RESUMEN
Electrocatalytic nitrate reduction to ammonia (NITRR) offers an attractive solution for alleviating environmental concerns, yet in neutral media, it is challenging as a result of the reliance on the atomic hydrogen (H*) supply by breaking the stubborn HO-H bond (â¼492 kJ/mol) of H2O. Herein, we demonstrate that fluorine modification on a Cu electrode (F-NFs/CF) favors the formation of an O-H···F hydrogen bond at the Cu-H2O interface, remarkably stretching the O-H bond of H2O from 0.98 to 1.01 Å and lowering the energy barrier of water dissociation into H* from 0.64 to 0.35 eV at neutral pH. As a benefit from these advantages, F-NFs/CF could rapidly reduce NO3- to NH3 with a rate constant of 0.055 min-1 and a NH3 selectivity of â¼100%, far higher than those (0.004 min-1 and 9.2%) of the Cu counterpart. More importantly, we constructed a flow-through coupled device consisting of a NITRR electrolyzer and a NH3 recovery unit, realizing 98.1% of total nitrogen removal with 99.3% of NH3 recovery and reducing the denitrification cost to $5.1/kg of N. This study offers an effective strategy to manipulate the generation of H* from water dissociation for efficient NO3--to-NH3 conversion and sheds light on the importance of surface modification on a Cu electrode toward electrochemical reactions.
RESUMEN
Recovering waste NH3 to be used as a source of nitrogen fertilizer or liquid fuel has recently attracted much attention. Current methods mainly utilize activated carbon or metal-organic frameworks to capture NH3, but are limited due to low NH3 adsorption capacity and high cost, respectively. In this study, novel porous materials that are low cost and easy to synthesize were prepared as NH3 adsorbents by precipitation polymerization with acid optimization. The results showed that adsorption sites (âCOOH, -OH, and lactone) which form chemical adsorption or hydrogen bonds with NH3 were successfully regulated by response surface methods. Correspondingly, the dynamic NH3 adsorption capacity increased from 5.45 mg g-1 to 129 mg g-1, which is higher than most known activated carbon and metal-organic frameworks. Separation performance tests showed that NH3 could also be separated from CO2 and CH4. The findings in this study will advance the industrialization of NH3 polymer adsorbents and provide technical support for the recycling of waste NH3.
Asunto(s)
Amoníaco , Estructuras Metalorgánicas , Amoníaco/química , Fertilizantes , Nitrógeno , Carbón Orgánico/químicaRESUMEN
The industrial production of synthetic fertilizers and the wide-scale combustion of fossil fuels have disrupted the global nitrogen cycle, necessitating a prudent shift towards sustainable nitrogen management. Traditional wastewater treatment methods primarily focus on nitrogen elimination rather than recovery in useable form, exacerbating resource depletion and environmental degradation. This review explores integrated technologies, including bio-electroconcentration cells (BEC), direct ammonia fuel cells (DAFC), solid oxide fuel cells (SOFC), and microbial fuel cells (MFC), for effective nutrient recovery in conjugation with energy recovery. Recovered nitrogen, primarily green ammonia, offers a carbon-free energy carrier for diverse applications, including applications in DAFC and SOFC. This review underscores the importance of synchronously retrieving ammonia from wastewater and efficiently diverting it for energy recovery using an integrated fuel cell approach. The key technical challenges and future perspectives are discussed, highlighting the potential of these integrated systems to advance sustainability and circular economy goals.
RESUMEN
Ammonia recovery from wastewater has positive environmental benefits, avoiding eutrophication and reducing production energy consumption, which is one of the most effective ways to manage nutrients in wastewater. Specifically, ammonia recovery by membrane distillation has been gradually adopted due to its excellent separation properties for volatile substances. However, the global optimization of direct contact membrane distillation (DCMD) operating parameters to maximize ammonia recovery efficiency (ARE) has not been attempted. In this work, three key operating factors affecting ammonia recovery, i.e., feed ammonia concentration, feed pH, and DCMD running time, were identified from eight factors, by a two-level Plackett-Burman Design (PBD). Subsequently, Box-Behnken design (BBD) under the response surface methodology (RSM) was used to model and optimize the significant operating parameters affecting the recovery of ammonia though DCMD identified by PBD and statistically verified by analysis of variance (ANOVA). Results showed that the model had a high coefficient of determination value (R2 = 0.99), and the interaction between NH4Cl concentration and feed pH had a significant effect on ARE. The optimal operating parameters of DCMD as follows: NH4Cl concentration of 0.46 g/L, feed pH of 10.6, DCMD running time of 11.3 h, and the maximum value of ARE was 98.46%. Under the optimized conditions, ARE reached up to 98.72%, which matched the predicted value and verified the validity and reliability of the model for the optimization of ammonia recovery by DCMD process.
Asunto(s)
Amoníaco , Destilación , Aguas Residuales , Amoníaco/química , Destilación/métodos , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Modelos Teóricos , Concentración de Iones de Hidrógeno , Membranas ArtificialesRESUMEN
The electrochemical nitrate reduction reaction (NO3RR) is able to convert nitrate (NO3 -) into reusable ammonia (NH3), offering a green treatment and resource utilization strategy of nitrate wastewater and ammonia synthesis. The conversion of NO3 - to NH3 undergoes water dissociation to generate active hydrogen atoms and nitrogen-containing intermediates hydrogenation tandemly. The two relay processes compete for the same active sites, especially under pH-neutral condition, resulting in the suboptimal efficiency and selectivity in the electrosynthesis of NH3 from NO3 -. Herein, we constructed a Cu1-Fe dual-site catalyst by anchoring Cu single atoms on amorphous iron oxide shell of nanoscale zero-valent iron (nZVI) for the electrochemical NO3RR, achieving an impressive NO3 - removal efficiency of 94.8 % and NH3 selectivity of 99.2 % under neutral pH and nitrate concentration of 50â mg L-1 NO3 --N conditions, greatly surpassing the performance of nZVI counterpart. This superior performance can be attributed to the synergistic effect of enhanced NO3 - adsorption on Fe sites and strengthened water activation on single-atom Cu sites, decreasing the energy barrier for the rate-determining step of *NO-to-*NOH. This work develops a novel strategy of fabricating dual-site catalysts to enhance the electrosynthesis of NH3 from NO3 -, and presents an environmentally sustainable approach for neutral nitrate wastewater treatment.
RESUMEN
A transition to ammonia recovery from wastewater has started; however, a technology for sustainable nitrogen retention in the form of ammonia and organic carbon removal is still in development. This study validated a microaerophilic activated sludge (MAS) system to efficiently retain ammonia from high-strength nitrogenous wastewater. The MAS is based on conventional activated sludge (CAS) with aerobic and settling compartments. Low dissolved oxygen (DO) concentrations (<0.2 mg/L) and short solids retention times (SRTs) (<5 days) eliminated nitrifying bacteria. The two parallel MASs were successfully operated for 300 days and had ammonia retention of 101.7 ± 24.9% and organic carbon removal of 85.5 ± 8.9%. The MASs mitigated N2O emissions with an emission factor of <0.23%, much lower than the default value of CAS (1.6%). A short-term step-change test demonstrated that N2O indicated the initiation of nitrification and the completion of denitrification in the MAS. The parallel MASs had comparable microbial diversity, promoting organic carbon oxidation while inhibiting ammonia-oxidizing microorganisms (AOMs), as revealed by 16S rRNA gene amplicon sequencing, the quantitative polymerase chain reaction of functional genes, and fluorescence in situ hybridization of ß-proteobacteria AOB. The microbial analyses also uncovered that filamentous bacteria were positively correlated with effluent turbidity. Together, controlling DO and SRT achieved organic carbon removal and successful ammonia retention, mainly by suppressing AOM activity. This process represents a new nitrogen management paradigm.
Asunto(s)
Microbiota , Aguas del Alcantarillado , Aguas Residuales , Amoníaco , Hibridación Fluorescente in Situ , ARN Ribosómico 16S , Carbono , NitrógenoRESUMEN
Although the electrokinetic (EK) remediation has drawn great attention because of its good maneuverability, the focusing phenomenon near the cathode and low removal efficiency remain to be addressed. In this study, a novel EK reactor was proposed to remediate Cu and Pb contaminated loess where a biological permeable reactive barrier (bio-PRB) was deployed to the middle of the EK reactor. For comparison, three test configurations, namely, CG, TG-1, and TG-2, were available. CG considered the multiple enzyme-induced carbonate precipitation (EICP) treatments, while TG-1 considered both the multiple EICP treatments and pH regulation. TG-2 further considered NH4+ recovery based on TG-1. CG not only improved Cu and Pb removals by the bio-PRB but also depressed the focusing phenomenon. TG-1 causes more Cu2+ and Pb2+ to migrate toward the bio-PRB and aggravates Cu and Pb removals by the bio-PRB, depressing the focusing phenomenon. TG-2 depressed the focusing phenomenon the most because Cu2+ and Pb2+ can combine with not only CO32- but PO43-. The removal efficiency of Cu and Pb is 34% and 36%, respectively. A NH4+ recovery of about 100% is attained.
Asunto(s)
Restauración y Remediación Ambiental , Contaminantes del Suelo , Plomo , Tecnología , Contaminantes del Suelo/análisis , SueloRESUMEN
Upgrading of waste nitrogen sources is considered as an important approach to promote sustainable development. In this study, a multifunctional bio-electrochemical system with three chambers was established, innovatively achieving 2.02 g/L in-situ microbial protein (MP) production via hydrogen-oxidizing bacteria (HOB) in the protein chamber (middle chamber), along with over 2.9 L CO2/(L·d) consumption rate. Also, 69% chemical oxygen demand was degraded by electrogenic bacteria in the anode chamber, resulting in the 394.67 J/L electricity generation. Focusing on the NH4+-N migration in the system, the current intensity contributed 4%-9% in the anode and protein chamber, whereas, the negative effect of -6.69% on contribution was shown in the cathode chamber. On the view of kinetics, NH4+-N migration in anode and cathode chambers was fitted well with Levenberg-Marquardt equation (R2 > 0.92), along with the well-matched results of HOB growth in the protein chamber based on Gompertz model (R2 > 0.99). Further evaluating MPs produced by HOB, 0.45 g/L essential amino acids was detected, showing the better amino acid profile than fish and soybean. Multifunctional bio-electrochemical system revealed the economic potential of producing 6.69 /m3 wastewater according to a simplified economic evaluation.
Asunto(s)
Fuentes de Energía Bioeléctrica , Animales , Fuentes de Energía Bioeléctrica/microbiología , Nitrógeno/metabolismo , Electricidad , Aguas Residuales , Bacterias/metabolismo , Hidrógeno , ElectrodosRESUMEN
In the current situation of a serious raw material crisis related to the disruption of supply chains, the bioeconomy is of particular significance. Rising prices and the problem with the availability of natural gas have made N fertilizers production very expensive. It is expected that due to natural gas shortages, conventional production of nitrogen fertilizers by chemical synthesis will be hindered in the coming season. An important alternative and an opportunity to solve the problems of fertilizer nitrogen availability are biological wastewater treatment plants, which can be treated as a renewable biological nitrogen mines. Sewage sludge (including activated sludge) contains up to 6-8% DM. N. Considering the quantity of sewage sludge generated in wastewater treatment plants, it can become an important raw material for the sustainable production of organic-mineral fertilizers from renewable resources available locally, with a low carbon footprint. Furthermore, the sewage sludge management method should take nitrogen retention into account and should not allow the emission of greenhouse gases containing nitrogen. This article analyzes the technological solutions of nitrogen recovery for fertilization purposes from biological wastewater treatment plants in the context of a new and difficult resource situation. Conventional and new nitrogen recovery methods were analyzed from the perspective of the current legal situation. An attempt was made to evaluate the possibility of implementing the assumptions of the circular economy through the recovery of renewable nitrogen resources from municipal wastewater treatment plants.
Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Fertilizantes , Nitrógeno/análisis , Gas NaturalRESUMEN
Electrochemically upcycling wastewater nitrogen such as nitrate (NO3-) and nitrite (NO2-) into an ammonia fertilizer is a promising yet challenging research topic in resource recovery and wastewater treatment. This study presents an electrified membrane made of a CuO@Cu foam and a polytetrafluoroethylene (PTFE) membrane for reducing NO3- to ammonia (NH3) and upcycling NH3 into (NH4)2SO4, a liquid fertilizer for ready-use. A paired electrolysis process without external acid/base consumption was achieved under a partial current density of 63.8 ± 4.4 mA·cm-2 on the cathodic membrane, which removed 99.9% NO3- in the feed (150 mM NO3-) after a 5 h operation with an NH3 recovery rate of 99.5%. A recovery rate and energy consumption of 3100 ± 91 g-(NH4)2SO4·m-2·d-1 and 21.8 ± 3.8 kWh·kg-1-(NH4)2SO4, respectively, almost outcompete the industrial ammonia production cost in the Haber-Bosch process. Density functional theory (DFT) calculations unraveled that the in situ electrochemical conversion of Cu2+ into Cu1+ provides highly dynamic active species for NO3- reduction to NH3. This electrified membrane process was demonstrated to achieve synergistic nitrate decontamination and nutrient recovery with durable catalytic activity and stability.
Asunto(s)
Amoníaco , Purificación del Agua , Fertilizantes , Nitratos , Óxidos de Nitrógeno , Aguas ResidualesRESUMEN
Treatment of domestic wastewater can recover valuable resources, including clean water, energy, and ammonia. Important metrics for these systems are greenhouse gas (GHG) emissions and embodied energy, both of which are location- and technology-dependent. Here, we determine the embodied energy and GHG emissions resulting from a conventional process train, and we compare them to a nonconventional process train. The conventional train assumes freshwater conveyance from a pristine source that requires energy for pumping (US average of 0.29 kWh/m3), aerobic secondary treatment with N removal as N2, and Haber-Bosch synthesis of ammonia. Overall, we find that this process train has an embodied energy of 1.02 kWh/m3 and a GHG emission of 0.77 kg-CO2eq/m3. We compare these metrics to those of a nonconventional process train that features anaerobic secondary treatment technology followed by further purification of the effluent by reverse osmosis and air stripping for ammonia recovery. This "short-cut" process train reduces embodied energy to 0.88 kWh/m3 and GHG emissions to 0.42 kg-CO2eq/m3, while offsetting demand for ammonia from the Haber-Bosch process and decreasing reliance upon water transported over long distances. Finally, to assess the potential impacts of nonconventional nitrogen removal technology, we compared the embodied energy and GHG emissions resulting from partial nitritation/anammox coupled to anaerobic secondary treatment. The resulting process train enabled a lower embodied energy but increased GHG emissions, largely due to emissions of N2O, a potent greenhouse gas.
Asunto(s)
Gases de Efecto Invernadero , Aguas Residuales , Amoníaco , Efecto Invernadero , Eliminación de Residuos Líquidos , AguaRESUMEN
In recent years, attempts have been made to develop a thermophilic composting process for organic sludge to produce ammonia gas for high value-added algal production. However, the hydrolysis of non-dissolved organic nitrogen in sludge is a bottleneck for ammonia conversion. The aim of this study was to identify enzymes that enhance sludge hydrolysis in a thermophilic composting system for ammonia recovery from shrimp pond sludge. This was achieved by screening useful enzymes to degrade non-dissolved nitrogen and subsequently investigating their effectiveness in lab-scale composting systems. Among the four hydrolytic enzyme classes assessed (lysozyme, protease, phospholipase, and collagenase), proteases from Streptomyces griseus were the most effective at hydrolysing non-dissolved nitrogen in the sludge. After composting sludge pre-treated with proteases, the final amount of non-dissolved nitrogen was 46.2% of the total N in the control sample and 22.3% of the total N in the protease sample, thus increasing the ammonia (gaseous and in-compost) conversion efficiency from 41.5% to 56.4% of the total N. The decrease in non-dissolved nitrogen was greater in the protease sample than in the control sample during the pre-treatment period, and no difference was observed during the subsequent composting period. These results suggest that Streptomyces proteases hydrolyse the organic nitrogen fraction, which cannot be degraded by the bacterial community in the compost. Functional potential analysis of the bacterial community using PICRUSt2 suggested that 4 (EC:3.4.21.80, EC:3.4.21.81, EC:3.4.21.82, and EC:3.4.24.77) out of 13 endopeptidase genes in S. griseus were largely absent in the compost bacterial community and that they play a key role in the hydrolysis of non-dissolved nitrogen. This is the first study to identify the enzymes that enhance the hydrolysis of shrimp pond sludge and to show that the thermophilic bacterial community involved in composting has a low ability to secrete these enzymes.
Asunto(s)
Compostaje , Amoníaco/análisis , Nitrógeno/análisis , Estanques/análisis , Aguas del Alcantarillado , SueloRESUMEN
As an attractive alternative to the Haber-Bosch process, an electrochemical process for nitrate (NO3-) reduction to ammonia (NH3) has made great strides in the development of advanced electrocatalysts to suppress the unavoidable H2 evolution reaction (HER) and side production of N2. However, isochronous NH3 separation and recovery from the mother liquor, especially wastewaters, are awfully neglected in state-of-the-art electrochemical systems. Here, we designed electrochemical three-phase interfaces constructed by a CoP cathode and a flat-sheet gas membrane to achieve NO3- reduction to ammonia and simultaneous NH3 recovery in the form of (NH4)2SO4 from wastewaters. The partial current density for ammonia yield and its recovery rate were 37.3 mA cm-2 and 306 gâ¯NH3-N m-2 day-1, respectively, accompanying 100% NO3- removal and 99.7% NH3 extraction. By favoring the originally unfavored side reaction HER, it served as the driving force for NH3 separation from the wastewater through gas stripping and membrane separation at the three-phase interfaces. Unexpectedly, the timely NH3 separation could also promote the reduction of NO3- to ammonia due to the release of much more active sites. From these, we envision that the present electrochemical process can be routinely employed as an effective strategy to address energy and environmental issues with NH3 recovery from NO3- wastewater.
Asunto(s)
Amoníaco , Nitratos , Amoníaco/análisis , Electrones , Óxidos de Nitrógeno , Aguas ResidualesRESUMEN
Electrocatalytic reduction has recently received increasing attention as a method of converting waste nitrate into value-added ammonia, but most studies have focused on complex strategies of catalyst preparation and little has been done in the way of large-scale demonstrations. Herein, we report that in situ activation of a pristine Ni electrode, either on a lab scale or a pilot scale, is effective in facilitating nitrate reduction to ammonia, exhibiting extraordinarily high activity, selectivity, and stability. The self-activated Ni cathode has a robust capacity to reduce nitrate over a wide range of concentrations and achieves great conversion yield, NH4+-N selectivity, and Faradaic efficiency, respectively, 95.3, 95.5, and 64.4% at 200 mg L-1 NO3--N and 97.8, 97.1, and 90.4% at 2000 mg L-1 NO3--N, for example. Fundamental research indicates that Ni(OH)2 nanoparticles are formed on the Ni electrode surface upon self-activation, which play crucial roles in governing nitrate reduction reaction (NO3RR) through the atomic H*-mediated pathway and accordingly suppressing hydrogen evolution reaction. More importantly, the self-activated Ni(OH)2@Ni cathode can be easily scaled up to allow large volumes of real industrial wastewater to be processed, successfully transferring nitrate into ammonia with high yields and Faradaic efficiency. This study demonstrates a new, mild, and promising method of cleaning nitrate-laden wastewater that produces ammonia as a valuable byproduct.
Asunto(s)
Amoníaco , Nitratos , Electrodos , Óxidos de Nitrógeno , Aguas ResidualesRESUMEN
The high-level ammonium-nitrogen (NH4+-N) is a contaminant for aqueous environment but a potential hydrogen fuel. This study investigated an approach of increasing ammonia recovery via adding sodium sulfate of 0-1.5 M to prevent from nitrogen generation. The results of experiment tests, electrochemical analysis and MD simulation demonstrated that the added Na2SO4 assisted ammonium transport inhibited nitrogen gas generation in a certain concentration range. In electric double layer (EDL), with Na2SO4 concentration increasing, both the migration velocities of NH4+ and Na+ are accelerated for Na2SO4 of 0-0.25 M, whereas they are decelerated for concentrate Na2SO4 that 0.5 M). A thick layer formed by Na+ that imposed a fierce competitive adsorption blocked the migration of NH4+ and the transportation of electrons. The decrease of electrons and the accumulation of water molecules caused the potential drop in the EDL. 0.25 M Na2SO4 was the optimal concentration from the aspect of ion transports. The results obtained in this study can allow the manipulation of EDI capacity optimization.
Asunto(s)
Amoníaco , Compuestos de Amonio , Amoníaco/análisis , Compuestos de Amonio/análisis , Electrodos , Nitrógeno/análisis , Sulfatos , Aguas ResidualesRESUMEN
In this research, ammonia evaporation capacity under atmospheric and vacuum pressure conditions, as well as distillation capacity of different concentrations of landfill leachates, were evaluated. Simple evaporation and vacuum pressure evaporation tests showed high NH3-N removal efficiencies, ranging from 95% to 98% for raw landfill leachates, indicating that vacuum pressure would not be necessary during ammonia removal and recovery processes when applying temperature of 300 °C. Distillations tests also showed the promising NH3-N recovery potential in ultra-concentrated leachates (over 100 gNH3-N/L) in the order of 91%-94% in few minutes, evaporating a small portion of landfill leachate. The results presented encourages the recovery of ammonia from landfill leachate and its industrial and agricultural, highlighting its feasibility as well as simultaneously preventing the ammonia release to water bodies or the atmosphere.
Asunto(s)
Amoníaco , Contaminantes Químicos del Agua , Calefacción , Nitrógeno , TemperaturaRESUMEN
Source separation of human urine has not been widely adopted because of scaling on urine collecting fixtures and lack of verified technologies for on-site utilization of waterless urine. This study investigated the effects of flushing liquid, temperature and urease amendment on hydrolysis of urea to ammonia, explored ammonia recovery via vacuum stripping in connection with phosphorus recovery via struvite precipitation in different sequences, and performed economic analysis of a proposed nutrient recovery strategy. It was found that acetic acid could be dosed at 0.05-0.07â¯N to flush urine-diverting toilets and urinals for hygiene and prevention of scaling. However, a high dosage of 0.56â¯N completely inhibited urea hydrolysis. Source-separated urine could be stored at 25⯰C with ample urease for complete urea hydrolysis within approximately 20â¯h. Fully hydrolyzed waterless urine contained 9.0-11.6â¯g/L ammonia-N, 0.53-0.95â¯g/L phosphate-P and only 2.3-9.1â¯mg/L magnesium. When magnesium was supplemented to attain the optimum Mg2+: PO43- molar concentration ratio of 1.0 in hydrolyzed urine, batch operation of a pilot-scale air-lift crystallizer removed 93-95% of phosphate and produced 3.65-4.93â¯g/L struvite in 1-5â¯h. Batch operation of a pilot-scale vacuum stripping - acid absorption system for 12â¯h stripped 72-77% of ammonia and produced 37.6-39.7â¯g/L (NH4)2SO4. Compared with the ammonia â phosphorus recovery sequence, the struvite precipitation â vacuum stripping sequence produced more struvite and ammonium sulfate. The strategy of urea hydrolysis â struvite precipitation â vacuum stripping of ammonia is a sustainable alternative to the conventional phosphorus fertilizer production and ammonia synthesis processes.
Asunto(s)
Nitrógeno , Fósforo , Precipitación Química , Humanos , Hidrólisis , Fosfatos , Estruvita , Orina , VacioRESUMEN
This study was aimed at understanding the effect of applied voltage, catholyte and reactor scale on nitrogen recovery from two different organic wastes (digestate and pig slurry) by means of microbial electrolysis cell (MEC) technology. For this purpose, MEC sizes of 100, 500 and 1000 mL were tested at applied voltages of 0.6, 1 and 1.4 V using either a phosphate-buffered solution or NaCl solution as the catholyte. By increasing the reactor size from 500 to 1000 mL, a decrease in the ammonia recovery efficiency from 47 to 42% was observed. The results also showed that the phosphate-buffered solution is preferable as the catholyte and that the voltage applied does not have a noticeable effect on current production and ammonia recovery. Low biodegradability of the wastes was identified as the main bottleneck.
Asunto(s)
Reactores Biológicos/microbiología , Electrólisis/métodos , Nitrógeno/aislamiento & purificación , Aguas Residuales/química , Amoníaco/análisis , Animales , Biodegradación Ambiental , Electrodos , PorcinosRESUMEN
In recent years, (bio)electrochemical systems (B)ES have emerged as an energy efficient alternative for the recovery of TAN (total ammonia nitrogen, including ammonia and ammonium) from wastewater. In these systems, TAN is removed or concentrated from the wastewater under the influence of an electrical current and transported to the cathode. Subsequently, it can be removed or recovered through stripping, chemisorption, or forward osmosis. A crucial parameter that determines the energy required to recover TAN is the load ratio: the ratio between TAN loading and applied current. For electrochemical TAN recovery, an energy input is required, while in bioelectrochemical recovery, electric energy can be recovered together with TAN. Bioelectrochemical recovery relies on the microbial oxidation of COD for the production of electrons, which drives TAN transport. Here, the state-of-the-art of (bio)electrochemical TAN recovery is described, the performance of (B)ES for TAN recovery is analyzed, the potential of different wastewaters for BES-based TAN recovery is evaluated, the microorganisms found on bioanodes that treat wastewater high in TAN are reported, and the toxic effect of the typical conditions in such systems (e.g., high pH, TAN, and salt concentrations) are described. For future application, toxicity effects for electrochemically active bacteria need better understanding, and the technologies need to be demonstrated on larger scale.
Asunto(s)
Compuestos de Amonio/aislamiento & purificación , Electroquímica , Purificación del Agua , Amoníaco/aislamiento & purificación , Bacterias/metabolismo , Electrodos , Oxidación-Reducción , Aguas Residuales/química , Aguas Residuales/microbiologíaRESUMEN
A mesophilic anaerobic digester, followed by a psychrophilic aerobic post-treatment, was used to treat food waste (FW) with different proportions of fruit and vegetable waste (FVW). Two types of FW were used: low fruit and vegetable mix (LFV, with 56.5% of FVW) and high fruit and vegetable mix (HFV, with 78.3% of FVW). The anaerobic digester fed with LFV failed at an organic loading rate of 1.6 g VS.L-1.d-1 (volatile fatty acid (VFA) = 6000 mg.L-1) due to high ammonia (reaching 3000 mg.L-1). It was shown that, in an unstable anaerobic environment, ammonia is highly correlated ( r2 = 0.77) with VFA and is negatively correlated with volatile solids, total solids, and chemical oxygen demand (COD) removal rates ( r2 = 0.88, r2 = 0.71, and r2 = 0.91, respectively). In contrast, the anaerobic digester fed with HFV exhibited a stable performance (VFA = 1243 mg.L-1), with limited ammonia accumulation (940 mg.L-1). Methane generation was affected by the FVW content and reached 531 ml CH4.g VS-1 (CH4 = 52%) with LFV feed and 478 ml CH4.g VS-1 (CH4 = 57.4%) with HFV. The overall TS, VS and COD removal rates (all ranging between 94% and 97%), were closely similar for LFV and HFV. Accordingly, the aerobic post-treatment seems to compensate for the reduced performance of the disturbed anaerobic system fed with LFV.