Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(1-2): 85-97.e14, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30580965

RESUMEN

Animals must respond to the ingestion of food by generating adaptive behaviors, but the role of gut-brain signaling in behavioral regulation is poorly understood. Here, we identify conserved ion channels in an enteric serotonergic neuron that mediate its responses to food ingestion and decipher how these responses drive changes in foraging behavior. We show that the C. elegans serotonergic neuron NSM acts as an enteric sensory neuron that acutely detects food ingestion. We identify the novel and conserved acid-sensing ion channels (ASICs) DEL-7 and DEL-3 as NSM-enriched channels required for feeding-dependent NSM activity, which in turn drives slow locomotion while animals feed. Point mutations that alter the DEL-7 channel change NSM dynamics and associated behavioral dynamics of the organism. This study provides causal links between food ingestion, molecular and physiological properties of an enteric serotonergic neuron, and adaptive feeding behaviors, yielding a new view of how enteric neurons control behavior.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Sistema Nervioso Entérico/metabolismo , Conducta Alimentaria/fisiología , Canales Iónicos Sensibles al Ácido/fisiología , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervioso Entérico/fisiología , Alimentos , Canales Iónicos/metabolismo , Canales Iónicos/fisiología , Locomoción , Neuronas/metabolismo , Células Receptoras Sensoriales/metabolismo , Neuronas Serotoninérgicas/metabolismo , Neuronas Serotoninérgicas/fisiología , Serotonina , Transducción de Señal
2.
Cell Mol Life Sci ; 81(1): 266, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38880807

RESUMEN

Acid-sensing ion channels (ASICs) are trimeric proton-gated cation channels that play a role in neurotransmission and pain sensation. The snake venom-derived peptides, mambalgins, exhibit potent analgesic effects in rodents by inhibiting central ASIC1a and peripheral ASIC1b. Despite their distinct species- and subtype-dependent pharmacology, previous structure-function studies have focussed on the mambalgin interaction with ASIC1a. Currently, the specific channel residues responsible for this pharmacological profile, and the mambalgin pharmacophore at ASIC1b remain unknown. Here we identify non-conserved residues at the ASIC1 subunit interface that drive differences in the mambalgin pharmacology from rat ASIC1a to ASIC1b, some of which likely do not make peptide binding interactions. Additionally, an amino acid variation below the core binding site explains potency differences between rat and human ASIC1. Two regions within the palm domain, which contribute to subtype-dependent effects for mambalgins, play key roles in ASIC gating, consistent with subtype-specific differences in the peptides mechanism. Lastly, there is a shared primary mambalgin pharmacophore for ASIC1a and ASIC1b activity, with certain peripheral peptide residues showing variant-specific significance for potency. Through our broad mutagenesis studies across various species and subtype variants, we gain a more comprehensive understanding of the pharmacophore and the intricate molecular interactions that underlie ligand specificity. These insights pave the way for the development of more potent and targeted peptide analogues required to advance our understating of human ASIC1 function and its role in disease.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Venenos Elapídicos , Canales Iónicos Sensibles al Ácido/metabolismo , Canales Iónicos Sensibles al Ácido/genética , Canales Iónicos Sensibles al Ácido/química , Animales , Humanos , Ratas , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacología , Venenos Elapídicos/genética , Secuencia de Aminoácidos , Sitios de Unión , Modelos Moleculares , Xenopus laevis , Péptidos
3.
Exp Physiol ; 109(1): 66-80, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489658

RESUMEN

Although acid-sensing ion channels (ASICs) are proton-gated ion channels responsible for sensing tissue acidosis, accumulating evidence has shown that ASICs are also involved in neurosensory mechanotransduction. However, in contrast to Piezo ion channels, evidence of ASICs as mechanically gated ion channels has not been found using conventional mechanoclamp approaches. Instead, ASICs are involved in the tether model of mechanotransduction, with the channels gated via tethering elements of extracellular matrix and intracellular cytoskeletons. Methods using substrate deformation-driven neurite stretch and micropipette-guided ultrasound were developed to reveal the roles of ASIC3 and ASIC1a, respectively. Here we summarize the evidence supporting the roles of ASICs in neurosensory mechanotransduction in knockout mouse models of ASIC subtypes and provide insight to further probe their roles in proprioception.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Mecanotransducción Celular , Ratones , Animales , Canales Iónicos Sensibles al Ácido/genética , Canales Iónicos Sensibles al Ácido/metabolismo , Mecanotransducción Celular/fisiología , Propiocepción/fisiología , Ratones Noqueados , Protones
4.
Cell Commun Signal ; 22(1): 388, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095886

RESUMEN

Acidic microenvironments is a cancer progression driver, unclear core mechanism hinders the discovery of new diagnostic or therapeutic targets. ASIC3 is an extracellular proton sensor and acid-sensitive, but its role in acidic tumor microenvironment of colorectal cancer is not reported. Functional analysis data show that colorectal cancer cells respond to specific concentration of lactate to accelerate invasion and metastasis, and ASIC3 is the main actor in this process. Mechanism reveal de novo lipid synthesis is a regulatory process of ASIC3, down-regulated ASIC3 increases and interacts with ACC1 and SCD1, which are key enzymes in de novo lipid synthesis pathway, this interaction results in increased unsaturated fatty acids, which in turn induce EMT to promote metastasis, and overexpression of ASIC3 reduces acidic TME-enhanced colorectal cancer metastasis. Clinical samples of colorectal cancer also exhibit decreased ASIC3 expression, and low ASIC3 expression is associated with metastasis and stage of colorectal cancer. This study is the first to identify the role of the ASIC3-ACC1/SCD1 axis in acid-enhanced colorectal cancer metastasis. The expression pattern of ASIC3 in colorectal cancer differs significantly from that in other types of cancers, ASIC3 may serve as a novel and reliable marker for acidic microenvironmental in colorectal cancer, and potentially a therapeutic target.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Ácido Láctico , Metástasis de la Neoplasia , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Canales Iónicos Sensibles al Ácido/metabolismo , Canales Iónicos Sensibles al Ácido/genética , Ácido Láctico/metabolismo , Línea Celular Tumoral , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Microambiente Tumoral , Animales , Lípidos , Regulación Neoplásica de la Expresión Génica
5.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544873

RESUMEN

The biological mechanisms underpinning learning are unclear. Mounting evidence has suggested that adult hippocampal neurogenesis is involved although a causal relationship has not been well defined. Here, using high-resolution genetic mapping of adult neurogenesis, combined with sequencing information, we identify follistatin (Fst) and demonstrate its involvement in learning and adult neurogenesis. We confirmed that brain-specific Fst knockout (KO) mice exhibited decreased hippocampal neurogenesis and demonstrated that FST is critical for learning. Fst KO mice exhibit deficits in spatial learning, working memory, and long-term potentiation (LTP). In contrast, hippocampal overexpression of Fst in KO mice reversed these impairments. By utilizing RNA sequencing and chromatin immunoprecipitation, we identified Asic4 as a target gene regulated by FST and show that Asic4 plays a critical role in learning deficits caused by Fst deletion. Long-term overexpression of hippocampal Fst in C57BL/6 wild-type mice alleviates age-related decline in cognition, neurogenesis, and LTP. Collectively, our study reveals the functions for FST in adult neurogenesis and learning behaviors.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Folistatina/fisiología , Hipocampo/metabolismo , Neurogénesis , Plasticidad Neuronal , Aprendizaje Espacial/fisiología , Canales Iónicos Sensibles al Ácido/genética , Animales , Cognición , Femenino , Potenciación a Largo Plazo , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sinapsis/fisiología
6.
Chem Biodivers ; 21(8): e202400786, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777789

RESUMEN

This study carried out to investigate the anti-inflammatory and antinociceptive effect of tropane alkaloid (EB7) isolated from E. bezerrae. It evaluated the toxicity and possible involvement of ion channels in the antinociceptive effect of EB7, as well as its anti-inflammatory effect in adult zebrafish (Zfa). Docking studies with EB7 and COX-1 and 2 were also performed. The tested doses of EB7 (4, 20 and 40 mg/kg) did not show any toxic effect on Zfa during the 96h of analysis (LD50>40 mg/kg). They did not produce any alteration in the locomotor behavior of the animals. Furthermore, EB7 showed promising pharmacological effects as it prevented the nociceptive behavior induced by hypertonic saline, capsaicin, formalin and acid saline. EB7 had its analgesic effect blocked by amiloride involving the neuromodulation of ASICs in Zfa. In evaluating the anti-inflammatory activity, the edema induced by κ-carrageenan 3.5 % was reduced by the dose of 40 mg/kg of EB7 observed after the fourth hour of analysis, indicating an effect similar to that of ibuprofen. Molecular docking results indicated that EB7 exhibited better affinity energy when compared to ibuprofen control against the two evaluated targets binding at different sites in the cocrystallized COX-1 and 2 inhibitors.


Asunto(s)
Analgésicos , Simulación del Acoplamiento Molecular , Pez Cebra , Animales , Analgésicos/farmacología , Analgésicos/química , Analgésicos/aislamiento & purificación , Tropanos/farmacología , Tropanos/aislamiento & purificación , Tropanos/química , Edema/tratamiento farmacológico , Edema/inducido químicamente , Carragenina/farmacología , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 1/metabolismo , Bignoniaceae/química , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/química , Canales Iónicos Sensibles al Ácido/metabolismo , Canales Iónicos Sensibles al Ácido/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Estructura Molecular
7.
Environ Toxicol ; 39(2): 991-1000, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994395

RESUMEN

Breast cancer is the most common cancer in the world, with metastasis being one of the leading causes of death among patients. The acidic environment of breast cancer tissue promotes tumor cell invasion and migration by inducing epithelial-mesenchymal transformation (EMT) in tumor cells, but the exact mechanisms are not yet fully understood. This study investigated the expression of acid-sensitive ion channel 1a (ASIC1a) in breast cancer tissue samples and explored the mechanisms by which ASIC1a mediates the promotion of EMT in breast cancer cells in an acidic microenvironment through in vivo and in vitro experiments. The results showed that first, the expression of ASIC1a was significantly upregulated in breast cancer tissue and was correlated with the TNM (tumor node metastasis) staging of breast cancer. Furthermore, ASIC1a expression was higher in tumors with lymph node metastasis than in those without. Second, the acidic microenvironment promoted [Ca2+ ]i influx via ASIC1a activation and regulated the expression of ß-catenin, Vimentin, and E-cadherin, thus promoting EMT in breast cancer cells. Inhibition of ASIC1a activation with PcTx-1 could suppress EMT in breast cancer cells. Finally, in vivo studies also showed that inhibition of ASIC1a could reduce breast cancer metastasis, invasion, and EMT. This study suggests that ASIC1a expression is associated with breast cancer staging and metastasis. Therefore, ASIC1a may become a new breast cancer biomarker, and the elucidation of the mechanism by which ASIC1a promotes EMT in breast cancer under acidic microenvironments provides evidence for the use of ASIC1a as a molecular target for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , beta Catenina , Humanos , Femenino , beta Catenina/metabolismo , Neoplasias de la Mama/metabolismo , Biomarcadores de Tumor , Vía de Señalización Wnt , Canales Iónicos/metabolismo , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Movimiento Celular , Microambiente Tumoral
8.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38610354

RESUMEN

Amplification of wideband high-frequency and microwave signals is a fundamental element within every high-frequency circuit and device. Ultra-wideband (UWB) sensor applications use circuits designed for their specific application. The article presents the analysis, design, and implementation of ultra-wideband differential amplifiers for M-sequence-based UWB applications. The designed differential amplifiers are based on the Cherry-Hooper structure and are implemented in a low-cost 0.35 µm SiGe BiCMOS semiconductor process. The article presents an analysis and realization of several designs focused on different modifications of the Cherry-Hooper amplifier structure. The proposed amplifier modifications are focused on achieving the best result in one main parameter's performance. Amplifier designs modified by capacitive peaking to achieve the largest bandwidth, amplifiers with the lowest possible noise figure, and designs focused on achieving the highest common mode rejection ratio (CMRR) are described. The layout of the differential amplifiers was created and the chip was manufactured and wire-bonded to the QFN package. For evaluation purposes, a high-frequency PCB board was designed. Schematic simulations, post-layout simulations, and measurements of the individual parameters of the designed amplifiers were performed. The designed and fabricated ultra-wideband differential amplifiers have the following parameters: a supply current of 100-160 mA at -3.3 V or 3.3 V, bandwidth from 6 to 12 GHz, gain (at 1 GHz) from 12 to 16 dB, noise figure from 7 to 13 dB, and a common mode rejection ratio of up to 70 dB.

9.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732942

RESUMEN

The article presents the analysis, design, and low-cost implementation of application-specific AD converters for M-sequence-based UWB applications to minimize and integrate the whole UWB sensor system. Therefore, the main goal of this article is to integrate the AD converter's own design with the UWB analog part into the system-in-package (SiP) or directly into the system-on-a-chip (SoC), which cannot be implemented with commercial AD converters, or which would be disproportionately expensive. Based on the current and used UWB sensor system requirements, to achieve the maximum possible bandwidth in the proposed semiconductor technology, a parallel converter structure is designed and presented in this article. Moreover, 5-bit and 4-bit parallel flash AD converters were initially designed as part of the research and design of UWB M-sequence radar systems for specific applications, and are briefly introduced in this article. The requirements of the newly proposed specific UWB M-sequence systems were established based on the knowledge gained from these initial designs. After thorough testing and evaluation of the concept of the early proposed AD converters for these specific UWB M-sequence systems, the design of a new AD converter was initiated. After confirming sufficient characteristics based on the requirements of UWB M-sequence systems for specific applications, a 7-bit AD converter in low-cost 0.35 µm SiGe BiCMOS technology from AMS was designed, fabricated, and presented in this article. The proposed 7-bit AD converter achieves the following parameters: ENOB = 6.4 bits, SINAD = 38 dB, SFDR = 42 dBc, INL = ±2-bit LSB, and DNL = ±1.5 LSB. The maximum sampling rate reaches 1.4 Gs/s, the power consumption at 20 Ms/s is 1050 mW, and at 1.4 Gs/s is 1290 mW, with a power supply of -3.3 V.

10.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338690

RESUMEN

Tafalgin (Taf) is a tetrapeptide opioid used in clinical practice in Russia as an analgesic drug for subcutaneous administration as a solution (4 mg/mL; concentration of 9 mM). We found that the acid-sensing ion channels (ASICs) are another molecular target for this molecule. ASICs are proton-gated sodium channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Using electrophysiological methods, we demonstrated that Taf could increase the integral current through heterologically expressed ASIC with half-maximal effective concentration values of 0.09 mM and 0.3 mM for rat and human ASIC3, respectively, and 1 mM for ASIC1a. The molecular mechanism of Taf action was shown to be binding to the channel in the resting state and slowing down the rate of desensitization. Taf did not compete for binding sites with both protons and ASIC3 antagonists, such as APETx2 and amiloride (Ami). Moreover, Taf and Ami together caused an unusual synergistic effect, which was manifested itself as the development of a pronounced second desensitizing component. Thus, the ability of Taf to act as a positive allosteric modulator of these channels could potentially cause promiscuous effects in clinical practice. This fact must be considered in patients' treatment.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Analgésicos Opioides , Ratas , Humanos , Animales , Canales Iónicos Sensibles al Ácido/metabolismo , Analgésicos Opioides/farmacología , Amilorida/farmacología , Protones , Sitios de Unión
11.
Entropy (Basel) ; 26(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38920471

RESUMEN

In digital baseband processing, the forward error correction (FEC) unit belongs to the most demanding components in terms of computational complexity and power consumption. Hence, efficient implementation of FEC decoders is crucial for next-generation mobile broadband standards and an ongoing research topic. Quantization has a significant impact on the decoder area, power consumption and throughput. Thus, lower bit widths are preferred for efficient implementations but degrade the error correction capability. To address this issue, a non-uniform quantization based on the Information Bottleneck (IB) method is proposed that enables a low bit width while maintaining the essential information. Many investigations on the use of the IB method for Low-density parity-check code) LDPC decoders exist and have shown its advantages from an implementation perspective. However, for polar code decoder implementations, there exists only one publication that is not based on the state-of-the-art Fast Simplified Successive-Cancellation (Fast-SSC) decoding algorithm, and only synthesis implementation results without energy estimation are shown. In contrast, our paper presents several optimized Fast-SSC polar code decoder implementations using IB-based quantization with placement and routing results using advanced 12 nm FinFET technology. Gains of up to 16% in area and 13% in energy efficiency are achieved with IB-based quantization at a Frame Error Rate (FER) of 10-7 and a polar code of N=1024,R=0.5 compared to state-of-the-art decoders.

12.
J Biol Chem ; 298(5): 101860, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339489

RESUMEN

The epithelial Na+ channel (ENaC)/degenerin family has a similar extracellular architecture, where specific regulatory factors interact and alter channel gating behavior. The extracellular palm domain serves as a key link to the channel pore. In this study, we used cysteine-scanning mutagenesis to assess the functional effects of Cys-modifying reagents on palm domain ß10 strand residues in mouse ENaC. Of the 13 ENaC α subunit mutants with Cys substitutions examined, only mutants at sites in the proximal region of ß10 exhibited changes in channel activity in response to methanethiosulfonate reagents. Additionally, Cys substitutions at three proximal sites of ß and γ subunit ß10 strands also rendered mutant channels methanethiosulfonate-responsive. Moreover, multiple Cys mutants were activated by low concentrations of thiophilic Cd2+. Using the Na+ self-inhibition response to assess ENaC gating behavior, we identified four α, two ß, and two γ subunit ß10 strand mutations that changed the Na+ self-inhibition response. Our results suggest that the proximal regions of ß10 strands in all three subunits are accessible to small aqueous compounds and Cd2+ and have a role in modulating ENaC gating. These results are consistent with a structural model of mouse ENaC that predicts the presence of aqueous tunnels adjacent to the proximal part of ß10 and with previously resolved structures of a related family member where palm domain structural transitions were observed with channels in an open or closed state.


Asunto(s)
Cadmio , Canales Epiteliales de Sodio , Animales , Cisteína , Canales Epiteliales de Sodio/química , Canales Epiteliales de Sodio/genética , Iones , Ratones , Conformación Proteica , Sodio/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L259-L270, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36692168

RESUMEN

Severe levels of acidosis (pH < 6.8) have been shown to cause a sustained rise in cytosolic Ca2+ concentration in carotid body Type 1 (glomus) cells. To understand how physiologically relevant levels of acidosis regulate Ca2+ signaling in glomus cells, we studied the effects of small changes in extracellular pH (pHo) on the kinetics of Ca2+ oscillations. A decrease in pHo from 7.4 to 7.3 (designated mild) and 7.2 (designated moderate) acidosis produced significant increases in the frequency and amplitude of Ca2+ oscillations. These effects of acidosis on Ca2+ oscillations were not blocked by NS383 and amiloride [acid-sensing ion channel (ASIC) inhibitors]. Mild and moderate levels of acidosis, however, caused a small but significant inhibition of two-pore domain acid-sensing K+ channels (TASK) (TASK-1- and TASK-3-like channels) and depolarized the cell by 6-13 mV. Acidosis-induced increase in Ca2+ oscillations was inhibited by nifedipine (1 µM; L-type Cav inhibitor) and by TTA-P2 (20 µM; T-type Cav inhibitor). Mild inhibition of TASK activity by N-[(2,4-difluorophenyl)methyl]-2'-[[[2-(4methoxyphenyl)acetyl]amino]methyl][1,1'-biphenyl]-2-carboxamide (A1899) (0.3 µM) and 1-[1-[6-[[1,1'-biphenyl]-4-ylcarbonyl)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine-4-yl]-4-piperidinyl]-1-butanon (PK-THPP) (0.1 µM) increased Ca2+ oscillation frequency to levels similar to those observed with mild-moderate acidosis. Mild acidosis (pHo 7.3) and mild hypoxia (∼5%O2) produced similar levels of changes in the kinetics of Ca2+ oscillations. Block of tetraethylammonium (TEA)-sensitive Kv channels did not affect acid-induced increase in Ca2+ oscillations. Our study shows that mild and moderate levels of acidosis increase the frequency and amplitude of Ca2+ oscillations primarily by inhibition of TASK without involving ASICs, and suggests a major role of TASK for signal transduction in response to a physiological change in pHo.


Asunto(s)
Acidosis , Cuerpo Carotídeo , Ratas , Animales , Células Quimiorreceptoras , Ácidos , Concentración de Iones de Hidrógeno , Calcio
14.
FASEB J ; 36(1): e22083, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34918385

RESUMEN

Proton pump inhibitors (PPIs) are the mainstay of therapy for gastroesophageal reflux disease (GERD) but up to 60% of patients have inadequate response to therapy. Acid sensing ion channels (ASICs) play important roles in nociception. This study aimed to investigate whether the increased expression of ASICs results in neuronal hyperexcitability in GERD. Esophageal biopsies were taken from GERD patients and healthy subjects to compare expression of ASIC1 and 3. Next, gene and protein expression of ASIC1 and 3 from esophageal mucosa and dorsal root ganglia (DRG) neurons were measured by qPCR, Western-blot and immunofluorescence in rodent models of reflux esophagitis (RE), non-erosive reflux disease (NERD), and sham operated groups. Excitability of DRG neurons in the GERD and sham groups were also tested by whole-cell patch-clamp recordings. We demonstrated that ASIC1 and 3 expression were significantly increased in patients with RE compared with healthy controls. This correlated positively with symptom severity of heartburn and regurgitation (p < .001). Next, ASIC1 and 3 gene and protein expression in rodent models of RE and NERD were similarly increased in esophageal mucosa as well as T3-T5 DRG neurons compared with sham operation. DRG neurons from RE animals showed hyperexcitability compared with sham group. However, intrathecal injection of ASIC specific inhibitors, PcTx1 and APTEx-2, as well as silencing ASIC1 and 3 genes with specific siRNAs prevented visceral hypersensitivity. Overall, upregulation of ASIC1 and 3 may lead to visceral hypersensitivity in RE and NERD and may be a potential therapeutic target for PPI non-responsive patients.


Asunto(s)
Canales Iónicos Sensibles al Ácido/biosíntesis , Esófago/metabolismo , Reflujo Gastroesofágico/metabolismo , Pirosis/metabolismo , Regulación hacia Arriba , Canales Iónicos Sensibles al Ácido/genética , Animales , Reflujo Gastroesofágico/genética , Pirosis/genética , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
15.
Mol Pharm ; 20(7): 3367-3379, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37260417

RESUMEN

Acid-sensing ion channels (ASICs) are transmembrane sensors of extracellular acidosis and potential drug targets in several disease indications, including neuropathic pain and cancer metastasis. The K+-sparing diuretic amiloride is a moderate nonspecific inhibitor of ASICs and has been widely used as a probe for elucidating ASIC function. In this work, we screened a library of 6-substituted and 5,6-disubstituted amiloride analogs using a custom-developed automated patch clamp protocol and identified 6-iodoamiloride as a potent ASIC1 inhibitor. Follow-up IC50 determinations in tsA-201 cells confirmed higher ASIC1 inhibitory potency for 6-iodoamiloride 94 (hASIC1 94 IC50 = 88 nM, cf. amiloride 11 IC50 = 1.7 µM). A similar improvement in activity was observed in ASIC3-mediated currents from rat dorsal root ganglion neurons (rDRG single-concentration 94 IC50 = 230 nM, cf. 11 IC50 = 2.7 µM). 6-Iodoamiloride represents the amiloride analog of choice for studying the effects of ASIC inhibition on cell physiology.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Amilorida , Ratas , Animales , Canales Iónicos Sensibles al Ácido/farmacología , Canales Iónicos Sensibles al Ácido/fisiología , Amilorida/farmacología , Neuronas
16.
Biochemistry (Mosc) ; 88(12): 2137-2145, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38462456

RESUMEN

The neuropeptide nocistatin (NS) is expressed by the nervous system cells and neutrophils as a part of a precursor protein and can undergo stepwise limited proteolysis. Previously, it was shown that rat NS (rNS) is able to activate acid-sensing ion channels (ASICs) and that this effect correlates with the acidic nature of NS. Here, we investigated changes in the properties of rNS in the course of its proteolytic degradation by comparing the effects of the full-size rNS and its two cleavage fragments on the rat isoform 3 ASICs (ASIC3) expressed in X. laevis oocytes and pain perception in mice. The rNS acted as both positive and negative modulator by lowering the steady-state desensitization of ASIC3 at pH 6.8-7.0 and reducing the channel's response to stimuli at pH 6.0-6.9, respectively. The truncated rNSΔ21 peptide lacking 21 amino acid residues from the N-terminus retained the positive modulatory activity, while the C-terminal pentapeptide (rNSΔ30) acted only as a negative ASIC3 modulator. The effects of the studied peptides were confirmed in animal tests: rNS and rNSΔ21 induced a pain-related behavior, whereas rNSΔ30 showed the analgesic effect. Therefore, we have shown that the mode of rNS action changes during its stepwise degradation, from an algesic molecule through a pain enhancer to a pain reliever (rNSΔ30 pentapeptide), which can be considered as a promising drug candidate.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Péptidos Opioides , Ratas , Ratones , Animales , Canales Iónicos Sensibles al Ácido/química , Canales Iónicos Sensibles al Ácido/metabolismo , Proteolisis , Péptidos Opioides/metabolismo , Dolor , Analgésicos/farmacología , Concentración de Iones de Hidrógeno
17.
Sensors (Basel) ; 23(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36991734

RESUMEN

This paper proposes a high-gain low-noise current signal detection system for biosensors. When the biomaterial is attached to the biosensor, the current flowing through the bias voltage is changed so that the biomaterial can be sensed. A resistive feedback transimpedance amplifier (TIA) is used for the biosensor requiring a bias voltage. Current changes in the biosensor can be checked by plotting the current value of the biosensor in real time on the self-made graphical user interface (GUI). Even if the bias voltage changes, the input voltage of the analog to digital converter (ADC) does not change, so it is designed to plot the current of the biosensor accurately and stably. In particular, for multi-biosensors with an array structure, a method of automatically calibrating the current between biosensors by controlling the gate bias voltage of the biosensors is proposed. Input-referred noise is reduced using a high-gain TIA and chopper technique. The proposed circuit achieves 1.8 pArms input-referred noise with a gain of 160 dBΩ and is implemented in a TSMC 130 nm CMOS process. The chip area is 2.3 mm2, and the power consumption of the current sensing system is 12 mW.


Asunto(s)
Técnicas Biosensibles , Ruido , Retroalimentación
18.
Sensors (Basel) ; 23(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687847

RESUMEN

All ultra-wideband (UWB) sensor applications require hardware designed directly for their specific application. The switching of broadband radio frequency and microwave signals is an integral part of almost every piece of high-frequency equipment, whether in commercial operation or laboratory conditions. The trend of integrating various circuit structures and systems on a chip (SoC) or in a single package (SiP) is also related to the need to design these integrated switches for various measuring devices and instruments in laboratories, paradoxically for their further development. Another possible use is switching high-frequency signals in telecommunications devices, whether mobile or fixed networks, for example, for switching signals from several antennas. Based on these requirements, a high-frequency semiconductor integrated switch with NMOS transistors was designed. With these transistors, it is possible to achieve higher integration than with bipolar ones. Even though MOSFET transistors have worse frequency characteristics, we can compensate them to some extent with the precise design of the circuit and layout of the chip. This article describes the analysis and design of a high-frequency semiconductor integrated switch for UWB applications consisting of three series-parallel switches controlled by CMOS logic signals. They are primarily intended for UWB sensor systems, e.g., when switching and configuring the antenna MIMO system or when switching calibration tools. The design of the switch was implemented in low-cost 0.35 µm SiGe BiCMOS technology with an emphasis on the smallest possible attenuation and the largest possible bandwidth and isolation. The reason for choosing this technology was also that other circuit structures of UWB systems were realized in this technology. Through the simulations, individual parameters of the circuit were simulated, the layout of the chip was also created, and the parameters of the circuit were simulated with the parasitic extraction and the inclusion of parasitic elements (post-layout simulations). Subsequently, the chip was manufactured and its parameters were measured and evaluated. Based on these measurements, the designed and fabricated UWB switch was found to have the following parameters: a supply current of 2 mA at 3.3 V, a bandwidth of 6 GHz, an insertion loss (at 1 GHz) of -2.2 dB, and isolation (at 1 GHz) of -33 dB, which satisfy the requirements for our UWB sensor applications.

19.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37687770

RESUMEN

Artificial intelligence has revolutionised smart medicine, resulting in enhanced medical care. This study presents an automated detector chip for age-related macular degeneration (AMD) using a support vector machine (SVM) and three-dimensional (3D) optical coherence tomography (OCT) volume. The aim is to assist ophthalmologists by reducing the time-consuming AMD medical examination. Using the property of 3D OCT volume, a modified feature vector connected method called slice-sum is proposed, reducing computational complexity while maintaining high detection accuracy. Compared to previous methods, this method significantly reduces computational complexity by at least a hundredfold. Image adjustment and noise removal steps are excluded for classification accuracy, and the feature extraction algorithm of local binary patterns is determined based on hardware consumption considerations. Through optimisation of the feature vector connection method after feature extraction, the computational complexity of SVM detection is significantly reduced, making it applicable to similar 3D datasets. Additionally, the design supports model replacement, allowing users to train and update classification models as needed. Using TSMC 40 nm CMOS technology, the proposed detector achieves a core area of 0.12 mm2 while demonstrating a classification throughput of 8.87 decisions/s at a maximum operating frequency of 454.54 MHz. The detector achieves a final testing classification accuracy of 92.31%.


Asunto(s)
Inteligencia Artificial , Degeneración Macular , Humanos , Máquina de Vectores de Soporte , Tomografía de Coherencia Óptica , Algoritmos , Degeneración Macular/diagnóstico por imagen
20.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628964

RESUMEN

Proprioceptors are low-threshold mechanoreceptors involved in perceiving body position and strain bearing. However, the physiological response of proprioceptors to fatigue- and muscle-acidosis-related disturbances remains unknown. Here, we employed whole-cell patch-clamp recordings to probe the effect of mild acidosis on the mechanosensitivity of the proprioceptive neurons of dorsal root ganglia (DRG) in mice. We cultured neurite-bearing parvalbumin-positive (Pv+) DRG neurons on a laminin-coated elastic substrate and examined mechanically activated currents induced through substrate deformation-driven neurite stretch (SDNS). The SDNS-induced inward currents (ISDNS) were indentation depth-dependent and significantly inhibited by mild acidification (pH 7.2~6.8). The acid-inhibiting effect occurred in neurons with an ISDNS sensitive to APETx2 (an ASIC3-selective antagonist) inhibition, but not in those with an ISNDS resistant to APETx2. Detailed subgroup analyses revealed ISDNS was expressed in 59% (25/42) of Parvalbumin-positive (Pv+) DRG neurons, 90% of which were inhibited by APETx2. In contrast, an acid (pH 6.8)-induced current (IAcid) was expressed in 76% (32/42) of Pv+ DRG neurons, 59% (21/32) of which were inhibited by APETx2. Together, ASIC3-containing channels are highly heterogenous and differentially contribute to the ISNDS and IAcid among Pv+ proprioceptors. In conclusion, our findings highlight the importance of ASIC3-containing ion channels in the physiological response of proprioceptors to acidic environments.


Asunto(s)
Acidosis , Mecanotransducción Celular , Animales , Ratones , Parvalbúminas , Mecanorreceptores , Neuritas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA