Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 243(2): 662-673, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769735

RESUMEN

It is well established that solar irradiance greatly influences tree metabolism and growth through photosynthesis, but its effects acting through individual climate metrics have not yet been well quantified. Understanding these effects is crucial for assessing the impacts of climate change on forest ecosystems. To describe the effects of solar irradiance on tree growth, we installed 110 automatic dendrometers in two old-growth mountain forest reserves in Central Europe, performed detailed terrestrial and aerial laser scanning to obtain precise tree profiles, and used these to simulate the sum of solar irradiance received by each tree on a daily basis. Generalized linear mixed-effect models were applied to simulate the probability of growth and the growth intensity over seven growing seasons. Our results demonstrated various contrasting effects of solar irradiance on the growth of canopy trees. On the one hand, the highest daily growth rates corresponded with the highest solar irradiance potentials (i.e. the longest photoperiod). Intense solar irradiance significantly decreased tree growth, through an increase in the vapor pressure deficit. These effects were consistent for all species but had different magnitude. Tree growth is the most effective on long rainy/cloudy days with low solar irradiance.


Asunto(s)
Bosques , Tallos de la Planta , Estaciones del Año , Luz Solar , Árboles , Árboles/crecimiento & desarrollo , Árboles/efectos de la radiación , Árboles/fisiología , Europa (Continente) , Tallos de la Planta/efectos de la radiación , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Fotosíntesis/efectos de la radiación
2.
Glob Chang Biol ; 30(1): e17146, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273515

RESUMEN

Temperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree-ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990-2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation-based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.


Asunto(s)
Fagus , Picea , Pinus sylvestris , Quercus , Árboles , Bosques , Picea/fisiología , Noruega , Cambio Climático
3.
Ecol Appl ; 33(2): e2758, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36193873

RESUMEN

In the context of global decline in old-growth forest, historical ecology is a valuable tool to derive insights into vegetation legacies and dynamics and develop new conservation and restoration strategies. In this cross-disciplinary study, we integrate palynology (Lago del Pesce record), history, dendrochronology, and historical and contemporary land cover maps to assess drivers of vegetation change over the last millennium in a Mediterranean mountain forest (Pollino National Park, southern Italy) and discuss implications in conservation ecology. The study site hosts a remnant beech-fir (Fagus sylvatica-Abies alba) mixed forest, a priority habitat for biodiversity conservation in Europe. In the 10th century, the pollen record showed an open environment that was quickly colonized by silver fir when sociopolitical instabilities reduced anthropogenic pressures in mountain forests. The highest forest cover and biomass was reached between the 14th and the 17th centuries following land abandonment due to recurring plague pandemics. This rewilding process is also reflected in the recruitment history of Bosnian pine (Pinus heldreichii) in the subalpine elevation belt. Our results show that human impacts have been one of the main drivers of silver fir population contraction in the last centuries in the Mediterranean, and that the removal of direct human pressure led to ecosystem renovation. Since 1910, the Rubbio State Forest has locally protected and restored the mixed beech-fir forest. The institutions in 1972 for the Rubbio Natural Reserve and in 1993 for Pollino National Park have guaranteed the survival of the silver fir population, demonstrating the effectiveness of targeted conservation and restoration policies despite a warming climate. Monitoring silver fir populations can measure the effectiveness of conservation measures. In the last decades, the abandonment of rural environments (rewilding) along the mountains of southern Italy has reduced the pressure on ecosystems, thus boosting forest expansion. However, after four decades of natural regeneration and increasing biomass, pollen influx and forest composition are still far from the natural attributes of the medieval forest ecosystem. We conclude that long-term forest planning encouraging limited direct human disturbance will lead toward rewilding and renovation of carbon-rich and highly biodiverse Mediterranean old-growth forests, which will be more resistant and resilient to future climate change.


Asunto(s)
Ecosistema , Fagus , Humanos , Bosques , Europa (Continente) , Ecología , Italia , Árboles
4.
Glob Chang Biol ; 28(14): 4439-4458, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35320604

RESUMEN

Rear-edge populations at the xeric distribution limit of tree species are particularly vulnerable to forest dieback triggered by drought. This is the case of silver fir (Abies alba) forests located in Southwestern Europe. While silver fir drought-induced dieback patterns have been previously explored, information on the role played by nutritional impairment is lacking despite its potential interactions with tree carbon-water balances. We performed a comparative analysis of radial growth, intrinsic water-use efficiency (iWUE), oxygen isotopes (δ18 O) and nutrient concentrations in leaves of declining (DD) and non-declining (ND) trees in silver fir in four forests in the Spanish Pyrenees. We also evaluated the relationships among dieback predisposition, intraspecific trait variation (wood density and leaf traits) and rhizosphere soil physical-chemical properties. The onset of growth decline in DD trees occurred more than two decades ago, and they subsequently showed low growth resilience against droughts. The DD trees presented consistently lower foliar concentrations of nutrients such as P, K, Cu and Ni than ND trees. The strong effects of foliar nutrient status on growth resilience indices support the key role played by mineral nutrition in tree functioning and growth before, during and after drought. In contrast, variability in wood density and leaf morphological traits, as well as soil properties, showed weak relationships with tree nutritional status and drought performance. At the low elevation, warmer sites, DD trees showed stronger climate-growth relationships and lower δ18 O than ND trees. The uncoupling between iWUE and δ18 O, together with the positive correlations between P and K leaf concentrations and δ18 O, point to deeper soil/bedrock water sources and vertical decoupling between nutrient and water uptake in DD trees. This study provides novel insights into the mechanisms driving silver fir dieback and highlights the need to incorporate tree nutrition into forest dieback studies.


Las poblaciones del límite xérico de distribución de las especies de árboles son particularmente vulnerables al decaimiento forestal inducido por sequía. Este es el caso de los bosques de abeto (Abies alba) situados en el suroeste de Europa. Si bien los patrones de decaimiento provocado por sequía del abeto se han explorado previamente, falta información sobre el papel que desempeña el deterioro nutricional a pesar de sus interacciones potenciales con los balances de agua y carbono de los árboles. En este estudio, hemos realizado un análisis comparativo del crecimiento radial, la eficiencia intrínseca del uso del agua (iWUE), los isótopos de oxígeno (δ18O) y las concentraciones de nutrientes en hojas de árboles decaídos (DD) y no decaídos (ND) en cuatro abetares de los Pirineos españoles. También evaluamos las relaciones entre la predisposición al decaimiento, la variación de rasgos intraespecíficos (densidad de la madera y rasgos de las hojas) y las propiedades físico-químicas de la rizosfera. El inicio de la disminución del crecimiento en los árboles DD ocurrió hace más de dos décadas y posteriormente mostraron una baja resiliencia de crecimiento frente a las sequías. Los árboles DD presentaron concentraciones foliares consistentemente más bajas de nutrientes como P, K, Cu y Ni que los árboles ND. Los fuertes efectos del estado de los nutrientes foliares en los índices de resiliencia del crecimiento respaldan el papel clave que desempeña la nutrición mineral en el funcionamiento y el crecimiento de los árboles antes, durante y después de la sequía. En contraste, la variabilidad en la densidad de la madera y los rasgos morfológicos de las hojas, así como las propiedades del suelo, mostraron una relación débil con el estado nutricional de los árboles y la respuesta del crecimiento a la sequía. En los sitios más cálidos y de baja elevación, los árboles DD mostraron relaciones clima-crecimiento más fuertes y un δ18 O más bajo que los árboles ND. El desacoplamiento entre iWUE y δ18 O, junto con las correlaciones positivas entre las concentraciones foliares de P y K y δ18 O, apuntan a fuentes de agua más profundas del suelo/lecho rocoso y un desacoplamiento vertical entre la absorción de nutrientes y agua en los árboles DD. Este estudio proporciona información novedosa sobre los mecanismos que impulsan el decaimiento del abeto y destaca la necesidad de incorporar la nutrición de los árboles en los estudios de muerte regresiva del bosque.


Asunto(s)
Carbono , Sequías , Bosques , Suelo , Árboles , Agua
5.
Molecules ; 28(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36615418

RESUMEN

The main objective of our study was to investigate the possible differences in the chemical composition of extractives from the bark of silver fir (Abies alba) with respect to the location of the bark sample on the tree, viz. differences in extract composition between stem bark and branch bark samples. Extractives in the bark samples from branches, depending on the distance of the sample from the trunk, were also analysed, and the stem bark samples were analysed with respect to their inner and outer parts. The results of the chemical analysis of extractives were supported by information about their antifungal and antioxidant effects. After felling and sampling silver fir trees, the collected bark samples were ground and freeze-dried. Extraction of bark samples was followed by a system of accelerated extraction using only water as a solvent. The extracts were analysed chemically using gravimetry, spectrophotometry and chromatography. Free-radical-scavenging activity was measured using the DPPH method, and the antifungal effect towards three moulds and three wood-decaying fungi was investigated with antifungal assay using the agar well diffusion method. It was found that the moisture content in bark samples decreased intensively just after the bark samples were peeled off the stem. Detailed chromatographic analysis showed that the bark extracts contained 14 compounds, among which phenolic acids, flavonoids and lignans were found to be the characteristic ones. The content of hydrophilic extractives in the branch bark samples decreased with increasing distance of the sample location from the tree stem. The largest amounts of phenolic extractives were measured in stem bark, followed by branch bark sampled at the point at which the branch entered the tree. Analysis of the separated parts of the bark showed that the outer layers of stem bark contained larger amounts of phenolic extractives, as well catechin and epicatechin, compared to the inner layers. Concentrated extracts of branch bark showed the largest free-radical-scavenging activity among the investigated samples, while strong antifungal effects of the bark extract were not found.


Asunto(s)
Abies , Catequina , Abies/química , Extractos Vegetales/química , Corteza de la Planta/química , Antifúngicos/farmacología , Antifúngicos/análisis , Antioxidantes/farmacología , Antioxidantes/análisis , Fenoles/análisis , Catequina/análisis
6.
Glob Chang Biol ; 27(18): 4403-4419, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34166562

RESUMEN

Extreme droughts are expected to increase in frequency and severity in many regions of the world, threatening multiple ecosystem services provided by forests. Effective strategies to adapt forests to such droughts require comprehensive information on the effects and importance of the factors influencing forest resistance and resilience. We used a unique combination of inventory and dendrochronological data from a long-term (>30 years) silvicultural experiment in mixed silver fir and Norway spruce mountain forests along a temperature and precipitation gradient in southwestern Germany. We aimed at examining the mechanisms and forest stand characteristics underpinning the resistance and resilience to past mild and severe droughts. We found that (i) fir benefited from mild droughts and showed higher resistance (i.e., lower growth loss during drought) and resilience (i.e., faster return to pre-drought growth levels) than spruce to all droughts; (ii) species identity determined mild drought responses while species interactions and management-related factors strongly influenced the responses to severe droughts; (iii) intraspecific and interspecific interactions had contrasting effects on the two species, with spruce being less resistant to severe droughts when exposed to interaction with fir and beech; (iv) higher values of residual stand basal area following thinning were associated with lower resistance and resilience to severe droughts; and (v) larger trees were resilient to mild drought events but highly vulnerable to severe droughts. Our study provides an analytical approach for examining the effects of different factors on individual tree- and stand-level drought response. The forests investigated here were to a certain extent resilient to mild droughts, and even benefited from such conditions, but were strongly affected by severe droughts. Lastly, negative effects of severe droughts can be reduced through modifying species composition, tree size distribution and stand density in mixed silver fir-Norway spruce forests.


Asunto(s)
Sequías , Ecosistema , Cambio Climático , Europa (Continente) , Bosques , Noruega
7.
Molecules ; 26(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34770820

RESUMEN

The chemical composition of extractives in the sapwood (SW), heartwood (HW), knotwood (KW), and branchwood (BW of silver fir (Abies alba Mill.) was analyzed, and their antifungal and antioxidant properties were studied. In addition, the variability of extractives content in a centripetal direction, i.e., from the periphery of the stem towards the pith, was investigated. The extracts were analyzed chemically with gravimetry, spectrophotometry, and chromatography. The antifungal and antioxidative properties of the extracts were evaluated by the agar well diffusion method and the diphenyl picrylhydrazyl radical scavenging method. Average amounts of hydrophilic extractives were higher in KW (up to 210.4 mg/g) and BW (148.6 mg/g) than in HW (34.1 mg/g) and SW (14.8 mg/g). Extractives identified included lignans (isolariciresinol, lariciresinol, secoisolariciresinol, pinoresinol, matairesinol) phenolic acids (homovanillic acid, coumaric acid, ferulic acid), and flavonoids epicatechin, taxifolin, quercetin). Secoisolariciresinol was confirmed to be the predominant compound in the KW (29.8 mg/g) and BW (37.6 mg/g) extracts. The largest amount of phenolic compounds was extracted from parts of knots (281.7 mg/g) embedded in the sapwood and from parts of branches (258.9 mg/g) adjacent to the stem. HW contained more lignans in its older sections. Hydrophilic extracts from knots and branches inhibited the growth of wood-decaying fungi and molds. KW and BW extracts were better free radical scavengers than HW extracts. The results of the biological activity tests suggest that the protective function of phenolic extracts in silver fir wood can also be explained by their antioxidative properties. The results of this study describe BW as a potential source of phenolic extractives in silver fir.


Asunto(s)
Antifúngicos/farmacología , Antioxidantes/farmacología , Hidroxibenzoatos/farmacología , Lignanos/farmacología , Extractos Vegetales/farmacología , Madera/química , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Basidiomycota/efectos de los fármacos , Compuestos de Bifenilo/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Fusarium/efectos de los fármacos , Hidroxibenzoatos/química , Hidroxibenzoatos/aislamiento & purificación , Lignanos/química , Lignanos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Penicillium/efectos de los fármacos , Picratos/antagonistas & inhibidores , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Polyporaceae/efectos de los fármacos , Schizophyllum/efectos de los fármacos
8.
Plant Cell Environ ; 41(7): 1683-1697, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29664115

RESUMEN

Morphology, anatomy and physiology of sun and shade leaves of Abies alba were investigated and major differences were identified, such as sun leaves being larger, containing a hypodermis and palisade parenchyma as well as possessing more stomata, while shade leaves exhibit a distinct leaf dimorphism. The large size of sun leaves and their arrangement crowded on the upper side of a plagiotropic shoot leads to self-shading which is explainable as protection from high solar radiation and to reduce the transpiration via the lamina. Sun leaves furthermore contain a higher xanthophyll cycle pigment amount and Non-Photochemical Quenching (NPQ) capacity, a lower amount of chlorophyll b and a total lower chlorophyll amount per leaf, as well as an increased electron transport rate and an increased photosynthesis light saturation intensity. However, sun leaves switch on their NPQ capacity at rather low light intensities, as exemplified by several parameters newly measured for conifers. Our holistic approach extends previous findings about sun and shade leaves in conifers and demonstrates that both leaf types of A. alba show structural and physiological remarkable similarities to their respective counterparts in angiosperms, but also possess unique characteristics allowing them to cope efficiently with their environmental constraints.


Asunto(s)
Abies/anatomía & histología , Hojas de la Planta/anatomía & histología , Abies/fisiología , Abies/ultraestructura , Clorofila/metabolismo , Oscuridad , Microscopía Electrónica de Rastreo , Hojas de la Planta/fisiología , Hojas de la Planta/ultraestructura , Estomas de Plantas/fisiología , Estomas de Plantas/ultraestructura , Luz Solar
9.
Food Technol Biotechnol ; 56(4): 533-545, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30923450

RESUMEN

The paper examines the antiproliferative, antimicrobial and antioxidative effects of fir (Abies alba Mill.) honeydew honey from mountain region of Croatia (Gorski kotar) as a potential replacement for standard antibiotics and chemotherapeutic agents. Cell viability, annexin V assay and flow cytometry analysis served to analyse the antiproliferative effect on, apoptosis induction in and cell death of cancer cell lines: HeLa, MCF-7, SW620, CFPAC-1, MIA PaCa-2 and normal diploid human fibroblasts (BJ). Antimicrobial activity was tested against Staphylococcus and Acinetobacter strains by agar well diffusion and microdilution assays. The DPPH˙ assay determined the radical scavenging activity, while mathematical models helped to evaluate the kinetic data of DPPH˙ inhibition. Antiproliferative effect on all tested cell lines and the prominent effect on normal diploid human fibroblasts (BJ), colorectal adenocarcinoma (SW620, metastatic) and breast epithelial adenocarcinoma (MCF-7, metastatic) was observable. The mechanisms of antiproliferative effect included accumulation of cells in the sub-G1 phase in all tested cells and induction of apoptosis in SW620 and MCF-7 cells predominantly. The antibacterial assays showed that antibiotic-resistant strains of both bacteria, including multi-resistant strain A. baumannii ATCC® BAA-1605™, were sensitive to all tested honey samples. Radical scavenging assay suggests that antioxidants present in the honey possess different radical suppressing abilities and that they react at different rates with radicals, thereby causing two steps of reaction. The results of the study indicate that Croatian fir honeydew honey has a therapeutic potential due to the strong biological activity and can serve to protect human health.

10.
Ecology ; 98(1): 211-227, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28052396

RESUMEN

Understanding the genecology of forest trees is critical for gene conservation, for predicting the effects of climate change and climate change adaptation, and for successful reforestation. Although common genecological patterns have emerged, species-specific details are also important. Which species are most vulnerable to climate change? Which are the most important adaptive traits and environmental drivers of natural selection? Even though species have been classified as adaptive specialists vs. adaptive generalists, large-scale studies comparing different species in the same experiment are rare. We studied the genecology of Norway spruce (Picea abies) and silver fir (Abies alba), two co-occurring but ecologically distinct European conifers in Central Europe. For each species, we collected seed from more than 90 populations across Switzerland, established a seedling common-garden test, and developed genecological models that associate population variation in seedling growth and phenology to climate, soil properties, and site water balance. Population differentiation and associations between seedling traits and environmental variables were much stronger for Norway spruce than for silver fir, and stronger for seedling height growth than for bud phenology. In Norway spruce, height growth and second flushing were strongly associated with temperature and elevation, with seedlings from the lowlands being taller and more prone to second flush than seedlings from the Alps. In silver fir, height growth was more weakly associated with temperature and elevation, but also associated with water availability. Soil characteristics explained little population variation in both species. We conclude that Norway spruce has become an adaptive specialist because trade-offs between rapid juvenile growth and frost avoidance have subjected it to strong diversifying natural selection based on temperature. In contrast, because silver fir has a more conservative growth habit, it has evolved to become an adaptive generalist. This study demonstrates that co-occurring tree species can develop very different adaptive strategies under identical environmental conditions, and suggests that Norway spruce might be more vulnerable to future maladaptation due to rapid climate change than silver fir.


Asunto(s)
Abies/genética , Picea/genética , Plantones/genética , Suiza , Árboles
11.
Glob Chang Biol ; 23(12): 5108-5119, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28556403

RESUMEN

Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long-term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought-tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed-species stands along an altitudinal gradient (400-1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population-level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change.


Asunto(s)
Abies/fisiología , Sequías , Picea/fisiología , Pseudotsuga/fisiología , Adaptación Fisiológica , Cambio Climático , Europa (Continente) , Bosques , Alemania , Noruega
12.
Glob Chang Biol ; 23(7): 2705-2719, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27782362

RESUMEN

Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.


Asunto(s)
Cambio Climático , Bosques , Árboles/crecimiento & desarrollo , Clima , Sequías , Modelos Teóricos , España
13.
Glob Chang Biol ; 23(12): 5358-5371, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28675600

RESUMEN

Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnerability, and develop strategies to preserve forest health and productivity. We studied potential genetic maladaptation to future climates in three major European tree species, Norway spruce (Picea abies), silver fir (Abies alba), and European beech (Fagus sylvatica). A common garden experiment was conducted to evaluate the quantitative genetic variation in growth and phenology of seedlings from 77 to 92 native populations of each species from across Switzerland. We used multivariate genecological models to associate population variation with past seed source climates, and to estimate relative risk of maladaptation to current and future climates based on key phenotypic traits and three regional climate projections within the A1B scenario. Current risks from climate change were similar to average risks from current seed transfer practices. For all three climate models, future risks increased in spruce and beech until the end of the century, but remained low in fir. Largest average risks associated with climate projections for the period 2061-2090 were found for spruce seedling height (0.64), and for beech bud break and leaf senescence (0.52 and 0.46). Future risks for spruce were high across Switzerland. However, areas of high risk were also found in drought-prone regions for beech and in the southern Alps for fir. Genetic maladaptation to future climates is likely to become a problem for spruce and beech by the end of this century, but probably not for fir. Consequently, forest management strategies should be adjusted in the study area for spruce and beech to maintain productive and healthy forests in the future.


Asunto(s)
Adaptación Fisiológica/genética , Cambio Climático , Árboles/fisiología , Abies/crecimiento & desarrollo , Abies/fisiología , Monitoreo del Ambiente , Fagus/crecimiento & desarrollo , Fagus/fisiología , Bosques , Picea/crecimiento & desarrollo , Picea/fisiología , Riesgo , Plantones/crecimiento & desarrollo , Plantones/fisiología , Suiza , Árboles/crecimiento & desarrollo
14.
Glob Chang Biol ; 22(2): 727-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26316296

RESUMEN

Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer-than-present conditions in Europe and might be a native substitute for widespread drought-sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX-Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX-Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st-century multimodel ensemble results for the high-emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north-western and southern Europe. Mid-Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling-Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north-east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer-than-present conditions in central Europe.


Asunto(s)
Abies/crecimiento & desarrollo , Cambio Climático , Bosques , Modelos Teóricos , Simulación por Computador , Europa (Continente) , Predicción , Fósiles , Hojas de la Planta/crecimiento & desarrollo , Polen , Temperatura
15.
Glob Chang Biol ; 22(6): 2125-37, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26790660

RESUMEN

Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought-induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long-term by quantifying wood-anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water-use efficiency (iWUE) from carbon isotopic discrimination. We selected silver fir and Scots pine stands in NE Spain with ongoing dieback processes and compared trees showing contrasting vigour (declining vs nondeclining trees). In both species earlywood tracheids in declining trees showed smaller lumen area with thicker cell wall, inducing a lower theoretical hydraulic conductivity. Parenchyma ray area was similar between the two vigour classes. Wet spring and summer conditions promoted the formation of larger lumen areas, particularly in the case of nondeclining trees. Declining silver firs presented a lower iWUE than conspecific nondeclining trees, but the reverse pattern was observed in Scots pine. The described patterns in wood anatomical traits and iWUE are coherent with a long-lasting deterioration of the hydraulic system in declining trees prior to their dieback. Retrospective quantifications of lumen area permit to forecast dieback in declining trees 2-5 decades before growth decline started. Wood anatomical traits provide a robust tool to reconstruct the long-term capacity of trees to withstand drought-induced dieback.


Asunto(s)
Abies/fisiología , Isótopos de Carbono/análisis , Sequías , Pinus sylvestris/fisiología , Agua/fisiología , Madera/anatomía & histología , Modelos Lineales , Modelos Biológicos , Estaciones del Año , España , Xilema/fisiología
16.
Ecol Appl ; 26(6): 1827-1841, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27755692

RESUMEN

Tree mortality is a key process shaping forest dynamics. Thus, there is a growing need for indicators of the likelihood of tree death. During the last decades, an increasing number of tree-ring based studies have aimed to derive growth-mortality functions, mostly using logistic models. The results of these studies, however, are difficult to compare and synthesize due to the diversity of approaches used for the sampling strategy (number and characteristics of alive and death observations), the type of explanatory growth variables included (level, trend, etc.), and the length of the time window (number of years preceding the alive/death observation) that maximized the discrimination ability of each growth variable. We assess the implications of key methodological decisions when developing tree-ring based growth-mortality relationships using logistic mixed-effects regression models. As examples, we use published tree-ring datasets from Abies alba (13 different sites), Nothofagus dombeyi (one site), and Quercus petraea (one site). Our approach is based on a constant sampling size and aims at (1) assessing the dependency of growth-mortality relationships on the statistical sampling scheme used, (2) determining the type of explanatory growth variables that should be considered, and (3) identifying the best length of the time window used to calculate them. The performance of tree-ring-based mortality models was reasonably high for all three species (area under the receiving operator characteristics curve, AUC > 0.7). Growth level variables were the most important predictors of mortality probability for two species (A. alba, N. dombeyi), while growth-trend variables need to be considered for Q. petraea. In addition, the length of the time window used to calculate each growth variable was highly uncertain and depended on the sampling scheme, as some growth-mortality relationships varied with tree age. The present study accounts for the main sampling-related biases to determine reliable species-specific growth-mortality relationships. Our results highlight the importance of using a sampling strategy that is consistent with the research question. Moving towards a common methodology for developing reliable growth-mortality relationships is an important step towards improving our understanding of tree mortality across species and its representation in dynamic vegetation models.


Asunto(s)
Modelos Biológicos , Árboles/fisiología , Modelos Logísticos , Análisis Multivariante , Tamaño de la Muestra
17.
Glob Chang Biol ; 21(1): 418-30, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24920268

RESUMEN

The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth-limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992-2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992-2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered.


Asunto(s)
Cambio Climático , Evaluación Nutricional , Árboles/química , Árboles/crecimiento & desarrollo , Europa (Continente) , Modelos Biológicos , Hojas de la Planta/química , Suelo/química , Especificidad de la Especie
18.
Ann Bot ; 116(2): 261-77, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26173892

RESUMEN

BACKGROUND AND AIMS: In mountain ecosystems, predicting root density in three dimensions (3-D) is highly challenging due to the spatial heterogeneity of forest communities. This study presents a simple and semi-mechanistic model, named ChaMRoots, that predicts root interception density (RID, number of roots m(-2)). ChaMRoots hypothesizes that RID at a given point is affected by the presence of roots from surrounding trees forming a polygon shape. METHODS: The model comprises three sub-models for predicting: (1) the spatial heterogeneity - RID of the finest roots in the top soil layer as a function of tree basal area at breast height, and the distance between the tree and a given point; (2) the diameter spectrum - the distribution of RID as a function of root diameter up to 50 mm thick; and (3) the vertical profile - the distribution of RID as a function of soil depth. The RID data used for fitting in the model were measured in two uneven-aged mountain forest ecosystems in the French Alps. These sites differ in tree density and species composition. KEY RESULTS: In general, the validation of each sub-model indicated that all sub-models of ChaMRoots had good fits. The model achieved a highly satisfactory compromise between the number of aerial input parameters and the fit to the observed data. CONCLUSIONS: The semi-mechanistic ChaMRoots model focuses on the spatial distribution of root density at the tree cluster scale, in contrast to the majority of published root models, which function at the level of the individual. Based on easy-to-measure characteristics, simple forest inventory protocols and three sub-models, it achieves a good compromise between the complexity of the case study area and that of the global model structure. ChaMRoots can be easily coupled with spatially explicit individual-based forest dynamics models and thus provides a highly transferable approach for modelling 3-D root spatial distribution in complex forest ecosystems.


Asunto(s)
Bosques , Modelos Biológicos , Raíces de Plantas/fisiología , Árboles/fisiología , Raíces de Plantas/anatomía & histología , Reproducibilidad de los Resultados , Suelo
19.
Heliyon ; 10(5): e26820, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463881

RESUMEN

Fourier Transform Infrared Spectroscopy (FT-IR) and High-Performance Liquid Chromatography (HPLC) could be applied to study the provenance of wood, specifically the differentiation of wood resources, as well as the identification of chemical compounds that are connected to the changes that occur in wood as a result of drying treatments. To test this hypothesis, the bark of silver fir (Abies alba Mill.) from trees belonging to seven different geographical provenances was studied, using samples dried at three different temperatures (60, 80, and 100 °C). FT-IR spectroscopy revealed different band assignments in the mid-infrared region depending on fir provenances, whereas the vibrational bands of the biomass functional groups tended to shift to lower wavenumbers. Significant differences were identified between the chemical compounds in the bark depending on the provenances. The largest proportion of the total phenolics was represented by the epicatechin gallate, epicatechin, catechin, and procyanidin dimer B1. Exploratory data analysis was performed using principal component analysis (PCA), hierarchical clustering, and Pearson correlations. This allowed a comparative evaluation of the samples and interpret the findings according to the geographical provenances, respectively ecological conditions in the areas of origin, but also the influence of the drying temperatures of the samples on chemical compounds. The precipitation in the areas of origin decreased total phenolics in silver fir bark samples, and total phenolics differed not only due to the geographic provenance, but also due to drying temperature.

20.
Carbon Balance Manag ; 19(1): 15, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740689

RESUMEN

BACKGROUND: Carbon (C) sink and stock are among the most important ecosystem services provided by forests in climate change mitigation policies. In this context, old-growth forests constitute an essential reference point for the development of close-to-nature silviculture, including C management techniques. Despite their small extent in Europe, temperate old-growth forests are assumed to be among the most prominent in terms of biomass and C stored. However, monitoring and reporting of C stocks is still poorly understood. To better understand the C stock amount and distribution in temperate old-growth forests, we estimated the C stock of two old-growth stands in the Dinaric Alps applying different assessment methods, including direct and indirect approaches (e.g., field measurements and allometric equations vs. IPCC standard methods). This paper presents the quantification and the distribution of C across the five main forest C pools (i.e., aboveground, belowground, deadwood, litter and soil) in the study areas and the differences between the applied methods. RESULTS: We report a very prominent C stock in both study areas (507 Mg C ha- 1), concentrated in a few large trees (36% of C in 5% of trees). Moreover, we found significant differences in C stock estimation between direct and indirect methods. Indeed, the latter tended to underestimate or overestimate depending on the pool considered. CONCLUSIONS: Comparison of our results with previous studies and data collected in European forests highlights the prominence of temperate forests, among which the Dinaric Alps old-growth forests are the largest. These findings provide an important benchmark for the development of future approaches to the management of the European temperate forests. However, further and deeper research on C stock and fluxes in old-growth stands is of prime importance to understand the potential and limits of the climate mitigation role of forests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA