Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Cardiovasc Electrophysiol ; 35(7): 1360-1367, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38715310

RESUMEN

INTRODUCTION: Numerous P-wave indices have been explored as biomarkers to assess atrial fibrillation (AF) risk and the impact of therapy with variable success. OBJECTIVE: We investigated the utility of P-wave alternans (PWA) to track the effects of pulmonary vein isolation (PVI) and to predict atrial arrhythmia recurrence. METHODS: This medical records study included patients who underwent PVI for AF ablation at our institution, along with 20 control subjects without AF or overt cardiovascular disease. PWA was assessed using novel artificial intelligence-enabled modified moving average (AI-MMA) algorithms. PWA was monitored from the 12-lead ECG at ~1 h before and ~16 h after PVI (n = 45) and at the 4- to 17-week clinically indicated follow-up visit (n = 30). The arrhythmia follow-up period was 955 ± 112 days. RESULTS: PVI acutely reduced PWA by 48%-63% (p < .05) to control ranges in leads II, III, aVF, the leads with the greatest sensitivity in monitoring PWA. Pre-ablation PWA was ~6 µV and decreased to ~3 µV following ablation. Patients who exhibited a rebound in PWA to pre-ablation levels at 4- to 17-week follow-up (p < .01) experienced recurrent atrial arrhythmias, whereas patients whose PWA remained reduced (p = .85) did not, resulting in a significant difference (p < .001) at follow-up. The AUC for PWA's prediction of first recurrence of atrial arrhythmia was 0.81 (p < .01) with 88% sensitivity and 82% specificity. Kaplan-Meier analysis estimated atrial arrhythmia-free survival (p < .01) with an adjusted hazard ratio of 3.4 (95% CI: 1.47-5.24, p < .02). CONCLUSION: A rebound in PWA to pre-ablation levels detected by AI-MMA in the 12-lead ECG at standard clinical follow-up predicts atrial arrhythmia recurrence.


Asunto(s)
Potenciales de Acción , Fibrilación Atrial , Ablación por Catéter , Electrocardiografía , Frecuencia Cardíaca , Valor Predictivo de las Pruebas , Venas Pulmonares , Recurrencia , Humanos , Venas Pulmonares/cirugía , Venas Pulmonares/fisiopatología , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/cirugía , Fibrilación Atrial/diagnóstico , Masculino , Femenino , Ablación por Catéter/efectos adversos , Persona de Mediana Edad , Anciano , Factores de Tiempo , Resultado del Tratamiento , Factores de Riesgo , Estudios Retrospectivos , Estudios de Casos y Controles
2.
J Electrocardiol ; 83: 12-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38185007

RESUMEN

BACKGROUND: T-wave alternans (TWA) analysis was shown in >14,000 individuals studied worldwide over the past two decades to be a useful tool to assess risk for cardiovascular mortality and sudden arrhythmic death. TWA analysis by the modified moving average (MMA) method is FDA-cleared and CMS-reimbursed (CAG-00293R2). OBJECTIVE: Because the MMA technique is inherently suitable for dynamic tracking of alternans levels, it was selected for development of artificial intelligence (AI)-enabled algorithms using convolutional neural networks (CNN) to achieve rapid, efficient, and accurate assessment of P-wave alternans (PWA), R-wave alternans (RWA), and TWA. METHODS: The novel application of CNN algorithms to enhance MMA analysis generated efficient and powerful pattern-recognition algorithms for highly accurate alternans quantification. Algorithm reliability and accuracy were verified using simulated ECGs achieving R2 ≥ 0.99 (p < 0.01) in response to noise inputs and artifacts that emulate real-life conditions. RESULTS: Accuracy of the new AI-MMA algorithms in TWA analysis (n = 5) was significantly improved over unsupervised, automated MMA output (p = 0.036) and did not differ from conventional MMA analysis with expert overreading (p = 0.21). Accuracy of AI-MMA in PWA analysis (n = 45) was significantly improved over unsupervised, automated MMA output (p < 0.005) and did not differ from conventional MMA analysis with expert overreading (p = 0.89). TWA and PWA by AI-MMA were correlated with conventional MMA output over-read by an expert reader (R2 = 0.7765, R2 = 0.9504, respectively). CONCLUSION: This novel technique for AI-MMA analysis could be suitable for use in diverse in-hospital and out-of-hospital monitoring systems, including cardiac implantable electronic devices and smartwatches, for tracking atrial and ventricular arrhythmia risk.


Asunto(s)
Inteligencia Artificial , Electrocardiografía , Humanos , Electrocardiografía/métodos , Reproducibilidad de los Resultados , Electrocardiografía Ambulatoria/métodos , Arritmias Cardíacas , Redes Neurales de la Computación , Atrios Cardíacos
3.
J Physiol ; 601(1): 51-67, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36426548

RESUMEN

At the cellular level, cardiac alternans is observed as beat-to-beat alternations in contraction strength, action potential (AP) morphology and Ca2+ transient (CaT) amplitude, and is a risk factor for cardiac arrhythmia. The (patho)physiological roles of small conductance Ca2+ -activated K+ (SK) channels in ventricles are poorly understood. We tested the hypothesis that in single rabbit ventricular myocytes pharmacological modulation of SK channels plays a causative role for the development of pacing-induced CaT and AP duration (APD) alternans. SK channel blockers (apamin, UCL1684) had only a minor effect on AP repolarization. However, SK channel activation by NS309 resulted in significant APD shortening, demonstrating that functional SK channels are well expressed in ventricular myocytes. The effects of NS309 were prevented or reversed by apamin and UCL1684, indicating that NS309 acted on SK channels. SK channel activation abolished or reduced the degree of pacing-induced CaT and APD alternans. Inhibition of KV 7.1 (with HMR1556) and KV 11.1 (with E4031) channels was used to mimic conditions of long QT syndromes type-1 and type-2, respectively. Both HMR1556 and E4031 enhanced CaT alternans that was prevented by SK channel activation. In AP voltage-clamped cells the SK channel activator had no effect on CaT alternans, confirming that suppression of CaT alternans was caused by APD shortening. APD shortening contributed to protection from alternans by lowering sarcoplasmic reticulum Ca2+ content and curtailing Ca2+ release. The data suggest that SK activation could be a potential intervention to avert development of alternans with important ramifications for arrhythmia prevention and therapy for patients with long QT syndrome. KEY POINTS: At the cellular level, cardiac alternans is observed as beat-to-beat alternations in contraction strength, action potential (AP) morphology and intracellular Ca2+ release amplitude, and is a risk factor for cardiac arrhythmia. The (patho)physiological roles of small conductance Ca2+ -activated K+ (SK) channels in ventricles are poorly understood. We investigated whether pharmacological modulation of SK channels affects the development of cardiac alternans in normal ventricular cells and in cells with drug-induced long QT syndrome (LQTS). While SK channel blockers have only a minor effect on AP morphology, their activation leads to AP shortening and abolishes or reduces the degree of pacing-induced Ca2+ and AP alternans. AP shortening contributed to protection against alternans by lowering sarcoplasmic reticulum Ca2+ content and curtailing Ca2+ release. The data suggest SK activation as a potential intervention to avert the development of alternans with important ramifications for arrhythmia prevention for patients with LQTS.


Asunto(s)
Arritmias Cardíacas , Síndrome de QT Prolongado , Animales , Conejos , Potenciales de Acción/fisiología , Apamina/farmacología , Miocitos Cardíacos/fisiología , Trastorno del Sistema de Conducción Cardíaco
4.
Am J Physiol Heart Circ Physiol ; 325(2): H414-H431, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37417871

RESUMEN

Individuals with chronic heart failure (CHF) have an increased risk of ventricular arrhythmias, which has been linked to pathological cellular remodeling and may also be mediated by changes in heart rate. Heart rate typically fluctuates on a timescale ranging from seconds to hours, termed heart rate variability (HRV). This variability is reduced in CHF, and this HRV reduction is associated with a greater risk for arrhythmias. Furthermore, variations in heart rate influence the formation of proarrhythmic alternans, a beat-to-beat alternation in the action potential duration (APD), or intracellular calcium (Ca). In this study, we investigate how long-term changes in heart rate and electrical remodeling associated with CHF influence alternans formation. We measure key statistical properties of the RR-interval sequences from ECGs of individuals with normal sinus rhythm (NSR) and CHF. Patient-specific RR-interval sequences and synthetic sequences (randomly generated to mimicking these statistical properties) are used as the pacing protocol for a discrete time-coupled map model that governs APD and intracellular Ca handling of a single cardiac myocyte, modified to account for pathological electrical remodeling in CHF. Patient-specific simulations show that beat-to-beat differences in APD vary temporally in both populations, with alternans formation more prevalent in CHF. Parameter studies using synthetic sequences demonstrate that increasing the autocorrelation time or mean RR-interval reduces APD alternations, whereas increasing the RR-interval standard deviation leads to higher alternans magnitudes. Importantly, we find that although both the CHF-associated changes in heart rate and electrical remodeling influence alternans formation, variations in heart rate may be more influential.NEW & NOTEWORTHY Using patient-specific data, we show that both the changes in heart rate and electrical remodeling associated with chronic heart failure influence the formation of proarrhythmic alternans in the heart.


Asunto(s)
Remodelación Atrial , Insuficiencia Cardíaca , Humanos , Frecuencia Cardíaca/fisiología , Arritmias Cardíacas , Miocitos Cardíacos/fisiología , Potenciales de Acción/fisiología , Calcio
5.
Europace ; 25(7)2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37466361

RESUMEN

AIMS: The ryanodine receptor 2 (RyR2) is essential for cardiac muscle excitation-contraction coupling; dysfunctional RyR2 participates in the development of inherited arrhythmogenic cardiac disease. In this study, a novel RyR2 mutation A690E is identified from a patient with family inheritance of sudden cardiac death, and we aimed to investigate the pathogenic basis of the mutation. METHODS AND RESULTS: We generated a mouse model that carried the A690E mutation. Mice were characterized by adrenergic-induced ventricular arrhythmias similar to clinical manifestation of the patient. Optical mapping studies revealed that isolated A690E hearts were prone to arrhythmogenesis and displayed frequency-dependence calcium transient alternans. Upon ß-adrenoceptor challenge, the concordant alternans was shifted towards discordant alternans that favour triggering ectopic beats and Ca2+ re-entry; similar phenomenon was also found in the A690E cardiomyocytes. In addition, we found that A690E cardiomyocytes manifested abnormal Ca2+ release and electrophysiological disorders, including an increased sensitivity to cytosolic Ca2+, an elevated diastolic RyR2-mediated Ca2+ leak, and an imbalance between Ca2+ leak and reuptake. Structural analyses reveal that the mutation directly impacts RyR2-FK506 binding protein interaction. CONCLUSION: In this study, we have identified a novel mutation in RyR2 that is associated with sudden cardiac death. By characterizing the function defects of mutant RyR2 in animal, whole heat, and cardiomyocytes, we demonstrated the pathogenic basis of the disease-causing mutation and provided a deeper mechanistic understanding of a life-threatening cardiac arrhythmia.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Taquicardia Ventricular , Ratones , Animales , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Arritmias Cardíacas , Muerte Súbita Cardíaca/etiología , Miocitos Cardíacos/metabolismo , Mutación
6.
Clin Auton Res ; 33(1): 51-62, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36645559

RESUMEN

PURPOSE: Drug-induced type I Brugada syndrome (BrS) is associated with a ventricular arrhythmia (VA) rate of 1 case per 100 person-years. This study aims to evaluate changes in electrocardiographic (ECG) parameters such as microvolt T wave alternans (mTWA) and heart rate variability (HRV) at baseline and during ajmaline testing for BrS diagnosis. METHODS: Consecutive patients diagnosed with BrS during ajmaline testing with 5-year follow-up were included in this study. For comparison, a negative ajmaline control group and an isoproterenol control group were also included. ECG recordings during ajmaline or isoproterenol test were divided in two timeframes from which ECG parameters were calculated: a 5-min baseline timeframe and a 5-min drug timeframe. RESULTS: A total of 308 patients with BrS were included, 22 (0.7%) of which suffered VAs during follow-up. One hundred patients were included in both isoproterenol and negative ajmaline control groups. At baseline, there was no difference in ECG parameters between control groups and patients with BrS, nor between BrS with and without VAs. During ajmaline testing, BrS with VAs presented longer QRS duration [159 ± 34 ms versus 138 (122-155) ms, p = 0.006], higher maximum mTWA [33.8 (14.0-114) µV versus 8.00 (3.67-28.2) µV, p = 0.001], and lower power in low frequency band [25.6 (5.8-53.8) ms2 versus 129.5 (52.7-286) ms2, p < 0.0001] when compared to BrS without VAs. CONCLUSIONS: Ajmaline induced important HRV changes similar to those observed during isoproterenol. Increased mTWA was observed only in patients with BrS. BrS with VAs during follow-up presented worse changes during ajmaline test, including lower LF power and higher maximum mTWA which were independent predictors of events.


Asunto(s)
Ajmalina , Síndrome de Brugada , Humanos , Ajmalina/farmacología , Síndrome de Brugada/diagnóstico , Frecuencia Cardíaca , Isoproterenol , Arritmias Cardíacas , Electrocardiografía , Pronóstico
7.
Ann Noninvasive Electrocardiol ; 28(1): e13005, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36114698

RESUMEN

Despite early repolarization (ER) syndrome being usually considered benign, its association with severe/malignant ventricular arrhythmias (VA) was also reported. Microvolt T-wave alternans (MTWA) is an electrocardiographic marker for the development of VA, but its role in ER syndrome remains unknown. A 90-second 6-lead electrocardiogram from an ER syndrome patient, acquired with the Kardia recorder, was analyzed by the enhanced adaptive matched filter for MTWA quantification. On average, MTWA was 50 µV, higher than what was previously observed on healthy subjects using the same method. In our ER syndrome patient, MTWA plays a potential role in VA development in ER syndrome.


Asunto(s)
Muerte Súbita Cardíaca , Desfibriladores Implantables , Humanos , Muerte Súbita Cardíaca/etiología , Electrocardiografía/métodos , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/diagnóstico , Medición de Riesgo , Desfibriladores Implantables/efectos adversos
8.
Ann Noninvasive Electrocardiol ; 28(1): e13035, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36630149

RESUMEN

BACKGROUND: Sudden cardiac death (SCD) risk is elevated following acute myocardial infarction (MI). The time course of SCD susceptibility post-MI requires further investigation. METHODS: In this observational cohort study, we employed state-of-the-art noninvasive ECG techniques to track the daily time course of cardiac electrical instability and autonomic function following ST-segment elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI). Preventice BodyGuardian MINI-EL Holters continuously recorded ECGs for 7 days at hospital discharge and at 40 days for STEMI (N = 5) or at 90 days for NSTEMI patients (N = 5). Cardiac electrical instability was assessed by T-wave alternans (TWA) and T-wave heterogeneity (TWH); autonomic tone was determined by rMSSD-heart rate variability (HRV). RESULTS: TWA was severely elevated (≥60 µV) in STEMI patients (80 ± 10.3 µV) at discharge and throughout the first recording period but declined by 50% to 40 ± 2.3 µV (p = .03) by Day 40 and remained in the normal range (<47 µV). TWH, a related phenomenon analyzed from 12-lead ECGs, was reduced by 63% in the five STEMI patients from discharge to normal (<80 µV) at follow-up (105 ± 27.3 to 39 ± 3.3 µV, p < .04) but increased by 65% in a STEMI case (89 to 147 µV), who received a wearable defibrillator vest and later implantable cardioverter defibrillator. In NSTEMI patients, TWA was borderline abnormal (47 ± 3.3 µV) at discharge and declined by 19% to normal (38 ± 1.2 µV) by Day 90 (p = .05). An overall reciprocal increase in rMSSD-HRV suggested recovery of vagal tone. CONCLUSIONS: This study provides proof-of-principle for tracking post-MI SCD risk in individual patients with implications for personalized therapy.


Asunto(s)
Infarto del Miocardio , Infarto del Miocardio sin Elevación del ST , Infarto del Miocardio con Elevación del ST , Humanos , Electrocardiografía , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/terapia , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiología , Electrocardiografía Ambulatoria , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Infarto del Miocardio con Elevación del ST/diagnóstico , Infarto del Miocardio con Elevación del ST/terapia , Síndrome
9.
Pflugers Arch ; 474(6): 625-636, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35235009

RESUMEN

Systolic Ca2+ transients are shaped by the concerted summation of Ca2+ sparks across cardiomyocytes. At high pacing rates, alterations of excitation-contraction coupling manifest as pro-arrhythmic Ca2+ alternans that can be classified as concordant or discordant. Discordance is ascribed to out-of-phase alternation of local Ca2+ release across the cell, although the triggers and consequences of this phenomenon remain unclear. Rat ventricular cardiomyocytes were paced at increasing rates. A discordance index (SD of local alternans ratios) was developed to quantify discordance in confocal recordings of Ca2+ transients. Index values were significantly increased by rapid pacing, and negatively correlated with Ca2+ transient amplitude change, indicating that discordance is an important contributor to the negative Ca2+ transient-frequency relationship. In addition, the largest local calcium transient in two consecutive transients was measured to build a potential "best release" profile, which quantitatively confirmed discordance-induced Ca2+ release impairment (DICRI). Diastolic Ca2+ homeostasis was also observed to be disrupted by discordance, as late Ca2+ release events elicited instability of resting Ca2+ levels. Finally, the effects of two RyR2 inhibitors (VK-II-86 and dantrolene) were tested. While both compounds inhibited Ca2+ wave generation, only VK-II-86 augmented subcellular discordance. Discordant Ca2+ release is a quantifiable phenomenon, sensitive to pacing frequency, and impairs both systolic and diastolic Ca2+ homeostasis. Interestingly, RyR2 inhibition can induce discordance, which should be considered when evaluating pharmacological RyR2 modulators for clinical use.


Asunto(s)
Bloqueadores de los Canales de Calcio , Señalización del Calcio , Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Animales , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Acoplamiento Excitación-Contracción , Miocitos Cardíacos/metabolismo , Ratas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático
10.
Basic Res Cardiol ; 117(1): 25, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488105

RESUMEN

Cardiac action potential (AP) shape and propagation are regulated by several key dynamic factors such as ion channel recovery and intracellular Ca2+ cycling. Experimental methods for manipulating AP electrical dynamics commonly use ion channel inhibitors that lack spatial and temporal specificity. In this work, we propose an approach based on optogenetics to manipulate cardiac electrical activity employing a light-modulated depolarizing current with intensities that are too low to elicit APs (sub-threshold illumination), but are sufficient to fine-tune AP electrical dynamics. We investigated the effects of sub-threshold illumination in isolated cardiomyocytes and whole hearts by using transgenic mice constitutively expressing a light-gated ion channel (channelrhodopsin-2, ChR2). We find that ChR2-mediated depolarizing current prolongs APs and reduces conduction velocity (CV) in a space-selective and reversible manner. Sub-threshold manipulation also affects the dynamics of cardiac electrical activity, increasing the magnitude of cardiac alternans. We used an optical system that uses real-time feedback control to generate re-entrant circuits with user-defined cycle lengths to explore the role of cardiac alternans in spontaneous termination of ventricular tachycardias (VTs). We demonstrate that VT stability significantly decreases during sub-threshold illumination primarily due to an increase in the amplitude of electrical oscillations, which implies that cardiac alternans may be beneficial in the context of self-termination of VT.


Asunto(s)
Optogenética , Taquicardia Ventricular , Potenciales de Acción/fisiología , Animales , Iluminación , Ratones , Miocitos Cardíacos/fisiología , Optogenética/métodos
11.
Epilepsy Behav ; 135: 108881, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36027867

RESUMEN

BACKGROUND: Sudden cardiac arrest results from cardiac electrical instability and is 3-fold more frequent in patients with chronic epilepsy than in the general population. We hypothesized that focal to bilateral tonic-clonic seizures (FTBTCS) would acutely impact T-wave alternans (TWA), a marker of cardiac electrical instability linked to an elevated risk for sudden cardiac death, more than focal seizures (FS) [focal aware seizures (FAS) and focal with impaired awareness seizures (FIAS)], due to their greater sympathetic stimulation of the heart. Since stress has been shown to cause significant TWA elevations in patients with heart disease, we also hypothesized that the early days of an inpatient admission to an epilepsy monitoring unit (EMU) would be associated with higher TWA levels compared to later hospital days in patients with chronic epilepsy, presumably due to stress. DESIGN/METHODS: We analyzed the acute effects of seizures [FAS, FIAS, FTBTCS, and nonepileptic seizures (NES)] and day of hospital stay on TWA in 18 patients admitted to the EMU using high-resolution wireless electrocardiographic (ECG) patch monitors. RESULTS: A total of 5 patients had FTBTCS, 7 patients had FS (2 FAS, 5 FIAS), and 3 patients had NES only during the index hospital stay. Four patients did not have any electroclinical seizures or NES. FTBTCS resulted in marked acute increases in ictal TWA from baseline (2 ± 0.3 µV) to ictal maximum (70 ± 6.1 µV, p < 0.0001), the latter exceeding the 60 µV cut point defined as severely abnormal. By comparison, while FAS and FIAS also provoked significant increases in TWA (from 2 ± 0.5 µV to 30 ± 3.3 µV, p < 0.0001), maximum ictal TWA levels did not reach the 47 µV cut point defined as abnormal. Heart rate increases during FTBTCS from baseline (62 ± 5.8 beats/min) to ictal maximum (134 ± 8.6 beats/min, an increase of 72 ± 7.2 beats/min, p < 0.02) were also greater (p = 0.014) than heart rate increases during FS (from 70 ± 5.2 beats/min to 118 ± 6.2 beats/min, an increase of 48 ± 2.6 beats/min, p < 0.03). In 3 patients with NES, TWA rose mildly during the patients' typical episodes (from 2 ± 0.6 µV to 14 ± 2.6 µV, p < 0.0004), well below the cut point of abnormality, while heart rate increases were observed (from 75 ± 1.3 to 112 ± 8.7 beats/min, an increase of 37 ± 8.9 beats/min, p = 0.03). Patients with EEG-confirmed electroclinical seizures recorded while in the EMU exhibited significantly elevated interictal TWA maxima (61 ± 3.4 µV) on EMU admission day which were similar in magnitude to ictal maxima seen during FTBTCS (70 ± 6.1 µV, p = 0.21). During subsequent days of hospitalization, daily interictal TWA maxima showed gradual habituation in patients with both FS and FTBTCS but not in patients with NES only. CONCLUSIONS: This is the first study to our knowledge demonstrating that FTBTCS acutely provoke highly significant increases in TWA to levels that have been associated with heightened risk for sudden cardiac death in other patient populations. We speculate that mortality temporally associated with FTBTCS may, in some cases, be due to sudden cardiac death rather than respiratory failure. In patients with EEG-confirmed epilepsy, hospital admission is associated with interictal TWA maxima that approach those seen during FTBTCS, presumably related to stress during the early phase of hospitalization compared to later in the hospitalization, indicating cardiac electrical instability and potential vulnerability to sudden cardiac death related to stress independent of temporal relationships to seizures. The elevated heart rates observed acutely with seizures and on hospital Day 1 are consistent with a hyperadrenergic state and the effect of elevated sympathetic output on a vulnerable cardiac substrate, a phenomenon termed "the Epileptic Heart."


Asunto(s)
Epilepsias Parciales , Epilepsia , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/diagnóstico , Muerte Súbita Cardíaca/etiología , Electrocardiografía/métodos , Epilepsias Parciales/complicaciones , Hospitalización , Humanos , Convulsiones/complicaciones , Convulsiones/diagnóstico
12.
Ann Noninvasive Electrocardiol ; 27(4): e12939, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35146844

RESUMEN

Hypoparathyroidism predisposes patients to hypocalcemia. Patients with hypoparathyroidism are thus at risk of electrocardiographic abnormalities, including T-wave alternans. T-wave alternans is poorly understood and lacks uniform diagnostic criteria. Its presence suggests myocardial electrical instability, and it has become an important sign for identifying patients at high risk of malignant arrhythmias and sudden cardiac death. We report a rare case of T-wave alternans with torsade de pointes due to hypocalcemia. The etiology of T-wave alternans may easily be overlooked. It should thus be thoroughly investigated to avoid misdiagnosis and poor outcomes.


Asunto(s)
Hipocalcemia , Hipoparatiroidismo , Torsades de Pointes , Arritmias Cardíacas/complicaciones , Electrocardiografía/efectos adversos , Humanos , Hipocalcemia/complicaciones , Hipocalcemia/diagnóstico , Hipoparatiroidismo/complicaciones , Hipoparatiroidismo/diagnóstico , Torsades de Pointes/complicaciones , Torsades de Pointes/diagnóstico
13.
Ann Noninvasive Electrocardiol ; 27(6): e12987, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36062899

RESUMEN

The middle-aged male was diagnosed with "acute anterior wall myocardial infarction" based on clinical symptoms, laboratory examination, and coronary angiography (CAG), but his ECG showed no significant change in QRS wave or ST-T within 6 h of admission. Thus, a perfect explanation with the existing theory is difficult, and only the case is presented here.


Asunto(s)
Infarto de la Pared Anterior del Miocardio , Vasos Coronarios , Masculino , Persona de Mediana Edad , Humanos , Vasos Coronarios/diagnóstico por imagen , Electrocardiografía , Angiografía Coronaria , Hospitalización
14.
Am J Emerg Med ; 58: 159-174, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35696801

RESUMEN

INTRODUCTION: Pericardial tamponade requires timely diagnosis and management. It carries a high mortality rate. OBJECTIVE: This review incorporates available evidence to clarify misconceptions regarding the clinical presentation, while providing an in-depth expert guide on bedside echocardiography. It also details the decision-making strategy for emergency management including pericardiocentesis, along with pre- and peri-procedural pearls and pitfalls. DISCUSSION: Pericardial effusions causing tamponade arise from diverse etiologies across acute and sub-acute time courses. The most frequently reported symptom is dyspnea. The classically taught Beck's triad (which includes hypotension) does not appear commonly. Echocardiographic findings include: a pericardial effusion (larger size associated with tamponade), diastolic right ventricular collapse (specific), systolic right atrial collapse (sensitive), a plethoric non-collapsible inferior vena cava (sensitive), and sonographic pulsus paradoxus. Emergent pericardiocentesis is warranted by hemodynamic instability, impending deterioration, or cardiac arrest. Emergent surgical indications include type A aortic dissection causing hemopericardium, ventricular free wall rupture after acute myocardial infarction, severe chest trauma, and iatrogenic hemopericardium when bleeding cannot be controlled percutaneously. Pre-procedure management includes blood products for patients with traumatic hemopericardium; gentle intravenous fluids to hypotensive, hypovolemic patients with consideration for vasoactive medications; treatment of anticoagulation, coagulopathies, and anemia. Positive-pressure ventilation and intravenous sedation can lower cardiac output and should be avoided if possible. Optimal location for echocardiography-guided pericardiocentesis is the largest, shallowest fluid pocket with no intervening vital structures. Patient positioning to prevent hypoxia and liberal amounts of local anesthesia can facilitate patients remaining still. Safe needle guidance and confirmation of catheter placement is achieved using low-depth sonographic views, injection of agitated saline, and evaluation of initial aspirate for hemorrhage. Pericardial fluid should be drained slowly to avoid pericardial decompression syndrome. CONCLUSION: An understanding of the pathophysiology, clinical presentation, echocardiographic findings, and time-sensitive management of pericardial tamponade is essential for emergency physicians.


Asunto(s)
Taponamiento Cardíaco , Medicina de Emergencia , Hipotensión , Derrame Pericárdico , Taponamiento Cardíaco/diagnóstico por imagen , Taponamiento Cardíaco/etiología , Taponamiento Cardíaco/terapia , Ecocardiografía , Humanos , Hipotensión/complicaciones , Derrame Pericárdico/diagnóstico por imagen , Derrame Pericárdico/etiología , Derrame Pericárdico/terapia , Pericardiocentesis/métodos
15.
Eur Heart J ; 42(11): 1063-1072, 2021 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057695

RESUMEN

To those of us involved in clinical research it seldom happens to begin working on a rather obscure disease, still largely unexplored, and to follow its ripening into a medical entity of large interest to clinicians and basic scientists alike, and moreover to do so for exactly 50 years. This is what has been my privilege in the relentless pursuit of the intriguing disease known as the long QT syndrome (LQTS). This essay begins with the encounter with my first patient affected by LQTS when just a handful of cardiologists had seen similar cases and continues with the series of efforts, some sound some amateurish, which eventually led-together with many brilliant partners and associates-to describe and understand the natural history of the disease and the most effective therapies. It then touches on how our International Registry for LQTS, with its well-documented family trees, constituted the necessary springboard for the major genetic discoveries of the 1990s. From the explosion of genetic data, my own interest focused first on the intriguing genotype-phenotype correlation and then on 'modifier genes', in the attempt of understanding why family members with the same disease-causing mutation could have an opposite clinical history. And from there on to iPS-derived cardiomyocytes, used to unravelling the specific mechanisms of action of modifier genes and to exploring novel therapeutic strategies. This long, and highly rewarding, journey continues because the fascination and the attraction of the unknown are irresistible.


Asunto(s)
Síndrome de QT Prolongado , Medicina de Precisión , Atletas , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/terapia , Miocitos Cardíacos
16.
J Mol Cell Cardiol ; 153: 111-122, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33383036

RESUMEN

Repolarization alternans, a periodic oscillation of long-short action potential duration, is an important source of arrhythmogenic substrate, although the mechanisms driving it are insufficiently understood. Despite its relevance as an arrhythmia precursor, there are no successful therapies able to target it specifically. We hypothesized that blockade of the sodium­calcium exchanger (NCX) could inhibit alternans. The effects of the selective NCX blocker ORM-10962 were evaluated on action potentials measured with microelectrodes from canine papillary muscle preparations, and calcium transients measured using Fluo4-AM from isolated ventricular myocytes paced to evoke alternans. Computer simulations were used to obtain insight into the drug's mechanisms of action. ORM-10962 attenuated cardiac alternans, both in action potential duration and calcium transient amplitude. Three morphological types of alternans were observed, with differential response to ORM-10962 with regards to APD alternans attenuation. Analysis of APD restitution indicates that calcium oscillations underlie alternans formation. Furthermore, ORM-10962 did not markedly alter APD restitution, but increased post-repolarization refractoriness, which may be mediated by indirectly reduced L-type calcium current. Computer simulations reproduced alternans attenuation via ORM-10962, suggesting that it is acts by reducing sarcoplasmic reticulum release refractoriness. This results from the ORM-10962-induced sodium­calcium exchanger block accompanied by an indirect reduction in L-type calcium current. Using a computer model of a heart failure cell, we furthermore demonstrate that the anti-alternans effect holds also for this disease, in which the risk of alternans is elevated. Targeting NCX may therefore be a useful anti-arrhythmic strategy to specifically prevent calcium driven alternans.


Asunto(s)
Acetamidas/farmacología , Potenciales de Acción , Arritmias Cardíacas/tratamiento farmacológico , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Cromanos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Piperidinas/farmacología , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Perros , Sistema de Conducción Cardíaco/efectos de los fármacos , Miocitos Cardíacos/metabolismo
17.
Pflugers Arch ; 473(8): 1315-1327, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34145500

RESUMEN

Cardiac alternans closely linked to calcium dysregulation is a crucial risk factor for fatal arrhythmia causing especially sudden death. Calcium overload is well-known to activate Ca2+-dependent protein kinase C (PKC); however, the effects of PKC on arrhythmogenic cardiac alternans have not yet been investigated. This study aimed to determine the contributions of PKC activities in cardiac alternans associated with calcium cycling disturbances. In the present study, action potential duration alternans (APD-ALT) induced by high free intracellular calcium ([Ca2+]i) exerted not only in a calcium concentration-dependent manner but also in a frequency-dependent manner. High [Ca2+]i-induced APD-ALT was suppressed by not only BAPTA-AM but also nifedipine. On the other hand, PKC inhibitors BIM and Gö 6976 eliminated high [Ca2+]i-induced APD-ALT, and PKC activator PMA was found to induce APD-ALT at normal [Ca2+]i condition. Furthermore, BIM effectively prevented calcium transient alternans (CaT-ALT) and even CaT disorders caused by calcium overload. Moreover, BIM not only eliminated electrocardiographic T-wave alternans (TWA) caused by calcium dysregulation, but also lowered the incidence of ventricular arrhythmias in isolated hearts. What's more, BIM prevented the expression of PKC α upregulated by calcium overload in high calcium-perfused hearts. We firstly found that pharmacologically inhibiting Ca2+-dependent PKC over-activation suppressed high [Ca2+]i-induced cardiac alternans. This recognition indicates that inhibition of PKC activities may become a therapeutic target for the prevention of pro-arrhythmogenic cardiac alternans associated with calcium dysregulation.


Asunto(s)
Arritmias Cardíacas/etiología , Calcio/metabolismo , Miocitos Cardíacos/fisiología , Proteína Quinasa C/metabolismo , Potenciales de Acción , Animales , Arritmias Cardíacas/enzimología , Arritmias Cardíacas/prevención & control , Sistema de Conducción Cardíaco/fisiopatología , Terapia Molecular Dirigida , Técnicas de Placa-Clamp , Cultivo Primario de Células , Proteína Quinasa C/antagonistas & inhibidores , Proteínas Quinasas/metabolismo , Conejos
18.
Pflugers Arch ; 473(3): 317-329, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33398498

RESUMEN

In cardiac muscle, the process of excitation-contraction coupling (ECC) describes the chain of events that links action potential induced myocyte membrane depolarization, surface membrane ion channel activation, triggering of Ca2+ induced Ca2+ release from the sarcoplasmic reticulum (SR) Ca2+ store to activation of the contractile machinery that is ultimately responsible for the pump function of the heart. Here we review similarities and differences of structural and functional attributes of ECC between atrial and ventricular tissue. We explore a novel "fire-diffuse-uptake-fire" paradigm of atrial ECC and Ca2+ release that assigns a novel role to the SR SERCA pump and involves a concerted "tandem" activation of the ryanodine receptor Ca2+ release channel by cytosolic and luminal Ca2+. We discuss the contribution of the inositol 1,4,5-trisphosphate (IP3) receptor Ca2+ release channel as an auxiliary pathway to Ca2+ signaling, and we review IP3 receptor-induced Ca2+ release involvement in beat-to-beat ECC, nuclear Ca2+ signaling, and arrhythmogenesis. Finally, we explore the topic of electromechanical and Ca2+ alternans and its ramifications for atrial arrhythmia.


Asunto(s)
Función Atrial/fisiología , Acoplamiento Excitación-Contracción/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Animales , Humanos
19.
Am J Physiol Heart Circ Physiol ; 321(2): H446-H460, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34270372

RESUMEN

In conditions with abnormally increased activity of the cardiac ryanodine receptor (RyR2), Ca2+/calmodulin-dependent protein kinase II (CaMKII) can contribute to a further destabilization of RyR2 that results in triggered arrhythmias. Therefore, inhibition of CaMKII in such conditions has been suggested as a strategy to suppress RyR2 activity and arrhythmias. However, suppression of RyR2 activity can lead to the development of arrhythmogenic Ca2+ alternans. The aim of this study was to test whether the suppression of RyR2 activity caused by inhibition of CaMKII increases propensity for Ca2+ alternans. We studied spontaneous Ca2+ release events and Ca2+ alternans in isolated left ventricular cardiomyocytes from mice carrying the gain-of-function RyR2 mutation RyR2-R2474S and from wild-type mice. CaMKII inhibition by KN-93 effectively decreased the frequency of spontaneous Ca2+ release events in RyR2-R2474S cardiomyocytes exposed to the ß-adrenoceptor agonist isoprenaline. However, KN-93-treated RyR2-R2474S cardiomyocytes also showed increased propensity for Ca2+ alternans and increased Ca2+ alternans ratio compared with both an inactive analog of KN-93 and with vehicle-treated controls. This increased propensity for Ca2+ alternans was explained by prolongation of Ca2+ release refractoriness. Importantly, the increased propensity for Ca2+ alternans in KN-93-treated RyR2-R2474S cardiomyocytes did not surpass that of wild type. In conclusion, inhibition of CaMKII efficiently reduces spontaneous Ca2+ release but promotes Ca2+ alternans in RyR2-R2474S cardiomyocytes with a gain-of-function RyR2 mutation. The dominant effect in RyR2-R2474S is to reduce spontaneous Ca2+ release, which supports this intervention as a therapeutic strategy in this specific condition. However, future studies on CaMKII inhibition in conditions with increased propensity for Ca2+ alternans should include investigation of both phenomena.NEW & NOTEWORTHY Genetically increased RyR2 activity promotes arrhythmogenic Ca2+ release. Inhibition of CaMKII suppresses RyR2 activity and arrhythmogenic Ca2+ release. Suppression of RyR2 activity prolongs refractoriness of Ca2+ release. Prolonged refractoriness of Ca2+ release leads to arrhythmogenic Ca2+ alternans. CaMKII inhibition promotes Ca2+ alternans by prolonging Ca2+ release refractoriness.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Calcio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/efectos de los fármacos , Taquicardia Ventricular/genética , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Agonistas Adrenérgicos beta/farmacología , Animales , Arritmias Cardíacas/metabolismo , Bencilaminas/farmacología , Agonistas de los Canales de Calcio/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mutación con Ganancia de Función , Ventrículos Cardíacos/citología , Isoproterenol/farmacología , Ratones , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Sulfonamidas/farmacología , Taquicardia Ventricular/metabolismo
20.
Basic Res Cardiol ; 116(1): 24, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33844095

RESUMEN

Omecamtiv mecarbil (OM) is a promising novel drug for improving cardiac contractility. We tested the therapeutic range of OM and identified previously unrecognized side effects. The Ca2+ sensitivity of isometric force production (pCa50) and force at low Ca2+ levels increased with OM concentration in human permeabilized cardiomyocytes. OM (1 µM) slowed the kinetics of contractions and relaxations and evoked an oscillation between normal and reduced intracellular Ca2+ transients, action potential lengths and contractions in isolated canine cardiomyocytes. Echocardiographic studies and left ventricular pressure-volume analyses demonstrated concentration-dependent improvements in cardiac systolic function at OM concentrations of 600-1200 µg/kg in rats. Administration of OM at a concentration of 1200 µg/kg was associated with hypotension, while doses of 600-1200 µg/kg were associated with the following aspects of diastolic dysfunction: decreases in E/A ratio and the maximal rate of diastolic pressure decrement (dP/dtmin) and increases in isovolumic relaxation time, left atrial diameter, the isovolumic relaxation constant Tau, left ventricular end-diastolic pressure and the slope of the end-diastolic pressure-volume relationship. Moreover, OM 1200 µg/kg frequently evoked transient electromechanical alternans in the rat in vivo in which normal systoles were followed by smaller contractions (and T-wave amplitudes) without major differences on the QRS complexes. Besides improving systolic function, OM evoked diastolic dysfunction and pulsus alternans. The narrow therapeutic window for OM may necessitate the monitoring of additional clinical safety parameters in clinical application.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Arritmias Cardíacas/inducido químicamente , Cardiotónicos/toxicidad , Hipotensión/inducido químicamente , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Urea/análogos & derivados , Disfunción Ventricular Izquierda/inducido químicamente , Función Ventricular Izquierda/efectos de los fármacos , Adulto , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Presión Sanguínea/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Diástole , Perros , Relación Dosis-Respuesta a Droga , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Hipotensión/metabolismo , Hipotensión/fisiopatología , Cinética , Masculino , Miocitos Cardíacos/metabolismo , Ratas Endogámicas WKY , Sístole , Urea/toxicidad , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA