Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 811
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(23): 3249-3262, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37656183

RESUMEN

X-linked adrenoleukodystrophy is a severe demyelinating neurodegenerative disease mainly affecting males. The severe cerebral adrenoleukodystrophy (cALD) phenotype has a poor prognosis and underlying mechanism of onset and progression of neuropathology remains poorly understood. In this study we aim to integrate metabolomic and microRNA (miRNA) datasets to identify variances associated with cALD. Postmortem brain tissue samples from five healthy controls (CTL) and five cALD patients were utilized in this study. White matter from ALD patients was obtained from normal-appearing areas, away from lesions (NLA) and from the periphery of lesions- plaque shadow (PLS). Metabolomics was performed by gas chromatography coupled with time-of-flight mass spectrometry and miRNA expression analysis was performed by next generation sequencing (RNAseq). Principal component analysis revealed that among the three sample groups (CTL, NLA and PLS) there were 19 miRNA, including several novel miRNA, of which 17 were increased with disease severity and 2 were decreased. Untargeted metabolomics revealed 13 metabolites with disease severity-related patterns with 7 increased and 6 decreased with disease severity. Ingenuity pathway analysis of differentially altered metabolites and miRNA comparing CTL with NLA and NLA with PLS, identified several hubs of metabolite and signaling molecules and their upstream regulation by miRNA. The transomic approach to map the crosstalk between miRNA and metabolomics suggests involvement of specific molecular and metabolic pathways in cALD and offers opportunity to understand the complex underlying mechanism of disease severity in cALD.


Asunto(s)
Adrenoleucodistrofia , MicroARNs , Enfermedades Neurodegenerativas , Masculino , Humanos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Fenotipo , Metabolómica
2.
Brain ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832897

RESUMEN

Cerebral adrenoleukodystrophy (CALD) is an X-linked rapidly progressive demyelinating disease leading to death usually within a few years. The standard of care is hematopoietic stem cell transplantation (HSCT), but many men are not eligible due to age, absence of a matched donor, or lesions of the corticospinal tracts (CST). Based on the ADVANCE study showing that leriglitazone decreases the occurrence of CALD, we treated 13 adult CALD patients (19-67 years of age) either not eligible to HSCT (n= 8) or awaiting HSCT (n= 5). Patients were monitored every 3 months with standardized neurological scores, plasma biomarkers and brain MRI comprising lesion volumetrics and diffusion tensor imaging. The disease stabilized clinically and radiologically in 10 patients with up to 2 years of follow-up. Five patients presented with gadolinium enhancing CST lesions that all turned gadolinium negative and, remarkably, regressed in four patients. Plasma neurofilament light chain levels stabilized in all 10 patients and correlated with lesion load. The two patients who continued to deteriorate were over 60 years of age with prominent cognitive impairment. One patient rapidly died from Covid19. These results suggest that leriglitazone can arrest disease progression in adults with early-stage CALD and may be an alternative treatment to HSCT.

3.
Brain ; 147(6): 2069-2084, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38763511

RESUMEN

The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.


Asunto(s)
Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Adrenoleucodistrofia , Dinaminas , Dinámicas Mitocondriales , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patología , Adrenoleucodistrofia/genética , Animales , Dinámicas Mitocondriales/fisiología , Humanos , Ratones , Dinaminas/metabolismo , Dinaminas/genética , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/genética , Caenorhabditis elegans , Mitocondrias/metabolismo , Mitocondrias/patología , Axones/patología , Axones/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Masculino , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Modelos Animales de Enfermedad , Tractos Piramidales/patología , Tractos Piramidales/metabolismo , Fragmentos de Péptidos , GTP Fosfohidrolasas
4.
Nano Lett ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619226

RESUMEN

Halide perovskite-based resistive switching memory (memristor) has potential in an artificial synapse. However, an abrupt switch behavior observed for a formamidinium lead triiodide (FAPbI3)-based memristor is undesirable for an artificial synapse. Here, we report on the δ-FAPbI3/atomic-layer-deposited (ALD)-SnO2 bilayer memristor for gradual analogue resistive switching. In comparison to a single-layer δ-FAPbI3 memristor, the heterojunction δ-FAPbI3/ALD-SnO2 bilayer effectively reduces the current level in the high-resistance state. The analog resistive switching characteristics of δ-FAPbI3/ALD-SnO2 demonstrate exceptional linearity and potentiation/depression performance, resembling an artificial synapse for neuromorphic computing. The nonlinearity of long-term potentiation and long-term depression is notably decreased from 12.26 to 0.60 and from -8.79 to -3.47, respectively. Moreover, the δ-FAPbI3/ALD-SnO2 bilayer achieves a recognition rate of ≤94.04% based on the modified National Institute of Standards and Technology database (MNIST), establishing its potential in an efficient artificial synapse.

5.
Nano Lett ; 24(4): 1324-1331, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230977

RESUMEN

Oxide semiconductors (OS) are attractive materials for memory and logic device applications owing to their low off-current, high field effect mobility, and superior large-area uniformity. Recently, successful research has reported the high field-effect mobility (µFE) of crystalline OS channel transistors (above 50 cm2 V-1 s-1). However, the memory and logic device application presents challenges in mobility and stability trade-offs. Here, we propose a method for achieving high-mobility and high-stability by lowering the grain boundary effect. A DBADMIn precursor was synthesized to deposit highly c-axis-aligned C(222) crystalline 3 nm thick In2O3 films. In this study, the 250 °C deposited 3 nm thick In2O3 channel transistor exhibited high µFE of 41.12 cm2 V-1 s-1, Vth of -0.50 V, and SS of 150 mV decade-1 with superior stability of 0.16 V positive shift during PBTS at 100 °C, 3 MV cm-1 stress conditions for 3 h.

6.
J Lipid Res ; 65(3): 100516, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38320654

RESUMEN

The gold-standard diagnostic test for peroxisomal disorders (PDs) is plasma concentration analysis of very long-chain fatty acids (VLCFAs). However, this method's time-consuming nature and limitations in cases which present normal VLCFA levels necessitates alternative approaches. The analysis of C26:0-lysophosphatydylcholine (C26:0-LPC) in dried blood spot samples by tandem-mass spectrometry (MS/MS) has successfully been implemented in certain newborn screening programs to diagnose X-linked adrenoleukodystrophy (ALD). However, the diagnostic potential of very long-chain LPCs concentrations in plasma remains poorly understood. This study sought to evaluate the diagnostic performance of C26:0-LPC and other very long-chain LPCs, comparing them to VLCFA analysis in plasma. The study, which included 330 individuals affected by a peroxisomal ß-oxidation deficiency and 407 control individuals, revealed that C26:0- and C24:0-LPC concentrations demonstrated the highest diagnostic accuracy (98.8% and 98.4%, respectively), outperforming VLCFA when C26:0/C22:0 and C24:0/C22:0 ratios were combined (98.1%). Combining C24:0- and C26:0-LPC gave the highest sensitivity (99.7%), with ALD females exhibiting notably higher sensitivity compared with the VLCFA ratio combination (98.7% vs. 93.5%, respectively). In contrast, C22:0-LPC exhibited suboptimal performance, primarily due to its low sensitivity (75%), but we identified a potential use to help distinguish between ALD and Zellweger spectrum disorders. In summary, MS/MS analysis of plasma C24:0- and C26:0-LPC concentrations represents a rapid and straightforward approach to diagnose PDs, demonstrating superior diagnostic accuracy, particularly in ALD females, compared with conventional VLCFA biomarkers. We strongly recommend integrating very-long chain LPC plasma analysis in the diagnostic evaluation of individuals suspected of having a PD.


Asunto(s)
Adrenoleucodistrofia , Lisofosfatidilcolinas , Recién Nacido , Femenino , Humanos , Espectrometría de Masas en Tándem , Adrenoleucodistrofia/diagnóstico , Tamizaje Neonatal/métodos , Biomarcadores , Ácidos Grasos no Esterificados , Ácidos Grasos
7.
J Hepatol ; 81(1): 23-32, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38428644

RESUMEN

BACKGROUND & AIMS: Liver stiffness measurement (LSM) is recommended for disease prognostication and monitoring. We evaluated if LSM, using transient elastography, and LSM changes predict decompensation and mortality in patients with alcohol-related liver disease (ALD). METHODS: We performed an observational cohort study of compensated patients at risk of ALD from Denmark and Austria. We evaluated the risk of decompensation and all-cause mortality, stratified for compensated advanced chronic liver disease (cACLD: baseline LSM ≥10 kPa) and LSM changes after a median of 2 years. In patients with cACLD, we defined LSM changes as (A) LSM increase ≥20% ("cACLD increasers") and (B) follow-up LSM <10 kPa or <20 kPa with LSM decrease ≥20% ("cACLD decreasers"). In patients without cACLD, we defined follow-up LSM ≥10 kPa as an LSM increase ("No cACLD increasers"). The remaining patients were considered LSM stable. RESULTS: We followed 536 patients for 3,008 patient-years-median age 57 years (IQR 49-63), baseline LSM 8.1 kPa (IQR 4.9-21.7)-371 patients (69%) had follow-up LSM after a median of 25 months (IQR 17-38), 41 subsequently decompensated and 55 died. Of 125 with cACLD at baseline, 14% were "cACLD increasers" and 43% "cACLD decreasers", while 13% of patients without cACLD were "No cACLD increasers" (n = 33/246). Baseline LSM, follow-up LSM and LSM changes accurately predicted decompensation (C-index: baseline LSM 0.85; follow-up LSM 0.89; LSM changes 0.85) and mortality (C-index: baseline LSM 0.74; follow-up LSM 0.74; LSM changes 0.70). When compared to "cACLD decreasers", "cACLD increasers" had significantly lower decompensation-free survival and higher risks of decompensation (subdistribution hazard ratio 4.39, p = 0.004) and mortality (hazard ratio 3.22, p = 0.01). CONCLUSION: LSM by transient elastography predicts decompensation and all-cause mortality in patients with compensated ALD both at diagnosis and when used for monitoring. IMPACT AND IMPLICATIONS: Patients at risk of alcohol-related liver disease (ALD) are at significant risk of progressive disease and adverse outcomes. Monitoring is essential for optimal disease surveillance and patient guidance, but non-invasive monitoring tools are lacking. In this study we demonstrate that liver stiffness measurement (LSM), using transient elastography, and LSM changes after a median of 2 years, can predict decompensation and all-cause mortality in patients at risk of ALD with and without compensated advanced chronic liver disease. These findings are in line with results from non-alcoholic fatty liver disease, hepatitis C and primary sclerosing cholangitis, and support the clinical utility of LSM, using transient elastography, for disease prognostication and monitoring in chronic liver diseases including ALD, as recommended by the Baveno VII.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hepatopatías Alcohólicas , Humanos , Diagnóstico por Imagen de Elasticidad/métodos , Persona de Mediana Edad , Masculino , Femenino , Hepatopatías Alcohólicas/mortalidad , Hepatopatías Alcohólicas/complicaciones , Dinamarca/epidemiología , Austria/epidemiología , Pronóstico , Hígado/diagnóstico por imagen , Hígado/patología , Hígado/fisiopatología , Estudios de Cohortes , Valor Predictivo de las Pruebas
8.
J Hepatol ; 80(1): 140-154, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37741346

RESUMEN

Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.


Asunto(s)
Carcinoma Hepatocelular , Hepatopatías Alcohólicas , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Hepatopatías Alcohólicas/metabolismo , Carcinoma Hepatocelular/patología , Fosfolípidos/metabolismo , Neoplasias Hepáticas/patología , Hígado/patología
9.
Small ; : e2401701, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705844

RESUMEN

Enhancing the intrinsic stability of perovskite and through encapsulation to isolate water, oxygen, and UV-induced decomposition are currently common and most effective strategies in perovskite solar cells. Here, the atomic layer deposition process is employed to deposit a nanoscale (≈100 nm), uniform, and dense Al2O3 film on the front side of perovskite devices, effectively isolating them from the erosion caused by water and oxygen in the humid air. Simultaneously, nanoscale (≈100 nm) TiO2 films are also deposited on the glass surface to efficiently filter out the ultraviolet (UV) light in the light source, which induces degradation in perovskite. Ultimately, throughthe collaborative effects of both aspects, the stability of the devices is significantly improved under conditions of humid air and illumination. As a result, after storing the devices in ambient air for 1000 h, the efficiency only declines to 95%, and even after 662 h of UV exposure, the efficiency remains at 88%, far surpassing the performance of comparison devices. These results strongly indicate that the adopted Al2O3 and TiO2 thin films play a significant role in enhancing the stability of perovskite solar cells, demonstrating substantial potential for widespread industrial applications.

10.
Small ; 20(7): e2305868, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798640

RESUMEN

Transition metal nitrides (TMNs) are promising electrode materials for use in high-performance electrochemical energy storage devices due to their unique properties, which include a high conductivity, pseudocapacitance, and energy density. However, structural instability during electrochemical reactions has limited their practical deployment for energy storage devices. In this context, the present study fabricated a CoOx @NiMoN/Ti3 C2 Tx electrode via in situ growth on Ni foam using hydrothermal treatment with post-nitrogenization. The effect of atomic layer deposition (ALD) of CoOx on the TMN/Ti3 C2 Tx interface and the consequent electrochemical charge storage mechanisms are investigated in detail. The proposed CoOx @NiMoN/Ti3 C2 Tx electrode delivers an impressive specific capacity in a 2 m potassium hydroxide (KOH) electrolyte and is then employed in both a hybrid solid-state supercapacitor (HSSC) with reduced graphene oxide and a symmetric SC in a 2 m KOH + polyvinyl alcohol (PVA) gel electrolyte. Outstanding charge storage and high capacity retention during cyclic testing are observed for both energy storage devices. The exceptional electrochemical performance of the fabricated electrode is a result of its high conductivity and high number of active sites. Here a feasible new strategy is demonstrated for the fabrication of stable energy storage devices with a high energy density using TMNs and MXenes.

11.
Small ; : e2402003, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884191

RESUMEN

Global healthcare based on the Internet of Things system is rapidly transforming to measure precise physiological body parameters without visiting hospitals at remote patients and associated symptoms monitoring. 2D materials and the prevailing mood of current ever-expanding MXene-based sensing devices motivate to introduce first the novel iridium (Ir) precious metal incorporated vanadium (V)-MXene via industrially favored emerging atomic layer deposition (ALD) techniques. The current work contributes a precise control and delicate balance of Ir single atomic forms or clusters on the V-MXene to constitute a unique precious metal-MXene embedded heterostructure (Ir-ALD@V-MXene) in practical real-time sensing healthcare applications to thermography with human-machine interface for the first time. Ir-ALD@V-MXene delivers an ultrahigh durability and sensing performance of 2.4% °C-1 than pristine V-MXene (0.42% °C-1), outperforming several conventionally used MXenes, graphene, underscoring the importance of the Ir-ALD innovative process. Aberration-corrected advanced ultra-high-resolution transmission/scanning transmission electron microscopy confirms the presence of Ir atomic clusters on well-aligned 2D-layered V-MXene structure and their advanced heterostructure formation (Ir-ALD@V-MXene), enhanced sensing mechanism is investigated using density functional theory (DFT) computations. A rational design empowering the Ir-ALD process on least explored V-MXene can potentially unfold further precious metals ALD-process developments for next-generation wearable personal healthcare devices.

12.
Liver Int ; 44(7): 1537-1547, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38578107

RESUMEN

Alcohol use is the most important determinant of the development of alcohol-associated liver disease (ALD) and of predicting long-term outcomes in those with established liver disease. Worldwide, the amount, type, and pattern of use of alcohol vary. Alcohol use and consequent liver disease have been increasing in certain ethnic groups especially Hispanics and Native Americans, likely due to variations in genetics, cultural background, socio-economic status, and access to health care. Furthermore, the magnitude and burden of ALD have been increasing especially in the last few years among females and young adults who are at the prime of their productivity. It is critical to recognize the problem and care for these patients integrating cultural aspects in liver clinics. At the federal level, a societal approach is needed with the implementation of public health policies aiming to reduce alcohol consumption in the community. By addressing these challenges and promoting awareness, we can strive to reduce the burden of ALD, especially in high-risk demographic groups to improve their long-term health outcomes. Finally, we need studies and quality research examining these changing landscapes of demographics in ALD as a basis for developing therapeutic targets and interventions to reduce harmful drinking behaviours in these high-risk demographic groups.


Asunto(s)
Consumo de Bebidas Alcohólicas , Hepatopatías Alcohólicas , Humanos , Femenino , Hepatopatías Alcohólicas/epidemiología , Hepatopatías Alcohólicas/etnología , Consumo de Bebidas Alcohólicas/efectos adversos , Minorías Étnicas y Raciales , Masculino , Factores de Riesgo , Adulto
13.
Nanotechnology ; 35(23)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38417172

RESUMEN

Transition metal phosphates are promising catalysts for the oxygen evolution reaction (OER) in alkaline medium. Herein, Fe-doped Ni phosphates are deposited using plasma-enhanced atomic layer deposition (PE-ALD) at 300 °C. A sequence offFe phosphate PE-ALD cycles andnNi phosphate PE-ALD cycles is repeatedxtimes. The Fe to Ni ratio can be controlled by the cycle ratio (f/n), while the film thickness can be controlled by the number of cycles (xtimes (n+f)). 30 nm films with an Fe/Ni ratio of ∼10% and ∼37%, respectively, are evaluated in 1.0 M KOH solution. Remarkably, a significant difference in OER activity is found when the order of the Ni and Fe phosphate PE-ALD cycles in the deposition sequence is reversed. A 20%-45% larger current density is obtained for catalysts grown with an Fe phosphate PE-ALD cycle at the end compared to the Ni phosphate-terminated flavour. We attribute this to a higher concentration of Fe centers on the surface, as a consequence of the specific PE-ALD approach. Secondly, increasing the thickness of the catalyst films up to 160 nm results in an increase of the OER current density and active surface area, suggesting that the as-deposited smooth and continuous films are converted into electrolyte-permeable structures during catalyst activation and operation. This work demonstrates the ability of PE-ALD to control both the surface and bulk composition of thin film electrocatalysts, offering valuable opportunities to understand their impact on performance.

14.
Nanotechnology ; 35(20)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38350118

RESUMEN

In recent years, spatial atomic layer deposition (SALD) has gained significant attention for its remarkable capability to accelerate ALD growth by several orders of magnitude compared to conventional ALD, all while operating at atmospheric pressure. Nevertheless, the persistent challenge of inadvertent contributions from chemical vapor deposition (CVD) in SALD processes continues to impede control over film homogeneity, and properties. This research underscores the often-overlooked influence of diffusion coefficients and important geometric parameters on the close-proximity SALD growth patterns. We introduce comprehensive physical models complemented by finite element method simulations for fluid dynamics to elucidate SALD growth kinetics across diverse scenarios. Our experimental findings, in alignment with theoretical models, reveal distinctive growth rate trends in ZnO and SnO2films as a function of the deposition gap. These trends are ascribed to precursor diffusion effects within the SALD system. Notably, a reduced deposition gap proves advantageous for both diffusive and low-volatility bulky precursors, minimizing CVD contributions while enhancing precursor chemisorption kinetics. However, in cases involving highly diffusive precursors, a deposition gap of less than 100µm becomes imperative, posing technical challenges for large-scale applications. This can be ameliorated by strategically adjusting the separation distance between reactive gas outlets to mitigate CVD contributions, which in turn leads to a longer deposition time. Furthermore, we discuss the consequential impact on material properties and propose a strategy to optimize the injection head to control the ALD/CVD growth mode.

15.
Nanotechnology ; 35(26)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38522103

RESUMEN

Titanium oxide (TiO2) coated polyimide has broad application prospects under extreme conditions. In order to obtain a high-quality ultra-thin TiO2coating on polyimide by atomic layer deposition (ALD), the polyimide was activated byin situoxygen plasma. It was found that a large number of polar oxygen functional groups, such as carboxyl, were generated on the surface of the activated polyimide, which can significantly promote the preparation of TiO2coating by ALD. The nucleation and growth of TiO2were studied by x-ray photoelectron spectroscopy monitoring and scanning electron microscopy observation. On the polyimide activated by oxygen plasma, the size of TiO2nuclei decreased and the quantity of TiO2nuclei increased, resulting in the growth of a highly uniform and dense TiO2coating. This coating exhibited excellent resistance to atomic oxygen. When exposed to 3.5 × 1021atom cm-2atomic oxygen flux, the erosion yield of the polyimide coated with 100 ALD cycles of TiO2was as low as 3.0 × 10-25cm3/atom, which is one order less than that of the standard POLYIMIDE-ref Kapton®film.

16.
Nanotechnology ; 35(38)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38914053

RESUMEN

Nb-doped SnO2(NTO) thin films were synthesized by atomic layer deposition technique at low temperature (100 °C). For an efficient incorporation of the Nb atoms, i.e. fine control of their amount and distribution, various supercycle ratios and precursor pulse sequences were explored. The thin film growth process studied byin-situQCM revealed that the Nb incorporation is highly impacted by the surface nature as well as the amount of species available at the surface. This was confirmed by the actual concentration of the Nb atom incorporated inside the thin film as determined by XPS. Highly transparent thin films which transmit more than 95% of the AM1.5 global solar irradiance over a wide spectral range (300-1000 nm) were obtained. In addition, the Nb atoms influenced the optical band gap, conduction band, and valence band levels. While SnO2thin film were too resistive, films tuned to conductive nature upon Nb incorporation with controlled concentration. Optimal incorporation level was found to be ⩽1 at.% of Nb, and carrier concentration reached up 2.5 × 1018cm-3for the as-deposited thin films. As a result, the high optical transparency accompanied with tuned electrical property of NTO thin films fabricated by ALD at low temperature paves the way for their integration into temperature-sensitive, nanostructured optoelectrical devices.

17.
Nanotechnology ; 35(43)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39084235

RESUMEN

Indium oxide (In2O3) is a promising channel material for thin-film transistors (TFTs). In this work, we develop an atomic layer deposition (ALD) process of using trimethylindium and ozone (O3) to deposit In2O3films and fabricate ultrathin In2O3TFTs. The In2O3TFTs with 4 nm channel thickness show generally good switching characteristics with a highIon/Ioffof 108, a high mobility (µFE) of 16.2cm2V-1s-1and a positive threshold voltage (Vth) of 0.48 V. Although the 4 nm In2O3TFTs exhibit short channel effect, it can be improved by adding an ALD Ga2O3capping layer to afford the bilayer In2O3/Ga2O3channel structure. The afforded In2O3/Ga2O3TFTs exhibit improved immunity to the short channel effect, with good TFT characteristics ofIon/Ioffof 107,µFEof 9.3cm2V-1s-1, and positiveVthof 2.23 V. Overall, the thermal budget of the entire process is only 400 °C, which is suitable for the display and CMOS back-end-of-line-compatible applications.

18.
Nanotechnology ; 35(36)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888294

RESUMEN

In this perspective we discuss the progress made in the mechanistic studies of the surface chemistry associated with the atomic layer deposition (ALD) of metal films and the usefulness of that knowledge for the optimization of existing film growth processes and for the design of new ones. Our focus is on the deposition of late transition metals. We start by introducing some of the main surface-sensitive techniques and approaches used in this research. We comment on the general nature of the metallorganic complexes used as precursors for these depositions, and the uniqueness that solid surfaces and the absence of liquid solvents bring to the ALD chemistry and differentiate it from what is known from metalorganic chemistry in solution. We then delve into the adsorption and thermal chemistry of those precursors, highlighting the complex and stepwise nature of the decomposition of the organic ligands that usually ensued upon their thermal activation. We discuss the criteria relevant for the selection of co-reactants to be used on the second half of the ALD cycle, with emphasis on the redox chemistry often associated with the growth of metallic films starting from complexes with metal cations. Additional considerations include the nature of the substrate and the final structural and chemical properties of the growing films, which we indicate rarely retain the homogeneous 2D structure often aimed for. We end with some general conclusions and personal thoughts about the future of this field.

19.
Hepatol Res ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110552

RESUMEN

AIMS: The new nomenclature of steatotic liver disease (SLD) including metabolic dysfunction-associated SLD (MASLD), MASLD and increased alcohol intake (MetALD), and alcohol-associated liver disease (ALD) has recently been proposed. We aimed to elucidate the relationship between each category of SLD and chronic kidney disease (CKD). METHODS: We investigated the effects of various SLDs on the development of CKD, defined as estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 or positive for urinary protein, during a 10-year period in 12 138 Japanese subjects (men / women, 7984/4154; mean age, 48 years) who received annual health examinations including abdominal ultrasonography. RESULTS: The prevalences of SLD without metabolic dysfunction (SLD-MD[-]), MASLD, MetALD, and ALD were 1.7%, 26.3%, 4.9%, and 1.9%, respectively. During the follow-up period, 1963 subjects (16.2%) (men / women, 1374 [17.2%]/589 [14.2%]) had new onset of CKD. Multivariable Cox proportional hazard model analyses after adjustment of age, sex, eGFR, current smoking habit, diabetes mellitus, hypertension, and dyslipidemia showed that the hazard ratios (HR [95% confidence interval]) for the development of CKD in subjects with MASLD (1.20 [1.08-1.33], p = 0.001) and those with ALD (1.41 [1.05-1.88], p = 0.022), but not those with MetALD (1.11 [0.90-1.36], p = 0.332), were significantly higher than the HR in subjects with non-SLD. Interestingly, subjects with SLD-MD[-] had a significantly lower HR (0.61 [0.39-0.96], p = 0.034) than that in subjects with non-SLD. The addition of the novel classification of SLDs into traditional risk factors for the development of CKD significantly improved the discriminatory capacity. CONCLUSIONS: MASLD and ALD, but not SLD-MD[-], are independently associated with the development of CKD.

20.
Acta Pharmacol Sin ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992121

RESUMEN

Macrophage polarization is vital to mounting a host defense or repairing tissue in various liver diseases. Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is related to the orchestration of inflammation and alcohol-associated liver disease (ALD) pathology. Rab GTPases play critical roles in regulating vesicular transport. In this study we investigated the role of Rab11b in ALD, aiming to identify effective therapeutic targets. Here, we first demonstrated a decreased expression of Rab11b in macrophages from ALD mice. Knockdown of Rab11b by macrophage-specific adeno-associated virus can alleviate alcohol induced liver inflammation, injury and steatosis. We found that LPS and alcohol stimulation promoted Rab11b transferring from the nucleus to the cytoplasm in bone marrow-derived macrophages (BMDM) cells. Rab11b specifically activated the NLRP3 inflammasome in BMDMs and RAW264.7 cells to induce M1 macrophage polarization. Rab11b overexpression in BMDMs inhibited autophagic flux, leading to the suppression of LC3B-mediated NLRP3 degradation. We conclude that impaired Rab11b could alleviate alcohol-induced liver injury via autophagy-mediated NLRP3 degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA