RESUMEN
We report the synthesis and characterization of two novel cisplatin- alkylating agents conjugates. Combining a platinum based cytostatic agent with a sterically demanding alkylating agent could potentially induce further DNA damage, block cell repair mechanisms and keep the substrate active against resistant tumor cell lines. The 3-chloropiperidines utilized as ligands in this work are cyclic representatives of the N-mustard family and were not able to coordinate platinum on their own. The introduction of a second coordination site, in form of a pyridine moiety, led to the isolation of the desired conjugates. They were characterized with HRMS, CHN-analyses and XRD. We concluded this work by examining the cytotoxicity of the ligands and the obtained complexes with MTT assays in human cancer cell lines. While the ligands showed hardly any activity, the novel conjugates both displayed a high antiproliferative and cytotoxic potency in a panel of three cell lines. Moreover, both complexes were able to largely circumvent the acquired cisplatin resistance of A2780cisR ovarian cancer cells, both in the MTT assay and a flow-cytometric apoptosis assay.
RESUMEN
We conducted an in-depth exploration of the inâ vitro activities of the dinuclear Mn2L2Ac and Mn2L2 complexes (where HL=2-{[di(2-pyridyl)methylamino]-methyl}phenol), possessing dual superoxide dismutase (SOD) and catalase (CAT) activity. We investigated these complexes both individually and in conjunction with various Pt(II)-complexes, either as mixtures or as the Mn2-Pt adducts. Our findings revealed a notable up to 50 % enhancement in the viability of healthy human breast cells, contrasted with a viability decrease as low as 50 % in breast cancer cells upon combined treatments with Mn2 SOD mimics and Pt(II) complexes. Specifically, we synthesized and characterized the self-assembled Mn2-Pt adducts (isolated Mn2L2Pt and inâ situ Mn2L2Pt'), linking Mn2L2-core with the carboxylate group of PtDAPCl2 (dichloro(2,3-diaminopropionic acid) platinum(II)). The SOD activity of the isolated Mn2L2Pt adduct (kSOD=1.7×107â M-1 s-1) remained intact. Through in vitro cell viability assessments, ROS levels, cellular Mn uptake and proteomics measurements, we elucidated key mechanisms underlying the observed biological effects. We demonstrated that Mn2-containing formulations predominantly target mitochondrial processes, differently affecting the proteome of cancerous and healthy cells. They induced downregulation of H2S signaling and expression of mitochondrial complex I and III, as well as increased oxidative phosphorylation pathways and upregulation of EGFR in cancer cells. In contrast, healthy cells showed a decrease in EGFR expression and a moderate enrichment in oxidative phosphorylation pathways.
Asunto(s)
Antineoplásicos , Complejos de Coordinación , Especies Reactivas de Oxígeno , Superóxido Dismutasa , Humanos , Superóxido Dismutasa/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Manganeso/química , Línea Celular Tumoral , Platino (Metal)/química , Catalasa/metabolismo , Catalasa/químicaRESUMEN
Hydrolytically stable PdII and PtII complexes supported by acyclic diaminocarbene ligands represent a novel class of structural organometallic anticancer agents exhibiting nanomolar antiproliferative activity in a panel of cancer cell lines (IC50 0.07-0.81â µM) and up to 300-fold selectivity for cancer cells over normal primary fibroblasts. The lead drug candidate was 300 times more potent than cisplatin inâ vitro and showed higher efficacy in reducing the growth of aggressive MDA-MB-231 xenograft tumors in mice.
Asunto(s)
Antineoplásicos , Proliferación Celular , Complejos de Coordinación , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Ensayos de Selección de Medicamentos Antitumorales , Cisplatino/farmacología , Paladio/química , LigandosRESUMEN
The single-functionality of traditional chemodynamic therapy (CDT) reagents usually limits the therapeutic efficacy of cancer treatment. Synergistic nanocomposites that involve cascade reaction provide a promising strategy to achieve satisfactory anticancer effects. Herein, a cuprous-based nanocomposite (CCS@GOx@HA) is fabricated, which owns the tumor targeting ability and can undergo tumor microenvironment responsive cascade reaction to enhance the tumor therapeutic efficiency significantly. Surface modification of nanocomposite with hyaluronic acid enables the targeted delivery of the nanocomposite to cancer cells. Acid-triggered decomposition of nanocomposite in cancer cell results in the release of Cu+ , Se2- and GOx. The Cu+ improves the Fenton-like reaction with endogenous H2 O2 to generate highly toxic ⢠OH for CDT. While GOx can not only catalyze the inâ situ generation of endogenous H2 O2 , but also accelerate the consumption of intratumoral glucose to reduce nutrient supply in tumor site. In addition, Se2- further improves the therapeutic effects of CDT by upregulating the reactive oxygen species (ROS) in tumor cells. Meanwhile, the surface modification endows the nanocomposite the good water dispersibility and biocompatibility. Moreover, inâ vitro and inâ vivo experiments demonstrate satisfactory anti-cancer therapeutic performance by the synergistic cascade function of CCS@GOx@HA than CDT alone.
Asunto(s)
Nanocompuestos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Catálisis , Glucosa , Ácido Hialurónico , Nanocompuestos/uso terapéutico , Peróxido de Hidrógeno , Línea Celular Tumoral , Microambiente TumoralRESUMEN
Photodynamic therapy (PDT) can destroy tumor cells by generating singlet oxygen (1O2) under light irradiation, which is limited by the hypoxia of the neoplastic tissue. Chemodynamic therapy (CDT) can produce toxic hydroxyl radical (â OH) to eradicate tumor cells by catalytic decomposition of endogenous hydrogen peroxide (H2O2), the therapeutic effect of which is highly dependent on the concentration of H2O2. Herein, we propose a BODIPY-ferrocene conjugate with a balanced 1O2 and â OH generation capacity, which can serve as a high-efficiency antitumor agent by combining PDT and CDT. The ferrocene moieties endow the as-prepared conjugates with the ability of chemodynamic killing of tumor cells. Moreover, combined PDT/CDT therapy with improved antitumor efficiency can be realized after exposure to light irradiation. Compared with the monotherapy by PDT or CDT, the BODIPY-ferrocene conjugates can significantly increase the intracellular ROS levels of the tumor cells after light irradiation, thereby inducing the tumor cell apoptosis at low drug doses. In this way, a synergistic antitumor treatment is achieved by the combination of PDT and CDT.
Asunto(s)
Antineoplásicos , Compuestos de Boro , Compuestos Ferrosos , Metalocenos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Oxígeno Singlete , Compuestos Ferrosos/química , Compuestos Ferrosos/farmacología , Metalocenos/química , Compuestos de Boro/química , Compuestos de Boro/farmacología , Humanos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Radical Hidroxilo/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Antibody drug conjugates (ADCs) with twelve FDA approved drugs, known as a novel category of anti-neoplastic treatment created to merge the monoclonal antibody specificity with cytotoxicity effect of chemotherapy. However, despite many undeniable advantages, ADCs face certain problems, including insufficient internalization after binding, complex structures and large size of full antibodies especially in targeting of solid tumors. Camelid single domain antibody fragments (Nanobody®) offer solutions to this challenge by providing nanoscale size, high solubility and excellent stability, recombinant expression in bacteria, in vivo enhanced tissue penetration, and conjugation advantages. Here, an anti-human CD22 Nanobody was expressed in E.coli cells and conjugated to Mertansine (DM1) as a cytotoxic payload. The anti-CD22 Nanobody was expressed and purified by Ni-NTA resin. DM1 conjugated anti-CD22 Nanobody was generated by conjugation of SMCC-DM1 to Nanobody lysine groups. The conjugates were characterized using SDS-PAGE and Capillary electrophoresis (CE-SDS), RP-HPLC, and MALDI-TOF mass spectrometry. Additionally, flow cytometry analysis and a competition ELISA were carried out for binding evaluation. Finally, cytotoxicity of conjugates on Raji and Jurkat cell lines was assessed. The drug-to-antibody ratio (DAR) of conjugates was calculated 2.04 using UV spectrometry. SDS-PAGE, CE-SDS, HPLC, and mass spectrometry confirmed conjugation of DM1 to the Nanobody. The obtained results showed the anti-CD22 Nanobody cytotoxicity was enhanced almost 80% by conjugation with DM1. The binding of conjugates was similar to the non-conjugated anti-CD22 Nanobody in flow cytometry experiments. Concludingly, this study successfully suggest that the DM1 conjugated anti-CD22 Nanobody can be used as a novel tumor specific drug delivery system.
Asunto(s)
Inmunoconjugados , Maitansina , Neoplasias , Anticuerpos de Dominio Único , Anticuerpos Monoclonales/farmacología , Antineoplásicos/inmunología , Línea Celular Tumoral , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Maitansina/química , Neoplasias/tratamiento farmacológico , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Camelidae/inmunologíaRESUMEN
A small series of arylsulfonamide derivatives was designed and synthesized to study linear and cyclic inhibitors targeting human Carbonic Anhydrases (hCAs EC 4.2.1.1) as essential enzymes regulating (patho)-physiological processes. Particularly, the synthesis of these ten compounds was inspired to the well-known arylsulfonamides having flexible or constrained linkers able to maintain the two crucial moieties, anchoring zinc group and hydrophobic tail, in the optimized orientation within CA cavities of tumor-expressed isoforms hCA IX and hCA XII. The synthesized imine derivatives and related cyclic 1,3-thiazin-4-ones were screened in a stopped-flow carbon dioxide hydrase assay and proved to be effective inhibitors against hCA IX and hCA XII isoforms with Ki values ranging of 3.7-215.7 nM and 5.7-415.0 nM, respectively. Molecular docking studies of both series of arylsulfonamides were conducted to propose their binding mode within hCA IX and hCA XII active sites thus highlighting their distinct ability to occupy the two catalytic cavities. Moreover, the 4-[(3-cyanophenyl)methylidene]aminobenzene-1-sulfonamide 7 proved to reduce the cell viability of breast carcinoma (MCF-7) and colon rectal carcinoma (HCT-116) human cell lines under the fixed doses of 10 µM. These results encouraged us to continue our efforts in developing potent and efficient arylsulfonamides targeting hCA IX and hCA XII isoforms.
Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Simulación del Acoplamiento Molecular , Sulfonamidas , Humanos , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Anhidrasas Carbónicas/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Anhidrasa Carbónica IX/metabolismo , Anhidrasa Carbónica IX/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Antígenos de NeoplasiasRESUMEN
A series of 1H-imidazo [4,5-f][1,10] phenanthroline derivatives functionalized at 2-position with chiral, and conformationally flexible polyhydroxy alkyl chains derived from carbohydrates (alditol-based imidazophenanthrolines, aldo-IPs) is presented herein. These novel glycomimetics showed relevant and differential cytotoxic activity against several cultured tumor cell lines (PC3, HeLa and HT-29), dependent on the nature and stereochemistry of the polyhydroxy alkyl chain. The mannose-based aldo-IP demonstrated the higher cytotoxicity in the series, substantially better than cisplatin metallo-drug in all cell lines tested, and better than G-quadruplex ligand 360A in HeLa and HT29 cells. Cell cycle experiments and Annexin V-PI assays revealed that aldo-IPs induce apoptosis in HeLa cells. Initial study of DNA interactions by DNA FRET melting assays proved that the aldo-IPs produce only a slight thermal stabilization of DNA secondary structures, more pronounced in the case of quadruplex DNA. Viscosity titrations with CT dsDNA suggest that the compounds behave as DNA groove binders, whereas equilibrium dialysis assays showed that the compounds bind CT with Ka values in the range 104-105 M-1. The aldo-IP derivatives were obtained with synthetically useful yields through a feasible one-pot multistep process, by aerobic oxidative cyclization of 1,10-phenanthroline-5,6-diamine with a selection of unprotected aldoses using (NH4)2SO4 as promoter.
Asunto(s)
Antineoplásicos , Alcoholes del Azúcar , Humanos , Células HeLa , Alcoholes del Azúcar/farmacología , Antineoplásicos/química , Apoptosis , ADN/química , Ensayos de Selección de Medicamentos AntitumoralesRESUMEN
RAS (rat sarcoma) oncoproteins are crucial for the growth of some human cancers, including lung, colorectal, and pancreatic adenocarcinomas. The RAS family contains three known human isoforms H(Harvey)-RAS, N(Neuroblastoma)-RAS, and K(Kirsten)-RAS. Mutations in RAS proteins cause up to ~ 30% of cancer cases. For almost 30 years, mutant proteins druggable pockets remained undiscovered, they are nearly identical to their essential, wild-type counterparts and cause cancer. Recent research has increased our knowledge of RAS's structure, processing, and signaling pathways and revealed novel insights into how it works in cancer cells. We highlight several approaches that inhibit RAS activity with small compounds in this review: substances that blocked farnesyltransferase (FTase), isoprenylcysteine carboxyl methyltransferase (Icmt), and RAS-converting enzyme 1 (Rce1) three important enzymes required for RAS localization. Inhibitors block the son of sevenless (SOS) protein's role in nucleotide exchange activity, small molecules that interfered with the phosphodiesterase (PDEδ)-mediated intracellular RAS transport processes, substances that focused on inhibiting RAS-effector interactions. Inhibitors are made to suppress the oncogenic K-RAS G12C mutant only when the nucleophilic cysteine residue at codon 12 is present and many inhibitors with various mechanisms like breaking the organization membrane of K-RAS nano-clustering. So, this is a thorough analysis of the most recent advancements in K-RAS-targeted anticancer techniques, hopefully offering insight into the field's future.
RESUMEN
Precise and effective initiation of the apoptotic mechanism in tumor cells is one of the most promising approaches for the treatment of solid tumors. However, current techniques such as high-temperature ablation or gene editing suffer from the risk of damage to adjacent normal tissues. This study proposes a magnetothermal-induced CRISPR-Cas9 gene editing system for the targeted knockout of HSP70 and BCL2 genes, thereby enhancing tumor cell apoptosis. The magnetothermal nanoparticulate platform is composed of superparamagnetic ZnCoFe2O4@ZnMnFe2O4 nanoparticles and the modified polyethyleneimine (PEI) and hyaluronic acid (HA) on the surface, on which plasmid DNA can be effectively loaded. Under the induction of a controllable alternating magnetic field, the mild magnetothermal effect (42â) not only triggers dual-genome editing to disrupt the apoptosis resistance mechanism of tumor cells but also sensitizes tumor cells to apoptosis through the heat effect itself, achieving a synergistic therapeutic effect. This strategy can precisely regulate the activation of the CRISPR-Cas9 system for tumor cell apoptosis without inducing significant damage to healthy tissues, thus providing a new avenue for cancer treatment.
Asunto(s)
Apoptosis , Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Humanos , Línea Celular Tumoral , Animales , Polietileneimina/química , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ácido Hialurónico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Ratones , Neoplasias/terapia , Neoplasias/genética , Plásmidos/genética , Nanopartículas de Magnetita/químicaRESUMEN
A novel series of trifluoromethyl-containing quinazoline derivatives with a variety of functional groups was designed, synthesized, and tested for their antitumor activity by following a pharmacophore hybridization strategy. Most of the 20 compounds displayed moderate to excellent antiproliferative activity against five different cell lines (PC3, LNCaP, K562, HeLa, and A549). After three rounds of screening and structural optimization, compound 10 b was identified as the most potent one, with IC50 values of 3.02, 3.45, and 3.98â µM against PC3, LNCaP, and K562 cells, respectively, which were comparable to the effect of the positive control gefitinib. To further explore the mechanism of action of 10 b against cancer, experiments focusing on apoptosis induction, cell cycle arrest, and cell migration assay were conducted. The results showed that 10 b was able to induce apoptosis and prevent tumor cell migration, but had no effect on the cell cycle of tumor cells.
Asunto(s)
Antineoplásicos , Apoptosis , Movimiento Celular , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Quinazolinas , Humanos , Quinazolinas/farmacología , Quinazolinas/química , Quinazolinas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Estructura Molecular , Relación Dosis-Respuesta a Droga , Puntos de Control del Ciclo Celular/efectos de los fármacosRESUMEN
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is mainly treated with cytotoxic chemotherapy. However, this treatment is not always effective, and an important percentage of patients develop recurrence. Nanomaterials are emerging as alternative treatment options for various diseases, including cancer. This work reports the synthesis, characterization, antitumor activity evaluation, and sub-acute toxicity studies of two formulations based on amorphous silica nanoparticles (SiNPs). They are functionalized with 3-aminopropyltriethoxisilane (Si@NH2) and folic acid (FA; Si@FA). The results show that SiNPs reduce the viability and migration of TNBC MDA-MB-231 and 4T1 cell lines and Si@FA do not affect the growth of the mammary nonmalignant HC11 cells. In addition, Si@FA induces reactive oxygen species (ROS) generation and displays antiproliferative and subsequently proapoptotic effects in MDA-MB-231 cells. Moreover, none of the SiNPs cause signs of sub-acute toxicity in mice when administered at 30 mg/kg over a month. In conclusion, these nanosystems display intrinsic antitumor activity without causing toxic in vivo effects, being a promising therapeutic alternative for TNBC.
RESUMEN
Humanity is currently facing various diseases with significant mortality rates, particularly those associated with malignancies. Numerous enzymes and proteins have been identified as highly promising targets for the treatment of cancer. The poly(ADP-ribose) polymerases (PARPs) family comprises 17 members which are essential in DNA damage repair, allowing the survival of cancer cells. Unlike other PARP family members, PARP-1 and, to a lesser extent, PARP-2 show more than 90% activity in response to DNA damage. PARP-1 levels were shown to be elevated in various tumor cells, including breast, lung, ovarian, and prostate cancer and melanomas. Accordingly, novel series of phthalimide-tethered isatins (6a-n, 10a-e, and 11a-e) were synthesized as potential PARP-1 inhibitors endowed with anticancer activity. All the synthesized molecules were assessed against PARP-1, where compounds 6f and 10d showed nanomolar activities with IC50 = 15.56 ± 2.85 and 13.65 ± 1.42 nM, respectively. Also, the assessment of the antiproliferative effects of the synthesized isatins was conducted on four cancer cell lines: leukemia (K-562), liver (HepG2), and breast (MCF-7 and HCC1937) cancers. Superiorly, compounds 6f and 10d demonstrated submicromolar IC50 values against breast cancer MCF-7 (IC50 = 0.92 ± 0.18 and 0.67 ± 0.12 µM, respectively) and HCC1937 (IC50 = 0.88 ± 0.52 and 0.53 ± 0.11 µM, respectively) cell lines. In addition, compounds 6f and 10d induced arrest in the G2/M phase of the cell cycle as compared to untreated cells. Finally, in silico studies, including docking and molecular dynamic simulations, were performed to justify the biological results.
Asunto(s)
Isatina , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Masculino , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Relación Estructura-Actividad , Ftalimidas/farmacología , Línea Celular TumoralRESUMEN
Cytotoxic payloads for drug conjugates suitable for directed tumor therapy need to be highly potent and require a functional group for conjugation with the homing device (antibody, peptide, or small molecule). Cryptophycins are cyclodepsipeptides that stand out from the realm of natural products due to their extraordinarily high cytotoxicity. However, the installation of a suitable conjugation handle without compromising the toxicity is highly challenging. The unit D, natively 2-hydroxyisocaproic acid (leucic acid), was envisaged as a promising attachment site based on structural information from X-ray analysis. A versatile, scalable and efficient synthetic route towards conjugable cryptophycins with modification in unit D was developed and an array of new cryptophycin analogues was synthesized. Several derivatives, especially those containing lipophilic groups with low steric demand such as alkylated amino groups, exhibit low picomolar cytotoxicity often combined with efficacy against multidrug-resistant tumor cells. The newly established cryptophycin analogues comprise a broad range of relevant functional groups used as conjugation handles, among them amino, hydroxy, carboxy, as well as sulfur-containing derivatives. X-ray crystallographic analysis of a tubulin-bound cryptophycin together with quantitative structure activity relationship manifested rationales for the synthesis of most potent cryptophycin derivatives and further confirmed the suitability of modifications in unit D.
RESUMEN
Probing biomolecular interactions at cellular interfaces is crucial for understanding and interfering with life processes. Although affinity binders with site specificity for membrane proteins are unparalleled molecular tools, a high demand remains for novel multi-functional ligands. In this study, a synthetic peptide (APQQ) with tight and specific binding to the untargeted extracellular loop of CD81 evolved from a genetically encoded peptide pool. With tailored affinity, APQQ flexibly accesses, site-specifically binds, and forms a complex with CD81, enabling in-situ tracking of the dynamics and activity of this protein in living cells, which has rarely been explored because of the lack of ligands. Furthermore, APQQ triggers the relocalization of CD81 from diffuse to densely clustered at cell junctions and modulates the interplay of membrane proteins at cellular interfaces. Motivated by these, efficient suppression of cancer cell migration, and inhibition of breast cancer metastasis were achieved in vivo.
Asunto(s)
Péptidos , Tetraspanina 28 , Humanos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Tetraspanina 28/metabolismo , Tetraspanina 28/química , Metástasis de la Neoplasia , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismoRESUMEN
Real-time monitoring of hydroxyl radical (â OH) generation is crucial for both the efficacy and safety of chemodynamic therapy (CDT). Although â OH probe-integrated CDT agents can track â OH production by themselves, they often require complicated synthetic procedures and suffer from self-consumption of â OH. Here, we report the facile fabrication of a self-monitored chemodynamic agent (denoted as Fc-CD-AuNCs) by incorporating ferrocene (Fc) into ß-cyclodextrin (CD)-functionalized gold nanoclusters (AuNCs) via host-guest molecular recognition. The water-soluble CD served not only as a capping agent to protect AuNCs but also as a macrocyclic host to encapsulate and solubilize hydrophobic Fc guest with high Fenton reactivity for in vivo CDT applications. Importantly, the encapsulated Fc inside CD possessed strong electron-donating ability to effectively quench the second near-infrared (NIR-II) fluorescence of AuNCs through photoinduced electron transfer. After internalization of Fc-CD-AuNCs by cancer cells, Fenton reaction between redox-active Fc quencher and endogenous hydrogen peroxide (H2 O2 ) caused Fc oxidation and subsequent NIR-II fluorescence recovery, which was accompanied by the formation of cytotoxic â OH and therefore allowed Fc-CD-AuNCs to in situ self-report â OH generation without undesired â OH consumption. Such a NIR-II fluorescence-monitored CDT enabled the use of renal-clearable Fc-CD-AuNCs for efficient tumor growth inhibition with minimal side effects in vivo.
Asunto(s)
Compuestos Ferrosos , Nanopartículas , Neoplasias , Humanos , Nanomedicina , Metalocenos , Fluorescencia , Oxidación-Reducción , Línea Celular Tumoral , Peróxido de Hidrógeno/química , Nanopartículas/química , Microambiente TumoralRESUMEN
Cancer stands in the frontline among leading killers worldwide and the annual mortality rate is expected to reach 16.4 million by 2040. Humans suffer from about 200 different types of cancers and many of them have a small number of approved therapeutic agents. Moreover, several types of major cancers are diagnosed at advanced stages as a result of which the existing therapies have limited efficacy against them and contribute to a dismal prognosis. Therefore, it is essential to develop novel potent anticancer agents to counteract cancer-driven lethality. Natural sources such as bacteria, plants, fungi, and marine microorganisms have been serving as an inexhaustible source of anticancer agents. Notably, over 13,000 natural compounds endowed with different pharmacological properties have been isolated from different bacterial sources. In the present article, we have discussed about the importance of natural products, with special emphasis on bacterial metabolites for cancer therapy. Subsequently, we have comprehensively discussed the various sources, mechanisms of action, toxicity issues, and off-target effects of clinically used anticancer drugs (such as actinomycin D, bleomycin, carfilzomib, doxorubicin, ixabepilone, mitomycin C, pentostatin, rapalogs, and romidepsin) that have been derived from different bacteria. Furthermore, we have also discussed some of the major secondary metabolites (antimycins, chartreusin, elsamicins, geldanamycin, monensin, plicamycin, prodigiosin, rebeccamycin, salinomycin, and salinosporamide) that are currently in the clinical trials or which have demonstrated potent anticancer activity in preclinical models. Besides, we have elaborated on the application of metagenomics in drug discovery and briefly described about anticancer agents (bryostatin 1 and ET-743) identified through the metagenomics approach.
Asunto(s)
Antineoplásicos , Productos Biológicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Hongos/metabolismo , BacteriasRESUMEN
The development of responsive nanoplatforms based on the tumor microenvironment (TME) is critical for tumor diagnosis and treatment. Concentrating on a single TME-responsive nanoplatform, however, may result in insufficient diagnostic accuracy and treatment efficacy. Herein, layered double-hydroxides (LDHs) and rare earth nanomaterials (Er@Lu) were combined to create a triple TME-responsive nanoplatform that was then modified with cypate (a fluorescent dye with strong absorbance) by a peptide chain and loaded with epigallocatechin gallate (EGCG), a chemotherapeutic drug. Multiple responses to TME occurred when Er@Lu/LDH-EGCG reached the colorectal tumor region. Based on an acidic TME, the nanoplatform cracked and released Ni2+ and EGCG. NiS, which was produced by the reaction of Ni2+ with abundant H2 S in tumor cells, was used for photothermal therapy and the released EGCG was used for chemotherapy. The MMP-7 enzyme specifically expressed in tumor cells recognized and cut the peptide chain, resulting in cypate release. The fluorescence of the Er@Lu was then restored along with the release of cypate because of the absorption competition disappearance. Compared to a single TME response, Er@Lu/LDH-EGCG with a triple TME response led to a better synergistic therapeutic effect inâ vitro and inâ vivo. This work has provided new approaches for developing multiple TME-responsive therapeutic nanoplatforms for synergistic therapy with improved diagnosis and therapeutic efficiency.
Asunto(s)
Nanopartículas , Neoplasias , Humanos , Medicina de Precisión , Microambiente Tumoral , Neoplasias/tratamiento farmacológico , Péptidos/farmacología , Línea Celular TumoralRESUMEN
Tetrakis(4-aminophenyl)porphyrin (1) and tetrakis(4-acetamidophenyl)porphyrin (2) were dissolved in water with the incorporation of a polysaccharide (λ-carrageenan (CGN)) as a water-solubilizing agent. Although the photodynamic activity of the CGN-2 complex was considerably lower than that of the CGN-1 complex, the selectivity index (SI; IC50 in a normal cell/IC50 in a cancer cell) of the CGN-2 complex was considerably higher than that of the CGN-1 complex. This is because the photodynamic activity of the CGN-2 complex was significantly affected by the intracellular uptakes by the normal and cancer cells. During inâ vivo experiments, the CGN-2 complex inhibited tumor growth under light irradiation with high blood retention compared with the CGN-1 complex and Photofrin, which exhibited lower blood retention. This study showed that the photodynamic activity and SI are influenced by substituent groups of arene in the meso-positions of porphyrin analogs.
Asunto(s)
Neoplasias , Animales , Humanos , Ratones , Acetilación , Línea Celular Tumoral , Liposomas , Neoplasias/química , Neoplasias/terapia , Fotoquímica/métodos , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/químicaRESUMEN
Dithiolopyrrolones (DTPs), such as holomycin, are natural products that hold promise as scaffolds for antibiotics as they exhibit inhibitory activity against antibiotic-resistant pathogens. They consist of a unique bicyclic core containing a disulfide that is crucial for their biological activity. Herein, we establish the DTPs as prochelators. We show that the disulfides are reduced at cellular gluathione levels. This activates the drugs and initiates interactions with targets, particularly metal coordination. In addition, we report an expedient synthesis for the DTPs thiolutin and aureothricin, providing facile access to important natural DTPs and derivatives thereof.