , Imagen por Resonancia Magnética , Fantasmas de Imagen , Sistemas de Atención de Punto , Humanos , Masculino , Persona de Mediana Edad , Imagen por Resonancia Magnética/efectos adversos , Imagen por Resonancia Magnética/métodos , Femenino , Oxigenación por Membrana Extracorpórea/instrumentación , Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/métodos , Anciano , Adulto , Encéfalo/diagnóstico por imagen , Cateterismo de Swan-Ganz/instrumentación , Cateterismo de Swan-Ganz/efectos adversos , Estudios de Factibilidad
18.
Vasc Med ; : 1358863X241233528, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38544413

RESUMEN

Introduction: The safety and effectiveness of the GORE VIABAHN Endoprosthesis for treatment of symptomatic patients with peripheral artery disease (PAD) and complex femoropopliteal (FP) lesions was assessed in a real-world Japanese practice setting. Methods: A prospective, multicenter, postmarket surveillance study was conducted from 2016 to 2017 at 64 sites in Japan. Symptomatic patients with PAD and FP lesions ⩾ 10 cm and reference vessel diameters ranging from 4.0 to 7.5 mm were eligible for enrollment. Outcome measures evaluated at 5 years were primary patency (PP), primary-assisted patency (PAP), secondary patency (SP), freedom from target lesion revascularization (fTLR), occurrence of device- or procedure-related serious adverse events (SAEs), and stent fractures. Results: A total of 321 patients were enrolled and were a mean age of 73.9 ± 8.7 years; 77.3% were men and 26.5% had chronic limb-threatening ischemia (CLTI). The mean lesion length was 23.6 ± 6.6 cm and the frequency with TASC II C/D lesions and chronic total occlusions was 86.6% and 70.4%, respectively. The Kaplan-Meier estimated PP, PAP, SP, and fTLR at 5 years was 62.4%, 74.1%, 82.3%, and 75.9%, respectively. The mean ankle-brachial index was 0.92 ± 0.15 and the mean improvement in Rutherford class was 2.3 ± 1.4, which was maintained through 5 years. The rate of cumulative device- or procedure-related SAEs through 5 years was 19.9% with only 9.3% of those occurring after the first year. No stent fractures were observed through 5 years by x-ray evaluation. Conclusion: The 5-year safety and efficacy outcomes of the endoprosthesis were clinically acceptable for treating complex FP lesions in a real-world cohort of Japanese patients with PAD. (ClinicalTrials.gov Identifier: NCT04706273).

19.
Vasc Med ; 29(2): 153-162, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38469710

RESUMEN

INTRODUCTION: Maximal acceleration time of distal arteries of the foot (ATmax) is correlated to ankle-brachial index (ABI) and toe-brachial index (TBI), and seems very promising in diagnosing severe peripheral artery disease (PAD) and especially critical limb-threatening ischemia (CLTI). Our goal was to confirm the cut-off value of 215 ms to predict a toe pressure (TP) ⩽ 30 mmHg. METHODS: A 4-month retrospective study was conducted on patients addressed for suspicion of PAD. Demographic data, ABI, TBI, and Doppler ultrasound scanning parameters of the dorsal pedis and lateral plantar arteries (DPA and LPA) were recorded. RESULTS: A total of 137 patients with 258 lower limbs were included. ATmax was highly correlated to TBI (r = -0.89, p < 0.001). With the cut-off value of 215 ms, ATmax was effective to diagnose TP ⩽ 30 mmHg with a sensitivity of 93% [95% CI 77-99], a specificity of 96% [95% CI 92-98], a positive predictive value of 73% [95% CI 56-86], a negative predictive value of 99% [95% CI 97-100], and an area under the receiver operating characteristics curve of 0.99 [95% CI 0.98-1.00]. ATmax also showed promising results to rule out PAD in healthy patients. CONCLUSION: ATmax is a reliable diagnostic tool to diagnose low TP and could be a new easily performed hemodynamic criterion for diagnosis of CLTI.


Asunto(s)
Índice Tobillo Braquial , Enfermedad Arterial Periférica , Humanos , Estudios Retrospectivos , Enfermedad Arterial Periférica/diagnóstico por imagen , Arterias , Isquemia Crónica que Amenaza las Extremidades , Valor Predictivo de las Pruebas , Aceleración
20.
Plant Cell Rep ; 43(2): 55, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315238

RESUMEN

KEY MESSAGE: ABI5 functions in ABA-mediated anthocyanin accumulation in plant response to low phosphate. Low phosphate (LP)-induced anthocyanin biosynthesis and accumulation play an important role in plant adaptive response to phosphate starvation conditions. However, whether and how the stress phytohormone abscisic acid (ABA) participates in LP-induced anthocyanin accumulation remain elusive. Here, we report that ABA is required for LP-induced anthocyanin accumulation in Arabidopsis thaliana. Disrupting ABA DEFICIENT2 (ABA2), a key ABA-biosynthetic gene, or BETA-GLUCOSIDASE1 (BG1), a major gene implicated in converting conjugated ABA to active ABA, significantly impairs LP-induced anthocyanin accumulation, as LP-induced expression of the anthocyanin-biosynthetic genes Chalcone Synthase (CHS) is dampened in the aba2 and bg1 mutant. In addition, LP-induced anthocyanin accumulation is defective in the mutants of ABA signaling pathway, including ABA receptors, ABA Insensitive2, and the transcription factors ABA Insensitive5 (ABI5), suggesting a role of ABI5 in ABA-mediated upregulation of anthocyanin-biosynthetic genes in plant response to LP. Indeed, LP-induced expression of CHS is repressed in the abi5-7 mutant but further promoted in the ABI5-overexpressing plants compared to the wild-type. Moreover, ABI5 can bind to and transcriptionally activate CHS, and the defectiveness of LP-induced anthocyanin accumulation in abi5-7 can be restored by overexpressing CHS. Collectively, our findings illustrates that ABI5 functions in ABA-mediated LP-induced anthocyanin accumulation in Arabidopsis.


Asunto(s)
Antocianinas , Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Semillas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA