Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Neurosci ; 40(15): 2993-3007, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32139584

RESUMEN

During differentiation, oligodendrocyte precursor cells (OPCs) extend a network of processes that make contact with axons and initiate myelination. Recent studies revealed that actin polymerization is required for initiation of myelination whereas actin depolymerization promotes myelin wrapping. Here, we used primary OPCs in culture isolated from neonatal rat cortices of both sexes and young male and female mice with oligodendrocyte-specific deletion of mechanistic target of rapamycin (mTOR) to demonstrate that mTOR regulates expression of specific cytoskeletal targets and actin reorganization in oligodendrocytes during developmental myelination. Loss or inhibition of mTOR reduced expression of profilin2 and ARPC3, actin polymerizing factors, and elevated levels of active cofilin, which mediates actin depolymerization. The deficits in actin polymerization were revealed in reduced phalloidin and deficits in oligodendrocyte cellular branching complexity at the peak of morphologic differentiation and a delay in initiation of myelination. We further show a critical role for mTOR in expression and localization of myelin basic protein (Mbp) mRNA and MBP protein to the cellular processes where it is necessary at the myelin membrane for axon wrapping. Mbp mRNA transport deficits were confirmed by single molecule RNA FISH. Moreover, expression of the kinesin family member 1B, an Mbp mRNA transport protein, was reduced in CC1+ cells in the mTOR cKO and in mTOR inhibited oligodendrocytes undergoing differentiation in vitro These data support the conclusion that mTOR regulates both initiation of myelination and axon wrapping by targeting cytoskeletal reorganization and MBP localization to oligodendrocyte processes.SIGNIFICANCE STATEMENT Myelination is essential for normal CNS development and adult axon preservation and function. The mechanistic target of rapamycin (mTOR) signaling pathway has been implicated in promoting CNS myelination; however, there is a gap in our understanding of the mechanisms by which mTOR promotes developmental myelination through regulating specific downstream targets. Here, we present evidence that mTOR promotes the initiation of myelination through regulating specific cytoskeletal targets and cellular process expansion by oligodendrocyte precursor cells as well as expression and cellular localization of myelin basic protein.


Asunto(s)
Citoesqueleto/genética , Vaina de Mielina/genética , Oligodendroglía , Serina-Treonina Quinasas TOR/fisiología , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Axones , Diferenciación Celular/genética , Cinesinas/genética , Cinesinas/metabolismo , Ratones , Ratones Noqueados , Proteína Básica de Mielina/genética , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Oligodendroglía/ultraestructura , Ratas , Ratas Sprague-Dawley , Células Madre , Serina-Treonina Quinasas TOR/genética , Pez Cebra
2.
Plant Cell Environ ; 42(9): 2664-2680, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31038756

RESUMEN

The actin-related protein 2/3 complex (Arp2/3 complex), a key regulator of actin cytoskeletal dynamics, has been linked to multiple cellular processes, including those associated with response to stress. Herein, the Solanum habrochaites ARPC3 gene, encoding a subunit protein of the Arp2/3 complex, was identified and characterized. ShARPC3 encodes a 174-amino acid protein possessing a conserved P21-Arc domain. Silencing of ShARPC3 resulted in enhanced susceptibility to the powdery mildew pathogen Oidium neolycopersici (On-Lz), demonstrating a role for ShARPC3 in defence signalling. Interestingly, a loss of ShARPC3 coincided with enhanced susceptibility to On-Lz, a process that we hypothesize is the result of a block in the activity of SA-mediated defence signalling. Conversely, overexpression of ShARPC3 in Arabidopsis thaliana, followed by inoculation with On-Lz, showed enhanced resistance, including the rapid induction of hypersensitive cell death and the generation of reactive oxygen. Heterologous expression of ShARPC3 in the arc18 mutant of Saccharomyces cerevisiae (i.e., ∆arc18) resulted in complementation of stress-induced phenotypes, including high-temperature tolerance. Taken together, these data support a role for ShARPC3 in tomato through positive regulation of plant immunity in response to O. neolycopersici pathogenesis.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Ascomicetos/fisiología , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Solanum lycopersicum/fisiología , Complejo 2-3 Proteico Relacionado con la Actina/genética , Secuencia de Aminoácidos , Reguladores del Crecimiento de las Plantas/metabolismo
3.
Biomolecules ; 14(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39199289

RESUMEN

Mastitis typically arises from bacterial invasion, where host cell apoptosis significantly contributes to the inflammatory response. Gram-positive bacteria predominantly utilize the virulence factor lipoteichoic acid (LTA), which frequently leads to chronic breast infections, thereby impacting dairy production and animal husbandry adversely. This study employed LTA to develop models of mastitis in cow mammary gland cells and mice. Transcriptomic analysis identified 120 mRNAs associated with endocytosis and apoptosis pathways that were enriched in the LTA-induced inflammation of the Mammary Alveolar Cells-large T antigen (MAC-T), with numerous differential proteins also concentrated in the endocytosis pathway. Notably, actin-related protein 2/3 complex subunit 3 (ARPC3), actin-related protein 2/3 complex subunit 4 (ARPC4), and the heat shock protein 70 (HSP70) are closely related. STRING analysis revealed interactions among ARPC3, ARPC4, and HSP70 with components of the apoptosis pathway. Histological and molecular biological assessments confirmed that ARPC3, ARPC4, and HSP70 were mainly localized to the cell membrane of mammary epithelial cells. ARPC3 and ARPC4 are implicated in the mechanisms of bacterial invasion and the initiation of inflammation. Compared to the control group, the expression levels of these proteins were markedly increased, alongside the significant upregulation of apoptosis-related factors. While HSP70 appears to inhibit apoptosis and alleviate inflammation, its upregulation presents novel research opportunities. In conclusion, we deduced the development mechanism of ARPC3, ARPC4, and HSP70 in breast inflammation, laying the foundation for further exploring the interaction mechanism between the actin-related protein 2/3 (ARP2/3) complex and HSP70.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Apoptosis , Proteínas HSP70 de Choque Térmico , Lipopolisacáridos , Ácidos Teicoicos , Ácidos Teicoicos/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Animales , Lipopolisacáridos/farmacología , Femenino , Apoptosis/efectos de los fármacos , Ratones , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Bovinos , Mastitis/metabolismo , Mastitis/microbiología , Mastitis/patología , Inflamación/metabolismo , Inflamación/patología , Modelos Animales de Enfermedad , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología
4.
Cell Rep ; 42(4): 112328, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37027305

RESUMEN

Cyclic GMP-AMP synthase (cGAS) senses cytosolic incoming DNA and consequently activates stimulator of interferon response cGAMP interactor 1 (STING) to mount immune response. Here, we show nuclear cGAS could regulate VEGF-A-mediated angiogenesis in an immune-independent manner. We found VEGF-A stimulation induces cGAS nuclear translocation via importin-ß pathway. Moreover, nuclear cGAS subsequently regulates miR-212-5p-ARPC3 cascade to modulate VEGF-A-mediated angiogenesis through affecting cytoskeletal dynamics and VEGFR2 trafficking from trans-Golgi network (TGN) to plasma membrane via a regulatory feedback loop. In contrast, cGAS deficiency remarkably impairs VEGF-A-mediated angiogenesis in vivo and in vitro. Furthermore, we found strong association between the expression of nuclear cGAS and VEGF-A, and the malignancy and prognosis in malignant glioma, suggesting that nuclear cGAS might play important roles in human pathology. Collectively, our findings illustrated the function of cGAS in angiogenesis other than immune surveillance, which might be a potential therapeutic target for pathological angiogenesis-related diseases.


Asunto(s)
MicroARNs , Factor A de Crecimiento Endotelial Vascular , Humanos , Citosol/metabolismo , ADN/metabolismo , Inmunidad Innata , MicroARNs/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Cell Rep ; 32(4): 107965, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32726629

RESUMEN

Psychiatric disorders are highly heritable pathologies of altered neural circuit functioning. How genetic mutations lead to specific neural circuit abnormalities underlying behavioral disruptions, however, remains unclear. Using circuit-selective transgenic tools and a mouse model of maladaptive social behavior (ArpC3 mutant), we identify a neural circuit mechanism driving dysfunctional social behavior. We demonstrate that circuit-selective knockout (ctKO) of the ArpC3 gene within prefrontal cortical neurons that project to the basolateral amygdala elevates the excitability of the circuit neurons, leading to disruption of socially evoked neural activity and resulting in abnormal social behavior. Optogenetic activation of this circuit in wild-type mice recapitulates the social dysfunction observed in ArpC3 mutant mice. Finally, the maladaptive sociability of ctKO mice is rescued by optogenetically silencing neurons within this circuit. These results highlight a mechanism of how a gene-to-neural circuit interaction drives altered social behavior, a common phenotype of several psychiatric disorders.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Trastornos Mentales/fisiopatología , Corteza Prefrontal/fisiopatología , Complejo 2-3 Proteico Relacionado con la Actina/genética , Animales , Complejo Nuclear Basolateral/metabolismo , Citoesqueleto , Modelos Animales de Enfermedad , Masculino , Ratones , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Neuronas , Optogenética , Técnicas de Placa-Clamp , Corteza Prefrontal/metabolismo , Conducta Social
6.
Front Plant Sci ; 8: 1245, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769954

RESUMEN

The actin cytoskeleton participates in numerous cellular processes, including less-characterized processes, such as nuclear organization, chromatin remodeling, transcription, and signal transduction. As a key regulator of actin cytoskeletal dynamics, the actin related protein 2/3 complex (Arp2/3 complex) controls multiple developmental processes in a variety of tissues and cell types. To date, the role of the Arp2/3 complex in plant disease resistance signaling is largely unknown. Herein, we identified and characterized wheat ARPC3, TaARPC3, which encodes the C3 subunit of the Arp2/3 complex. Expression of TaARPC3 in the arc18 mutant of Saccharomyces cerevisiae Δarc18 resulted in complementation of stress-induced phenotypes in S. cerevisiae, as well as restore wild-type cell shape malformations. TaARPC3 was found predominantly to be localized in the nucleus and cytoplasm when expressed transiently in wheat protoplast. TaARPC3 was significantly induced in response to avirulent race of Puccinia striiformis f. sp. tritici (Pst). Knock-down of TaARPC3 by virus-induced gene silencing resulted in a reduction of resistance against Pst through a specific reduction in actin cytoskeletal organization. Interestingly, this reduction was found to coincide with a block in reactive oxygen species (ROS) accumulation, the hypersensitive response (HR), an increase in TaCAT1 mRNA accumulation, and the growth of Pst. Taken together, these findings suggest that TaARPC3 is a key subunit of the Arp2/3 complex which is required for wheat resistance against Pst, a process that is associated with the regulation of the actin cytoskeleton.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA