Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.453
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(3): 541-555.e17, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30955887

RESUMEN

Neutrophils are attracted to and generate dense swarms at sites of cell damage in diverse tissues, often extending the local disruption of organ architecture produced by the initial insult. Whether the inflammatory damage resulting from such neutrophil accumulation is an inescapable consequence of parenchymal cell death has not been explored. Using a combination of dynamic intravital imaging and confocal multiplex microscopy, we report here that tissue-resident macrophages rapidly sense the death of individual cells and extend membrane processes that sequester the damage, a process that prevents initiation of the feedforward chemoattractant signaling cascade that results in neutrophil swarms. Through this "cloaking" mechanism, the resident macrophages prevent neutrophil-mediated inflammatory damage, maintaining tissue homeostasis in the face of local cell injury that occurs on a regular basis in many organs because of mechanical and other stresses. VIDEO ABSTRACT.


Asunto(s)
Macrófagos/inmunología , Neutrófilos/inmunología , Alarminas/metabolismo , Animales , Endocitosis , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Fibras Musculares Esqueléticas/patología , Activación Neutrófila , Neutrófilos/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo
2.
Trends Immunol ; 44(3): 153-155, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36740514

RESUMEN

Activation of Toll-like receptor 7 (TLR7) can induce lupus in mice, whereas activation of TLR9 can prevent it, even though both receptors interact with myeloid differentiation primary response gene 88 (MyD88) for downstream signaling. How TLR9 triggers anti-inflammatory responses in autoimmunity is unclear. Leibler et al. recently reported that TLR9 initiates anti-inflammatory signaling and inhibits lupus pathogenesis in a MyD88-independent but ligand-dependent manner.


Asunto(s)
Factor 88 de Diferenciación Mieloide , Receptor Toll-Like 9 , Ratones , Animales , Receptor Toll-Like 9/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Ratones Noqueados , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo , Antiinflamatorios
3.
Proc Natl Acad Sci U S A ; 120(18): e2301775120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094153

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health concern, and effective antiviral reagents are urgently needed. Traditional Chinese medicine theory-driven natural drug research and development (TCMT-NDRD) is a feasible method to address this issue as the traditional Chinese medicine formulae have been shown effective in the treatment of COVID-19. Huashi Baidu decoction (Q-14) is a clinically approved formula for COVID-19 therapy with antiviral and anti-inflammatory effects. Here, an integrative pharmacological strategy was applied to identify the antiviral and anti-inflammatory bioactive compounds from Q-14. Overall, a total of 343 chemical compounds were initially characterized, and 60 prototype compounds in Q-14 were subsequently traced in plasma using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Among the 60 compounds, six compounds (magnolol, glycyrrhisoflavone, licoisoflavone A, emodin, echinatin, and quercetin) were identified showing a dose-dependent inhibition effect on the SARS-CoV-2 infection, including two inhibitors (echinatin and quercetin) of the main protease (Mpro), as well as two inhibitors (glycyrrhisoflavone and licoisoflavone A) of the RNA-dependent RNA polymerase (RdRp). Meanwhile, three anti-inflammatory components, including licochalcone B, echinatin, and glycyrrhisoflavone, were identified in a SARS-CoV-2-infected inflammatory cell model. In addition, glycyrrhisoflavone and licoisoflavone A also displayed strong inhibitory activities against cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4). Crystal structures of PDE4 in complex with glycyrrhisoflavone or licoisoflavone A were determined at resolutions of 1.54 Å and 1.65 Å, respectively, and both compounds bind in the active site of PDE4 with similar interactions. These findings will greatly stimulate the study of TCMT-NDRD against COVID-19.


Asunto(s)
COVID-19 , Humanos , Antivirales/farmacología , SARS-CoV-2 , Quercetina/farmacología , Antiinflamatorios/farmacología , Simulación del Acoplamiento Molecular
4.
Nano Lett ; 24(26): 8046-8054, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912748

RESUMEN

Bacteria invasion is the main factor hindering the wound-healing process. However, current antibacterial therapies inevitably face complex challenges, such as the abuse of antibiotics or severe inflammation during treatment. Here, a drug-free bioclay enzyme (Bio-Clayzyme) consisting of Fe2+-tannic acid (TA) network-coated kaolinite nanoclay and glucose oxidase (GOx) was reported to destroy harmful bacteria via bimetal antibacterial therapy. At the wound site, Bio-Clayzyme was found to enhance the generation of toxic hydroxyl radicals for sterilization via cascade catalysis of GOx and Fe2+-mediated peroxidase mimetic activity. Specifically, the acidic characteristics of the infection microenvironment accelerated the release of Al3+ from kaolinite, which further led to bacterial membrane damage and amplified the antibacterial toxicity of Fe2+. Besides, Bio-Clayzyme also performed hemostasis and anti-inflammatory functions inherited from Kaol and TA. By the combination of hemostasis and anti-inflammatory and bimetal synergistic sterilization, Bio-Clayzyme achieves efficient healing of infected wounds, providing a revolutionary approach for infectious wound regeneration.


Asunto(s)
Antibacterianos , Glucosa Oxidasa , Cicatrización de Heridas , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Animales , Esterilización/métodos , Arcilla/química , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Hierro/química
5.
Genes Dev ; 31(17): 1770-1783, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28982760

RESUMEN

Direct reprogramming of fibroblasts to cardiomyocytes represents a potential means of restoring cardiac function following myocardial injury. AKT1 in the presence of four cardiogenic transcription factors, GATA4, HAND2, MEF2C, and TBX5 (AGHMT), efficiently induces the cardiac gene program in mouse embryonic fibroblasts but not adult fibroblasts. To identify additional regulators of adult cardiac reprogramming, we performed an unbiased screen of transcription factors and cytokines for those that might enhance or suppress the cardiogenic activity of AGHMT in adult mouse fibroblasts. Among a collection of inducers and repressors of cardiac reprogramming, we discovered that the zinc finger transcription factor 281 (ZNF281) potently stimulates cardiac reprogramming by genome-wide association with GATA4 on cardiac enhancers. Concomitantly, ZNF281 suppresses expression of genes associated with inflammatory signaling, suggesting the antagonistic convergence of cardiac and inflammatory transcriptional programs. Consistent with an inhibitory influence of inflammatory pathways on cardiac reprogramming, blockade of these pathways with anti-inflammatory drugs or components of the nucleosome remodeling deacetylase (NuRD) complex, which associate with ZNF281, stimulates cardiac gene expression. We conclude that ZNF281 acts at a nexus of cardiac and inflammatory gene programs, which exert opposing influences on fibroblast to cardiac reprogramming.


Asunto(s)
Reprogramación Celular/genética , Regulación de la Expresión Génica/genética , Factores de Transcripción/metabolismo , Antiinflamatorios/farmacología , Reprogramación Celular/efectos de los fármacos , Fibroblastos/fisiología , Factor de Transcripción GATA4/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Proteínas Represoras , Transcriptoma
6.
J Cell Mol Med ; 28(7): e18173, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494841

RESUMEN

Osteoarthritis (OA) is a chronic degenerative joint disease that affects worldwide. Oxidative stress plays a critical role in the chronic inflammation and OA progression. Scavenging overproduced reactive oxygen species (ROS) could be rational strategy for OA treatment. Bilirubin (BR) is a potent endogenous antioxidant that can scavenge various ROS and also exhibit anti-inflammatory effects. However, whether BR could exert protection on chondrocytes for OA treatment has not yet been elucidated. Here, chondrocytes were exposed to hydrogen peroxide with or without BR treatment. The cell viability was assessed, and the intracellular ROS, inflammation cytokines were monitored to indicate the state of chondrocytes. In addition, BR was also tested on LPS-treated Raw264.7 cells to test the anti-inflammation property. An in vitro bimimic OA microenvironment was constructed by LPS-treated Raw264.7 and chondrocytes, and BR also exert certain protection for chondrocytes by activating Nrf2/HO-1 pathway and suppressing NF-κB signalling. An ACLT-induced OA model was constructed to test the in vivo therapeutic efficacy of BR. Compared to the clinical used HA, BR significantly reduced cartilage degeneration and delayed OA progression. Overall, our data shows that BR has a protective effect on chondrocytes and can delay OA progression caused by oxidative stress.


Asunto(s)
FN-kappa B , Osteoartritis , Humanos , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bilirrubina/farmacología , Lipopolisacáridos/farmacología , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Inflamación/tratamiento farmacológico , Condrocitos/metabolismo , Interleucina-1beta/farmacología
7.
J Cell Mol Med ; 28(6): e18146, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38426932

RESUMEN

Acne vulgaris represents a chronic inflammatory condition, the pathogenesis of which is closely associated with the altered skin microbiome. Recent studies have implicated a profound role of Gram-negative bacteria in acne development, but there is a lack of antiacne agents targeting these bacteria. Polyphyllins are major components of Rhizoma Paridis with great anti-inflammatory potential. In this study, we aimed to evaluate the antiacne effects and the underlying mechanisms of PPH and a PPH-enriched Rhizoma Paridis extract (RPE) in treating the Gram-negative bacteria-induced acne. PPH and RPE treatments significantly suppressed the mRNA and protein expressions of interleukin (IL)-1ß and IL-6 in lipopolysaccharide (LPS)-induced RAW 264.7 and HaCaT cells, along with the intracellular reactive oxygen species (ROS) generation. Furthermore, PPH and RPE inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in LPS-induced RAW 264.7 cells. Based on molecular docking, PPH could bind to kelch-like ECH-associated protein 1 (KEAP1) protein. PPH and RPE treatments could activate nuclear factor erythroid 2-related factor 2 (NRF2) and upregulate haem oxygenase-1 (HO-1). Moreover, RPE suppressed the mitogen-activated protein kinase (MAPK) pathway. Therefore, PPH-enriched RPE showed anti-inflammatory and antioxidative effects in vitro, which is promising for alternative antiacne therapeutic.


Asunto(s)
Acné Vulgar , Saponinas , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Lipopolisacáridos/efectos adversos , Saponinas/farmacología , Saponinas/uso terapéutico , Simulación del Acoplamiento Molecular , Antiinflamatorios/uso terapéutico , FN-kappa B/metabolismo , Bacterias Gramnegativas/metabolismo , Acné Vulgar/tratamiento farmacológico , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Inflamación/metabolismo
8.
Neurobiol Dis ; 193: 106436, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341159

RESUMEN

Retinitis pigmentosa (RP) is a degenerative disease, caused by genetic mutations that lead to a loss in photoreceptors. For research on RP, rd10 mice, which carry mutations in the phosphodiesterase (PDE) gene, exhibit degenerative patterns comparable to those of patients with RP, making them an ideal model for investigating potential treatments. Although numerous studies have reported the potential of biochemical drugs, gene correction, and stem cell transplantation in decelerating rd10 retinal degeneration, a comprehensive review of these studies has yet to be conducted. Therefore, here, a comparative analysis of rd10 mouse treatment research over the past decade was performed. Our findings suggest that biochemical drugs capable of inhibiting the inflammatory response may be promising therapeutics. Additionally, significant progress has been made in the field of gene therapy; nevertheless, challenges such as strict delivery requirements, bystander editing, and off-target effects still need to be resolved. Nevertheless, secretory function is the only unequivocal protective effect of stem cell transplantation. In summary, this review presents a comprehensive analysis and synthesis of the treatment approaches employing rd10 mice as experimental subjects, describing a clear pathway for future RP treatment research and identifies potential clinical interventions.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Ratones , Humanos , Animales , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Retinitis Pigmentosa/metabolismo , Degeneración Retiniana/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Retina/metabolismo
9.
Curr Issues Mol Biol ; 46(1): 398-408, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38248327

RESUMEN

Eruca sativa is a commonly used edible plant in Italian cuisine. E. sativa 70% ethanol extract (ES) was fractionated with five organic solvents, including n-hexane (EHex), chloroform (ECHCl3), ethyl acetate (EEA), n-butyl alcohol (EBuOH), and water (EDW). Ethyl acetate fraction (EEA) had the highest antioxidant activity, which was correlated with the total polyphenol and flavonoid content. ES and EEA acted as PPAR-α ligands by PPAR-α competitive binding assay. EEA significantly increased cornified envelope formation as a keratinocyte terminal differentiation marker in HaCaT cells. Further, it significantly reduced nitric oxide and pro-inflammatory cytokines (IL-6 and TNF-α) in lipopolysaccharide-stimulated RAW 264.7 cells. The main flavonol forms detected in high amounts from EEA are mono-and di-glycoside of each aglycone. The main flavonol form of EEA is the mono-glycoside of each aglycone detected, and the most abundant flavonol mono-glycoside is kaempferol 3-glucoside 7.4%, followed by quercetin-3-glucoside 2.3% and isorhamnetin 3-glucoside 1.4%. Flavonol mono-glycosides were shown to be a potent PPAR-α ligand using molecular docking simulation and showed the inhibition of nitric oxide. These results suggest that the flavonol composition of E. sativa is suitable for use in improving skin barrier function and inflammation in skin disorders, such as atopic dermatitis.

10.
Curr Issues Mol Biol ; 46(3): 1757-1767, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38534731

RESUMEN

Dual immunoglobulin domain-containing cell adhesion molecule (DICAM) is a type I transmembrane protein that presents in various cells including renal tubular cells. This study evaluated the expression and protective role of DICAM in renal tubular cell injury. HK-2 cells were incubated and treated with lipopolysaccharide (LPS, 30 µg/mL) or hydrogen peroxide (H2O2, 100 µM) for 24 h. To investigate the effect of the gene silencing of DICAM, small interfering RNA of DICAM was used. Additionally, to explain its role in cellular response to injury, DICAM was overexpressed using an adenoviral vector. DICAM protein expression levels significantly increased following treatment with LPS or H2O2 in HK-2 cells. In response to oxidative stress, DICAM showed an earlier increase (2-4 h following treatment) than neutrophil gelatinase-associated lipocalin (NGAL) (24 h following treatment). DICAM gene silencing increased the protein expression of inflammation-related markers, including IL-1ß, TNF-α, NOX4, integrin ß1, and integrin ß3, in H2O2-induced HK-2 cell injury. Likewise, in the LPS-induced HK-2 cell injury, DICAM knockdown led to a decrease in occludin levels and an increase in integrin ß3, IL-1ß, and IL-6 levels. Furthermore, DICAM overexpression followed by LPS-induced HK-2 cell injury resulted in an increase in occludin levels and a decrease in integrin ß1, integrin ß3, TNF-α, IL-1ß, and IL-6 levels, suggesting an alleviating effect on inflammatory responses. DICAM was elevated in the early stage of regular tubular cell injury and may protect against renal tubular injury through its anti-inflammatory properties. DICAM has a potential as an early diagnostic marker and therapeutic target for renal cell injury.

11.
Curr Issues Mol Biol ; 46(6): 6018-6040, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38921030

RESUMEN

Chalcone is a type of flavonoid compound that is widely biosynthesized in plants. Studies have shown that consuming flavonoids from fruits and vegetables or applying individual ingredients reduces the risk of skin disease. However, the effects of chalcone on melanogenesis and inflammation have not been fully investigated. The aim of this study was to evaluate the anti-melanogenic and anti-inflammatory effects of 2'-hydroxy-3,4'-dimethoxychalcone (3,4'-DMC), 2'-hydroxy-4,4'-dimethoxychalcone (4,4'-DMC), 2'-hydroxy-3',4'-dimethoxychalcone (3',4'-DMC), and 2'-hydroxy-4',6'-dimethoxychalcone (4',6'-DMC). Among the derivatives of 2'-hydroxy-4'-methoxychalcone, 4',6'-DMC demonstrated the most potent melanogenesis-inhibitory and anti-inflammatory effects. As evidenced by various biological assays, 4',6'-DMC showed no cytotoxicity and notably decreased the expression of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 enzymes. Furthermore, it reduced cellular melanin content and intracellular tyrosinase activity in B16F10 melanoma cells by downregulating microphthalmia-associated transcription factor (MITF), cAMP-dependent protein kinase (PKA), cAMP response element-binding protein (CREB), p38, c-Jun N-terminal kinase (JNK), ß-catenin, glycogen synthase kinase-3ß (GSK3ß), and protein kinase B (AKT) proteins, while upregulating extracellular signal-regulated kinase (ERK) and p-ß-catenin. Additionally, treatment with 4',6'-DMC significantly mitigated the lipopolysaccharide (LPS)-induced expression of NO, PGE2, inflammatory cytokines, COX-2, and iNOS proteins. Overall, 4',6'-DMC treatment notably alleviated LPS-induced damage by reducing nuclear factor kappa B (NF-κB), p38, JNK protein levels, and NF-kB/p65 nuclear translocation. Finally, the topical applicability of 4',6'-DMC was evaluated in a preliminary human skin irritation test and no adverse effects were found. These findings suggest that 4',6'-DMC may offer new possibilities for use as functional ingredients in cosmeceuticals and ointments.

12.
Biochem Biophys Res Commun ; 704: 149711, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38417344

RESUMEN

Two series of urolithin derivatives, totally 38 compounds, were synthesized. Their anti-inflammatory activity was investigated by detecting the inhibitory effects on the expression of TNF-α in bone marrow-derived macrophages (BMDMs), showing that 24 of 38 ones reduced the expression of TNF-α. Compound B2, the ring C opened derivative of urolithin B with a butoxycarbonyl substitution in ring A, showed the strongest inhibitory activity compared with that of indomethacin. Furthermore, B2 treatment decreased the expression of pro-inflammatory factors IL-1ß, IL-6, iNOS and COX-2. Mechanically, the anti-inflammatory effect of B2 was related to the inhibition of NF-κB signaling pathway. These results clearly illustrated that B2 hold potential for application as an anti-inflammatory agent. The present study provided a viable approach to modify the gut metabolites for anti-inflammatory drug development.


Asunto(s)
Inflamación , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Transducción de Señal , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/uso terapéutico
13.
Small ; : e2309882, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342670

RESUMEN

Negative therapeutic feedback of inflammation would extensively attenuate the antitumor effect of photodynamic therapy (PDT). In this work, tumor homing chimeric peptide rhomboids (designated as NP-Mel) are fabricated to improve photodynamic performance by inhibiting PDT-upregulated cyclooxygenase-2 (COX-2). The hydrophobic photosensitizer of protoporphyrin IX (PpIX) and palmitic acid are conjugated onto the neuropilin receptors (NRPs) targeting peptide motif (CGNKRTR) to obtain tumor homing chimeric peptide (Palmitic-K(PpIX)CGNKRTR), which can encapsulate the COX-2 inhibitor of meloxicam. The well dispersed NP-Mel not only improves the drug stability and reactive oxygen species (ROS) production ability, but also increase the breast cancer targeted drug delivery to intensify the PDT effect. In vitro and in vivo studies verify that NP-Mel will decrease the secretion of prostaglandin E2 (PGE2) after PDT treatment, inducing the downregulation of IL-6 and TNF-α expressions to suppress PDT induced inflammation. Ultimately, an improved PDT performance of NP-Mel is achieved without inducing obvious systemic toxicity, which might inspire the development of sophisticated nanomedicine in consideration of the feedback induced therapeutic resistance.

14.
Small ; : e2400361, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708879

RESUMEN

Photothermal therapy has emerged as a promising approach for cancer treatment, which can cause ferroptosis to enhance immunotherapeutic efficacy. However, excessively generated immunogenicity will induce serious inflammatory response syndrome, resulting in a discounted therapeutic effect. Herein, a kind of NIR absorption small organic chromophore nanoparticles (TTHM NPs) with high photothermal conversion efficiency (68.33%) is developed, which can induce mitochondria dysfunction, generate mitochondrial superoxide, and following ferroptosis. TTHM NPs-based photothermal therapy is combined with Sulfasalazine (SUZ), a kind of nonsteroidal anti-inflammatory drugs, to weaken inflammation and promote ferroptosis through suppressing glutamate/cystine (Glu/Cys) antiporter system Xc- (xCT). Additionally, the combination of SUZ with PTT can induce immunogenic cell death (ICD), followed by promoting the maturation of DCs and the attraction of CD8+ T cell, which will secrete IFN-γ and trigger self-amplified ferroptosis via inhibiting xCT and simulating Acyl-CoA synthetase long-chain family member 4 (ACSL4). Moreover, the in vivo results demonstrate that this combination therapy can suppress the expression of inflammatory factors, enhance dendritic cell activation, facilitate T-cell infiltration, and realize effective thermal elimination of primary tumors and distant tumors. In general, this work provides an excellent example of combined medication and stimulates new thinking about onco-therapy and inflammatory response.

15.
Small ; 20(16): e2304318, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38018305

RESUMEN

The long-term inflammatory microenvironment is one of the main obstacles to inhibit acute spinal cord injury (SCI) repair. The natural adipose tissue-derived extracellular matrix hydrogel shows effective anti-inflammatory regulation because of its unique protein components. However, the rapid degradation rate and removal of functional proteins during the decellularization process impair the lasting anti-inflammation function of the adipose tissue-derived hydrogel. To address this problem, adipose tissue lysate provides an effective way for SCI repair due to its abundance of anti-inflammatory and nerve regeneration-related proteins. Thereby, human adipose tissue lysate-based hydrogel (HATLH) with an appropriate degradation rate is developed, which aims to in situ long-term recruit and induce anti-inflammatory M2 macrophages through sustainedly released proteins. HATLH can recruit and polarize M2 macrophages while inhibiting pro-inflammatory M1 macrophages regardless of human or mouse-originated. The axonal growth of neuronal cells also can be effectively improved by HATLH and HATLH-induced M2 macrophages. In vivo experiments reveal that HATLH promotes endogenous M2 macrophages infiltration in large numbers (3.5 × 105/100 µL hydrogel) and maintains a long duration for over a month. In a mouse SCI model, HATLH significantly inhibits local inflammatory response, improves neuron and oligodendrocyte differentiation, enhances axonal growth and remyelination, as well as accelerates neurological function restoration.


Asunto(s)
Hidrogeles , Traumatismos de la Médula Espinal , Humanos , Ratones , Animales , Hidrogeles/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Neuronas/metabolismo , Macrófagos/metabolismo , Antiinflamatorios/uso terapéutico
16.
Cytokine ; 175: 156483, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38159472

RESUMEN

PURPOSE: The purpose of this research study was to investigate the impact of schaftoside on Aspergillus fumigatus (A. fumigatus) keratitis and elucidate its underlying mechanisms. METHODS: In order to establish safe experimental concentrations of schaftoside in human corneal epithelial cells (HCECs), RAW264.7 cells, and mouse models, various techniques were employed including cytotoxicity assay (CCK-8) assay, cell scratch assay, and Draize test. The therapeutic effect of schaftoside was assessed using slit-lamp biomicroscopy, clinical scores, as well as determination of neutrophil infiltration through hematoxylin and eosin (HE) staining, immunofluorescence (IF) staining, and myeloperoxidase (MPO) assay. The levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), pro-inflammatory mediators interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6 were determined using quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and IF techniques. RESULTS: Schaftoside at a concentration of 160 µM displayed no harmful side effects on HCECs, RAW cells, and mouse corneas, rendering it suitable for further experiments. In a murine fungal keratitis model, schaftoside mitigated the severity of fungal keratitis by inhibiting neutrophil infiltration and reducing MPO activity. Both in vitro and in vivo experiments demonstrated that schaftoside treatment suppressed the upregulation of IL-1ß, TNF-α, and IL-6 expression, while also downregulating the expressions of TLR4 as well as MyD88 at both mRNA and protein levels. CONCLUSIONS: Schaftoside demonstrated a protective effect against A. fumigatus keratitis by reducing corneal damage through inhibition of neutrophil recruitment and downstream inflammatory cytokines. The anti-inflammatory properties of schaftoside in A. fumigatus keratitis may involve modulation of the TLR4/MyD88 pathway.


Asunto(s)
Aspergilosis , Glicósidos , Queratitis , Animales , Ratones , Humanos , Aspergillus fumigatus , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Aspergilosis/tratamiento farmacológico , Interleucina-6/metabolismo , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/microbiología , Inflamación/tratamiento farmacológico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ratones Endogámicos C57BL
17.
FASEB J ; 37(5): e22895, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37000564

RESUMEN

Lactobacillus species is one of the most commonly used probiotics with a wide range of health-promoting effects, and beneficial effects of the surface protein of the lactobacillus could potentially be involved in the action of probiotics in the gastrointestinal tract. In this study, the anti-inflammatory effect of LPxTG-motif surface protein (LMP) derived from Limosilactobacillus reuteri SH 23 was assessed using a mouse model of colitis induced by dextran sodium sulfate (DSS). The results showed that LMP has the inhibition properties upon the DSS-induced ulcerative colitis of mice via the MAPK-dependent NF-κB pathway. The inflammatory factors TNF-α and IL-6 were inhibited, and the IL-10 secretion was enhanced in the LMP-treated DSS mice model. Furthermore, the diversity of the intestinal microbiota bacteria in this treated group was also influenced, including the increase in the abundance of Lactobacillus and Akkermansia genus in the LMP-treated mice groups, and there is a positive correlation between the IL-10 cytokines with the changes in the intestinal microbiota Lactobacillus and Akkermansia. Therefore, LMP derived from the Limosilactobacillus reuteri SH 23 has the potential to alleviate inflammatory diseases through the balance of the intestinal flora with the inhibition of the inflammatory factors in the NF-κB pathway.


Asunto(s)
Colitis Ulcerosa , Colitis , Limosilactobacillus reuteri , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Interleucina-10/metabolismo , FN-kappa B/metabolismo , Proteínas de la Membrana/metabolismo , Colitis/metabolismo , Modelos Animales de Enfermedad , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL , Colon/metabolismo
18.
J Biomed Sci ; 31(1): 30, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500170

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS: A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-ß)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS: The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-ß-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION: This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , Hiperoxia , MicroARNs , Ratas , Animales , Células Cultivadas , Hiperoxia/metabolismo , Inflamación , MicroARNs/genética , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Vesículas Extracelulares/fisiología , Fibrosis , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/metabolismo
19.
Cell Commun Signal ; 22(1): 124, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360732

RESUMEN

Autophagy is a self-renewal mechanism that maintains homeostasis and can promote tissue regeneration by regulating inflammation, reducing oxidative stress and promoting cell differentiation. The interaction between biomaterials and tissue cells significantly affects biomaterial-tissue integration and tissue regeneration. In recent years, it has been found that biomaterials can affect various processes related to tissue regeneration by regulating autophagy. The utilization of biomaterials in a controlled environment has become a prominent approach for enhancing the tissue regeneration capabilities. This involves the regulation of autophagy in diverse cell types implicated in tissue regeneration, encompassing the modulation of inflammatory responses, oxidative stress, cell differentiation, proliferation, migration, apoptosis, and extracellular matrix formation. In addition, biomaterials possess the potential to serve as carriers for drug delivery, enabling the regulation of autophagy by either activating or inhibiting its processes. This review summarizes the relationship between autophagy and tissue regeneration and discusses the role of biomaterial-based autophagy in tissue regeneration. In addition, recent advanced technologies used to design autophagy-modulating biomaterials are summarized, and rational design of biomaterials for providing controlled autophagy regulation via modification of the chemistry and surface of biomaterials and incorporation of cells and molecules is discussed. A better understanding of biomaterial-based autophagy and tissue regeneration, as well as the underlying molecular mechanisms, may lead to new possibilities for promoting tissue regeneration. Video Abstract.


Asunto(s)
Autofagia , Materiales Biocompatibles , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Diferenciación Celular
20.
Neurochem Res ; 49(1): 184-198, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37702890

RESUMEN

The inflammatory process mediated by nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain comprising 3 (NLRP3) inflammasome plays a predominant role in the neurological dysfunction following traumatic brain injury (TBI). SB332235, a highly selective antagonist of chemokine receptor 2 (CXCR2), has been demonstrated to exhibit anti-inflammatory properties and improve neurological outcomes in the central nervous system. We aimed to determine the neuroprotective effects of SB332235 in the acute phase after TBI in mice and to elucidate its underlying mechanisms. Male C57BL/6J animals were exposed to a controlled cortical impact, then received 4 doses of SB332235, with the first dose administered at 30 min after TBI, followed by additional doses at 6, 24, and 30 h. Neurological defects were assessed by the modified neurological severity score, while the motor function was evaluated using the beam balance and open field tests. Cognitive performance was evaluated using the novel object recognition test. Brain tissues were collected for pathological, Western blot, and immunohistochemical analyses. The results showed that SB332235 significantly ameliorated TBI-induced deficits, including motor and cognitive impairments. SB332235 administration suppressed expression of both CXCL1 and CXCR2 in TBI. Moreover, SB332235 substantially mitigated the augmented expression levels and activation of the NLRP3 inflammasome within the peri-contusional cortex induced by TBI. This was accompanied by the blocking of subsequent production of pro-inflammatory cytokines. Additionally, SB332235 hindered microglial activity induced by TBI. These findings confirmed the neuroprotective effects of SB332235 against TBI, and the involved mechanisms were in part due to the suppression of NLRP3 inflammasome activity. This study suggests that SB332235 may act as an anti-inflammatory agent to improve functional outcomes in brain injury when applied clinically.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Fármacos Neuroprotectores , Masculino , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones Endogámicos C57BL , Lesiones Traumáticas del Encéfalo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA