Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(9): 1456-1474, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653190

RESUMEN

RNA N6-methyladenosine (m6A) modification is involved in diverse biological processes. However, its role in spinal cord injury (SCI) is poorly understood. The m6A level increases in injured spinal cord, and METTL3, which is the core subunit of methyltransferase complex, is upregulated in reactive astrocytes and further stabilized by the USP1/UAF1 complex after SCI. The USP1/UAF1 complex specifically binds to and subsequently removes K48-linked ubiquitination of the METTL3 protein to maintain its stability after SCI. Moreover, conditional knockout of astrocytic METTL3 in both sexes of mice significantly suppressed reactive astrogliosis after SCI, thus resulting in widespread infiltration of inflammatory cells, aggravated neuronal loss, hampered axonal regeneration, and impaired functional recovery. Mechanistically, the YAP1 transcript was identified as a potential target of METTL3 in astrocytes. METTL3 could selectively methylate the 3'-UTR region of the YAP1 transcript, which subsequently maintains its stability in an IGF2BP2-dependent manner. In vivo, YAP1 overexpression by adeno-associated virus injection remarkably contributed to reactive astrogliosis and partly reversed the detrimental effects of METTL3 knockout on functional recovery after SCI. Furthermore, we found that the methyltransferase activity of METTL3 plays an essential role in reactive astrogliosis and motor repair, whereas METTL3 mutant without methyltransferase function failed to promote functional recovery after SCI. Our study reveals the previously unreported role of METTL3-mediated m6A modification in SCI and might provide a potential therapy for SCI.SIGNIFICANCE STATEMENT Spinal cord injury is a devastating trauma of the CNS involving motor and sensory impairments. However, epigenetic modification in spinal cord injury is still unclear. Here, we propose an m6A regulation effect of astrocytic METTL3 following spinal cord injury, and we further characterize its underlying mechanism, which might provide promising strategies for spinal cord injury treatment.


Asunto(s)
Gliosis , Traumatismos de la Médula Espinal , Animales , Femenino , Masculino , Ratones , Astrocitos/metabolismo , Gliosis/metabolismo , Inflamación/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/farmacología , ARN Mensajero/metabolismo , Médula Espinal/metabolismo
2.
Glia ; 72(4): 748-758, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38200694

RESUMEN

Implantable neural probes have been extensively utilized in the fields of neurocircuitry, systems neuroscience, and brain-computer interface. However, the long-term functionality of these devices is hampered by the formation of glial scar and astrogliosis at the surface of electrodes. In this study, we administered KDS2010, a recently developed reversible MAO-B inhibitor, to mice through ad libitum drinking in order to prevent glial scar formation and astrogliosis. The administration of KDS2010 allowed long-term recordings of neural signals with implantable devices, which remained stable over a period of 6 months and even restored diminished neural signals after probe implantation. KDS2010 effectively prevented the formation of glial scar, which consists of reactive astrocytes and activated microglia around the implant. Furthermore, it restored neural activity by disinhibiting astrocytic MAO-B dependent tonic GABA inhibition induced by astrogliosis. We suggest that the use of KDS2010 is a promising approach to prevent glial scar formation around the implant, thereby enabling long-term functionality of neural devices.


Asunto(s)
Astrocitos , Gliosis , Ratones , Animales , Gliosis/tratamiento farmacológico , Gliosis/prevención & control , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/farmacología , Macrófagos
3.
Glia ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145525

RESUMEN

Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.

4.
Glia ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092466

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive death of motor neurons (MNs). Glial cells play roles in MN degeneration in ALS. More specifically, astrocytes with mutations in the ALS-associated gene Cu/Zn superoxide dismutase 1 (SOD1) promote MN death. The mechanisms by which SOD1-mutated astrocytes reduce MN survival are incompletely understood. To characterize the impact of SOD1 mutations on astrocyte physiology, we generated astrocytes from human induced pluripotent stem cell (iPSC) derived from ALS patients carrying SOD1 mutations, together with control isogenic iPSCs. We report that astrocytes harboring SOD1(A4V) and SOD1(D90A) mutations exhibit molecular and morphological changes indicative of reactive astrogliosis when compared to isogenic astrocytes. We show further that a number of nuclear phenotypes precede, or coincide with, reactive transformation. These include increased nuclear oxidative stress and DNA damage, and accumulation of the SOD1 protein in the nucleus. These findings reveal early cell-autonomous phenotypes in SOD1-mutated astrocytes that may contribute to the acquisition of a reactive phenotype involved in alterations of astrocyte-MN communication in ALS.

5.
J Neurochem ; 168(2): 83-99, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38183677

RESUMEN

In central nervous system (CNS), demyelination is a pathological process featured with a loss of myelin sheaths around axons, which is responsible for the diseases of multiple sclerosis, neuromyelitis optica, and so on. Transforming growth factor-beta1 (TGF-ß1) is a multifunctional cytokine participating in abundant physiological and pathological processes in CNS. However, the effects of TGF-ß1 on CNS demyelinating disease and its underlying mechanisms are controversial and not well understood. Herein, we evaluated the protective potential of TGF-ß1 in a rodent demyelinating model established by lysophosphatidylcholine (LPC) injection. It was identified that supplement of TGF-ß1 evidently rescued the cognitive deficit and motor dysfunction in LPC modeling mice assessed by novel object recognition and balance beam behavioral tests. Besides, quantified by luxol fast blue staining, immunofluorescence, and western blot, administration of TGF-ß1 was found to significantly ameliorate the demyelinating lesion and reactive astrogliosis by suppressing p38 MAPK pathway. Mechanistically, the results of in vitro experiments indicated that treatment of TGF-ß1 could directly promote the differentiation and migration of cultured oligodendrocytes. Our study revealed that modulating TGF-ß1 activity might serve as a promising and innovative therapeutic strategy in CNS demyelinating diseases.


Asunto(s)
Lesiones Encefálicas , Sustancia Blanca , Animales , Ratones , Gliosis/prevención & control , Inflamación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Roedores , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Sustancia Blanca/metabolismo
6.
Neurobiol Dis ; 190: 106388, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141856

RESUMEN

BACKGROUND: MLC1 is a membrane protein highly expressed in brain perivascular astrocytes and whose mutations account for the rare leukodystrophy (LD) megalencephalic leukoencephalopathy with subcortical cysts disease (MLC). MLC is characterized by macrocephaly, brain edema and cysts, myelin vacuolation and astrocyte swelling which cause cognitive and motor dysfunctions and epilepsy. In cultured astrocytes, lack of functional MLC1 disturbs cell volume regulation by affecting anion channel (VRAC) currents and the consequent regulatory volume decrease (RVD) occurring in response to osmotic changes. Moreover, MLC1 represses intracellular signaling molecules (EGFR, ERK1/2, NF-kB) inducing astrocyte activation and swelling following brain insults. Nevertheless, to date, MLC1 proper function and MLC molecular pathogenesis are still elusive. We recently reported that in astrocytes MLC1 phosphorylation by the Ca2+/Calmodulin-dependent kinase II (CaMKII) in response to intracellular Ca2+ release potentiates MLC1 activation of VRAC. These results highlighted the importance of Ca2+ signaling in the regulation of MLC1 functions, prompting us to further investigate the relationships between intracellular Ca2+ and MLC1 properties. METHODS: We used U251 astrocytoma cells stably expressing wild-type (WT) or mutated MLC1, primary mouse astrocytes and mouse brain tissue, and applied biochemistry, molecular biology, video imaging and electrophysiology techniques. RESULTS: We revealed that WT but not mutant MLC1 oligomerization and trafficking to the astrocyte plasma membrane is favored by Ca2+ release from endoplasmic reticulum (ER) but not by capacitive Ca2+ entry in response to ER depletion. We also clarified the molecular events underlining MLC1 response to cytoplasmic Ca2+ increase, demonstrating that, following Ca2+ release, MLC1 binds the Ca2+ effector protein calmodulin (CaM) at the carboxyl terminal where a CaM binding sequence was identified. Using a CaM inhibitor and generating U251 cells expressing MLC1 with CaM binding site mutations, we found that CaM regulates MLC1 assembly, trafficking and function, being RVD and MLC-linked signaling molecules abnormally regulated in these latter cells. CONCLUSION: Overall, we qualified MLC1 as a Ca2+ sensitive protein involved in the control of volume changes in response to ER Ca2+ release and astrocyte activation. These findings provide new insights for the comprehension of the molecular mechanisms responsible for the myelin degeneration occurring in MLC and other LD where astrocytes have a primary role in the pathological process.


Asunto(s)
Enfermedades Desmielinizantes , Megalencefalia , Ratones , Animales , Astrocitos/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Enfermedades Desmielinizantes/patología , Mutación/genética , Retículo Endoplásmico/metabolismo , Megalencefalia/metabolismo
7.
Eur J Neurosci ; 59(11): 3009-3029, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38576159

RESUMEN

Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.


Asunto(s)
Cicatriz , Gliosis , Infarto de la Arteria Cerebral Media , Animales , Gliosis/metabolismo , Gliosis/patología , Ratones , Cicatriz/metabolismo , Cicatriz/patología , Infarto de la Arteria Cerebral Media/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Masculino , Ratones Endogámicos C57BL , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Obesidad/metabolismo , Obesidad/complicaciones , Proteínas de la Matriz Extracelular/metabolismo , Hiperglucemia/metabolismo
8.
J Neuroinflammation ; 21(1): 4, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178142

RESUMEN

BACKGROUND: Redox imbalance and inflammation have been proposed as the principal mechanisms of damage in the auditory system, resulting in functional alterations and hearing loss. Microglia and astrocytes play a crucial role in mediating oxidative/inflammatory injury in the central nervous system; however, the role of glial cells in the auditory damage is still elusive. OBJECTIVES: Here we investigated glial-mediated responses to toxic injury in peripheral and central structures of the auditory pathway, i.e., the cochlea and the auditory cortex (ACx), in rats exposed to styrene, a volatile compound with well-known oto/neurotoxic properties. METHODS: Male adult Wistar rats were treated with styrene (400 mg/kg daily for 3 weeks, 5/days a week). Electrophysiological, morphological, immunofluorescence and molecular analyses were performed in both the cochlea and the ACx to evaluate the mechanisms underlying styrene-induced oto/neurotoxicity in the auditory system. RESULTS: We showed that the oto/neurotoxic insult induced by styrene increases oxidative stress in both cochlea and ACx. This was associated with macrophages and glial cell activation, increased expression of inflammatory markers (i.e., pro-inflammatory cytokines and chemokine receptors) and alterations in connexin (Cxs) and pannexin (Panx) expression, likely responsible for dysregulation of the microglia/astrocyte network. Specifically, we found downregulation of Cx26 and Cx30 in the cochlea, and high level of Cx43 and Panx1 in the ACx. CONCLUSIONS: Collectively, our results provide novel evidence on the role of immune and glial cell activation in the oxidative/inflammatory damage induced by styrene in the auditory system at both peripheral and central levels, also involving alterations of gap junction networks. Our data suggest that targeting glial cells and connexin/pannexin expression might be useful to attenuate oxidative/inflammatory damage in the auditory system.


Asunto(s)
Conexinas , Estireno , Ratas , Masculino , Animales , Conexinas/metabolismo , Estireno/toxicidad , Estireno/metabolismo , Ratas Wistar , Uniones Comunicantes/metabolismo , Neuroglía/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Estrés Oxidativo , Modelos Teóricos
9.
J Neurovirol ; 30(3): 303-315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38943022

RESUMEN

Although previous studies have suggested that subtype B HIV-1 proviruses in the brain are associated with physiological changes and immune activation accompanied with microgliosis and astrogliosis, and indicated that both HIV-1 subtype variation and geographical location might influence the neuropathogenicity of HIV-1 in the brain. The natural course of neuropathogenesis of the most widespread subtype C HIV-1 has not been adequately investigated, especially for people living with HIV (PLWH) in sub-Saharan Africa. To characterize the natural neuropathology of subtype C HIV-1, postmortem frontal lobe and basal ganglia tissues were collected from nine ART-naïve individuals who died of late-stage AIDS with subtype C HIV-1 infection, and eight uninfected deceased individuals as controls. Histological staining was performed on all brain tissues to assess brain pathologies. Immunohistochemistry (IHC) against CD4, p24, Iba-1, GFAP, and CD8 in all brain tissues was conducted to evaluate potential viral production and immune activation. Histological results showed mild perivascular cuffs of lymphocytes only in a minority of the infected individuals. Viral capsid p24 protein was only detected in circulating immune cells of one infected individual, suggesting a lack of productive HIV-1 infection of the brain even at the late-stage of AIDS. Notably, similar levels of Iba-1 or GFAP between HIV + and HIV- brain tissues indicated a lack of microgliosis and astrogliosis, respectively. Similar levels of CD8 + cytotoxic T lymphocyte (CTL) infiltration between HIV + and HIV- brain tissues indicated CTL were not likely to be involved within subtype C HIV-1 infected participants of this cohort. Results from this subtype C HIV-1 study suggest that there is a lack of productive infection and limited neuropathogenesis by subtype C HIV-1 even at late-stage disease, which is in contrast to what was reported for subtype B HIV-1 by other investigators.


Asunto(s)
Proteína Ácida Fibrilar de la Glía , VIH-1 , Humanos , VIH-1/inmunología , VIH-1/patogenicidad , Masculino , Femenino , Adulto , Persona de Mediana Edad , África del Sur del Sahara , Proteína Ácida Fibrilar de la Glía/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Infecciones por VIH/patología , Ganglios Basales/inmunología , Ganglios Basales/patología , Ganglios Basales/virología , Proteínas de Unión al Calcio/inmunología , Proteínas de Unión al Calcio/genética , Lóbulo Frontal/inmunología , Lóbulo Frontal/patología , Lóbulo Frontal/virología , Proteína p24 del Núcleo del VIH/inmunología , Complejo SIDA Demencia/inmunología , Complejo SIDA Demencia/patología , Complejo SIDA Demencia/virología , Antígenos CD4/inmunología , Linfocitos T CD8-positivos/inmunología , Gliosis/inmunología , Gliosis/patología , Gliosis/virología , Astrocitos/inmunología , Astrocitos/patología , Astrocitos/virología , Encéfalo/patología , Encéfalo/inmunología , Encéfalo/virología , Proteínas de Microfilamentos
10.
FASEB J ; 37(6): e22939, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37130013

RESUMEN

Traumatic spinal cord injury (SCI) most often leads to permanent paralysis due to the inability of axons to regenerate in the adult mammalian central nervous system (CNS). In the past, we have shown that mast cells (MCs) improve the functional outcome after SCI by suppressing scar tissue formation at the lesion site via mouse mast cell protease 6 (mMCP6). In this study, we investigated whether recombinant mMCP6 can be used therapeutically to improve the functional outcome after SCI. Therefore, we applied mMCP6 locally via an intrathecal catheter in the subacute phase after a spinal cord hemisection injury in mice. Our findings showed that hind limb motor function was significantly improved in mice that received recombinant mMCP6 compared with the vehicle-treated group. In contrast to our previous findings in mMCP6 knockout mice, the lesion size and expression levels of the scar components fibronectin, laminin, and axon-growth-inhibitory chondroitin sulfate proteoglycans were not affected by the treatment with recombinant mMCP6. Surprisingly, no difference in infiltration of CD4+ T cells and reactivity of Iba-1+ microglia/macrophages at the lesion site was observed between the mMCP6-treated mice and control mice. Additionally, local protein levels of the pro- and anti-inflammatory mediators IL-1ß, IL-2, IL-4, IL-6, IL-10, TNF-α, IFNγ, and MCP-1 were comparable between the two treatment groups, indicating that locally applied mMCP6 did not affect inflammatory processes after injury. However, the increase in locomotor performance in mMCP6-treated mice was accompanied by reduced demyelination and astrogliosis in the perilesional area after SCI. Consistently, we found that TNF-α/IL-1ß-astrocyte activation was decreased and that oligodendrocyte precursor cell (OPC) differentiation was increased after recombinant mMCP6 treatment in vitro. Mechanistically, this suggests effects of mMCP6 on reducing astrogliosis and improving (re)myelination in the spinal cord after injury. In conclusion, these data show for the first time that recombinant mMCP6 is therapeutically active in enhancing recovery after SCI.


Asunto(s)
Remielinización , Traumatismos de la Médula Espinal , Ratones , Animales , Gliosis/tratamiento farmacológico , Gliosis/metabolismo , Cicatriz/tratamiento farmacológico , Cicatriz/prevención & control , Mastocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Ratones Noqueados , Recuperación de la Función , Modelos Animales de Enfermedad , Mamíferos
11.
Brain Behav Immun ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39242055

RESUMEN

Traumatic brain injury (TBI) is a disabling neurotraumatic condition and the leading cause of injury-related deaths and disability in the United States. Attenuation of neuroinflammation early after TBI is considered an important treatment target; however, while these inflammatory responses can induce secondary brain injury, they are also involved in the repair of the nervous system. Pioglitazone, which activates peroxisome proliferator-activated receptor gamma, has been shown to decrease inflammation acutely after TBI, but the long-term consequences of its use remain unknown. For this reason, the impacts of treatment with pioglitazone during the acute/subacute phase (30 min after injury and each subsequent 24 h for 5 days) after TBI were interrogated during the chronic phase (30- and 274-days post-injury (DPI)) in mice using the controlled cortical impact model of experimental TBI. Acute/subacute pioglitazone treatment after TBI results in long-term deleterious consequences, including disruption of tau homeostasis, chronic glial cell activation, neuronal pathology, and worsened injury severity particularly at 274 DPI, with male mice being more susceptible than female mice. Further, male pioglitazone-treated TBI mice exhibited increased dominant and offensive-like behavior while having a decreased non-social exploring behavior at 274 DPI. After TBI, both sexes exhibited glial activation at 30 DPI when treated with pioglitazone; however, while injury severity was increased in females it was not impacted in male mice. This work reveals that although pioglitazone has been shown to lead to attenuated TBI outcomes acutely, sex-based differences, timing and long-term consequences of treatment with glitazones must be considered and further studied prior to their clinical use for TBI therapy.

12.
Brain ; 146(11): 4469-4475, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37602426

RESUMEN

Traumatic brain injury (TBI) is common but little is known why up to a third of patients have persisting symptoms. Astrogliosis, a pathophysiological response to brain injury, may be a potential therapeutic target, but demonstration of astrogliosis in the brain of humans with TBI and persistent symptoms is lacking. Astroglial marker monoamine oxidase B (MAO-B) total distribution volume (11C-SL25.1188 VT), an index of MAO-B density, was measured in 29 TBI and 29 similarly aged healthy control cases with 11C-SL25.1188 PET, prioritizing prefrontal cortex (PFC) and cortex proximal to cortical convexity. Correlations of PFC 11C-SL25.1188 VT with psychomotor and processing speed; and serum blood measures implicated in astrogliosis were determined. 11C-SL25.1188 VT was greater in TBI in PFC (P = 0.00064) and cortex (P = 0.00038). PFC 11C-SL25.1188 VT inversely correlated with Comprehensive Trail Making Test psychomotor and processing speed (r = -0.48, P = 0.01). In participants scanned within 2 years of last TBI, PFC 11C-SL25.1188 VT correlated with serum glial fibrillary acid protein (r = 0.51, P = 0.037) and total tau (r = 0.74, P = 0.001). Elevated 11C-SL25.1188 VT argues strongly for astrogliosis and therapeutics modifying astrogliosis towards curative phenotypes should be tested in TBI with persistent symptoms. Given substantive effect size, astrogliosis PET markers should be applied to stratify cases and/or assess target engagement for putative therapeutics targeting astrogliosis.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Gliosis , Humanos , Anciano , Radioisótopos de Carbono/metabolismo , Gliosis/diagnóstico por imagen , Tomografía de Emisión de Positrones , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/metabolismo , Monoaminooxidasa/metabolismo
13.
Brain ; 146(3): 1212-1226, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35953450

RESUMEN

There are currently no non-invasive imaging methods available for astrogliosis assessment or mapping in the central nervous system despite its essential role in the response to many disease states, such as infarcts, neurodegenerative conditions, traumatic brain injury and infection. Multidimensional MRI is an increasingly employed imaging modality that maximizes the amount of encoded chemical and microstructural information by probing relaxation (T1 and T2) and diffusion mechanisms simultaneously. Here, we harness the exquisite sensitivity of this imagining modality to derive a signature of astrogliosis and disentangle it from normative brain at the individual level using machine learning. We investigated ex vivo cerebral cortical tissue specimens derived from seven subjects who sustained blast-induced injuries, which resulted in scar-border forming astrogliosis without being accompanied by other types of neuropathological abnormality, and from seven control brain donors. By performing a combined post-mortem radiology and histopathology correlation study we found that astrogliosis induces microstructural and chemical changes that are robustly detected with multidimensional MRI, and which can be attributed to astrogliosis because no axonal damage, demyelination or tauopathy were histologically observed in any of the cases in the study. Importantly, we showed that no one-dimensional T1, T2 or diffusion MRI measurement can disentangle the microscopic alterations caused by this neuropathology. Based on these findings, we developed a within-subject anomaly detection procedure that generates MRI-based astrogliosis biomarker maps ex vivo, which were significantly and strongly correlated with co-registered histological images of increased glial fibrillary acidic protein deposition (r = 0.856, P < 0.0001; r = 0.789, P < 0.0001; r = 0.793, P < 0.0001, for diffusion-T2, diffusion-T1 and T1-T2 multidimensional data sets, respectively). Our findings elucidate the underpinning of MRI signal response from astrogliosis, and the demonstrated high spatial sensitivity and specificity in detecting reactive astrocytes at the individual level, and if reproduced in vivo, will significantly impact neuroimaging studies of injury, disease, repair and aging, in which astrogliosis has so far been an invisible process radiologically.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Gliosis , Humanos , Gliosis/patología , Astrocitos/metabolismo , Encéfalo/patología , Imagen por Resonancia Magnética , Lesiones Traumáticas del Encéfalo/complicaciones , Proteína Ácida Fibrilar de la Glía/metabolismo
14.
Subcell Biochem ; 103: 253-277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37120471

RESUMEN

Ageing is associated with a morphological and functional decline of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is manifested by the shrinkage of astrocytic processes: branches and leaflets, which decreases synaptic coverage. Astrocytic dystrophy affects multiple functions astrocytes play in the brain active milieu. In particular, and in combination with an age-dependent decline in the expression of glutamate transporters, astrocytic atrophy translates into deficient glutamate clearance and K+ buffering. Decreased astrocyte presence may contribute to age-dependent remodelling of brain extracellular space, hence affecting extrasynaptic signalling. Old astrocytes lose endfeet polarisation of AQP4 water channels, thus limiting the operation of the glymphatic system. In ageing, astrocytes down-regulate their antioxidant capacity leading to decreased neuroprotection. All these changes may contribute to an age-dependent cognitive decline.


Asunto(s)
Astrocitos , Encéfalo , Astrocitos/metabolismo , Transducción de Señal , Glutamatos/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753498

RESUMEN

The homeostasis of protein palmitoylation and depalmitoylation is essential for proper physiological functions in various tissues, in particular the central nervous system (CNS). The dysfunction of PPT1 (PPT1-KI, infantile neuronal ceroid lipofuscinosis [INCL] mouse model), which catalyze the depalmitoylation process, results in serious neurodegeneration accompanied by severe astrogliosis in the brain. Endeavoring to determine critical factors that might account for the pathogenesis in CNS by palm-proteomics, glial fibrillary acidic protein (GFAP) was spotted, indicating that GFAP is probably palmitoylated. Questions concerning if GFAP is indeed palmitoylated in vivo and how palmitoylation of GFAP might participate in neural pathology remain unexplored and are waiting to be investigated. Here we show that GFAP is readily palmitoylated in vitro and in vivo; specifically, cysteine-291 is the unique palmitoylated residue in GFAP. Interestingly, it was found that palmitoylated GFAP promotes astrocyte proliferation in vitro. Furthermore, we showed that PPT1 depalmitoylates GFAP, and the level of palmitoylated GFAP is overwhelmingly up-regulated in PPT1-knockin mice, which lead us to speculate that the elevated level of palmitoylated GFAP might accelerate astrocyte proliferation in vivo and ultimately led to astrogliosis in INCL. Indeed, blocking palmitoylation by mutating cysteine-291 into alanine in GFAP attenuate astrogliosis, and remarkably, the concurrent neurodegenerative pathology in PPT1-knockin mice. Together, these findings demonstrate that hyperpalmitoylated GFAP plays critical roles in regulating the pathogenesis of astrogliosis and neurodegeneration in the CNS, and most importantly, pinpointing that cysteine-291 in GFAP might be a valuable pharmaceutical target for treating INCL and other potential neurodegenerative diseases.


Asunto(s)
Astrocitos/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Tioléster Hidrolasas/genética , Animales , Astrocitos/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Proteína Ácida Fibrilar de la Glía/genética , Gliosis/genética , Humanos , Lipoilación , Ratones , Ratones Endogámicos C57BL , Lipofuscinosis Ceroideas Neuronales/genética
16.
Ecotoxicol Environ Saf ; 279: 116480, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772146

RESUMEN

Microcystins (MCs) are toxic to the central nervous system of mammals. However, the direct toxicity of MCs on mammalian brain cells and the involved molecular mechanisms are not fully elucidated. Here, we incubated primary astrocytes, the major glial cell-type in the brain, with 0-12.5 µM concentrations of MC-LR for 48 h, and the impairment was evaluated. We found that MC-LR caused significant increases in the cell viability at the range of 0.05-1 µM concentrations with the highest density at 0.1 µM concentration. Treatment with 0.1 µM MC-LR induced YAP nuclear translocation and decreased the ratio of p-YAP to YAP. It also decreased mRNA levels of the upstream regulator (AMOT), and enhanced expressions of YAP interacted genes (Egfr, Tead1, and Ctgf) in primary astrocytes. Overexpression of AMOT significantly attenuated the increase of MC-LR-induced astrocyte proliferation and the expression of YAP downstream genes. These results indicate that Hippo signaling contributed to MC-LR-caused astrocyte proliferation. Further, reactive astrogliosis was observed in the mice brain after MC-LR exposure to environmentally relevant concentrations (20 or 100 µg/L) through drinking water for 16 weeks. Pathological observations revealed that 100 µg/L MC-LR exposure caused neuronal damages with characteristics of shrunken or vacuolation in the region of the cerebral cortex, striatum and cerebellum. These results were accompanied with increased oxidative stress and inflammatory response. Our data reveal the potential astrocytic mechanisms in MC-induced neurotoxicity and raise an alarm for neurodegenerative disease risk following daily exposure to MC-LR.


Asunto(s)
Astrocitos , Proliferación Celular , Vía de Señalización Hippo , Toxinas Marinas , Microcistinas , Transducción de Señal , Microcistinas/toxicidad , Animales , Astrocitos/efectos de los fármacos , Vía de Señalización Hippo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Señalizadoras YAP , Supervivencia Celular/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Receptores ErbB/metabolismo , Factores de Transcripción de Dominio TEA , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
17.
Alzheimers Dement ; 20(1): 483-493, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37690071

RESUMEN

INTRODUCTION: We studied how biomarkers of reactive astrogliosis mediate the pathogenic cascade in the earliest Alzheimer's disease (AD) stages. METHODS: We performed path analysis on data from 384 cognitively unimpaired individuals from the ALzheimer and FAmilies (ALFA)+ study using structural equation modeling to quantify the relationships between biomarkers of reactive astrogliosis and the AD pathological cascade. RESULTS: Cerebrospinal fluid (CSF) amyloid beta (Aß)42/40 was associated with Aß aggregation on positron emission tomography (PET) and with CSF p-tau181 , which was in turn directly associated with CSF neurofilament light (NfL). Plasma glial fibrillary acidic protein (GFAP) mediated the relationship between CSF Aß42/40 and Aß-PET, and CSF YKL-40 partly explained the association between Aß-PET, p-tau181 , and NfL. DISCUSSION: Our results suggest that reactive astrogliosis, as indicated by different fluid biomarkers, influences the pathogenic cascade during the preclinical stage of AD. While plasma GFAP mediates the early association between soluble and insoluble Aß, CSF YKL-40 mediates the latter association between Aß and downstream Aß-induced tau pathology and tau-induced neuronal injury. HIGHLIGHTS: Lower CSF Aß42/40 was directly linked to higher plasma GFAP concentrations. Plasma GFAP partially explained the relationship between soluble Aß and insoluble Aß. CSF YKL-40 mediated Aß-induced tau phosphorylation and tau-induced neuronal injury.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Biomarcadores/líquido cefalorraquídeo , Proteína 1 Similar a Quitinasa-3 , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/patología , Inflamación , Filamentos Intermedios/metabolismo , Filamentos Intermedios/patología , Proteínas tau/líquido cefalorraquídeo
18.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396755

RESUMEN

Brain diseases are oftentimes life-threatening and difficult to treat. The local administration of drug substances using brain implants can increase on-site concentrations and decrease systemic side effects. However, the biocompatibility of potential brain implant materials needs to be evaluated carefully as implants can trigger foreign body reactions, particularly by increasing the microglia and astrocyte reactivity. To date, these tests have been frequently conducted in very simple in vitro models, in particular not respecting the key players in glial cell reactions and the challenges of surgical implantation characterized by the disruption of oxygen and nutrient supply. Thus, we established an in vitro model in which we treated human glial cell lines with reduced oxygen and glucose levels. The model displayed cytokine and reactive oxygen species release from reactive microglia and an increase in a marker of reactive astrocytes, galectin-3. Moreover, the treatment caused changes in the cell survival and triggered the production of hypoxia-inducible factor 1α. In this comprehensive platform, we demonstrated the protective effect of the natural polyphenol resveratrol as a model substance, which might be included in brain implants to ease the undesired glial cell response. Overall, a glial-cell-based in vitro model of the initial challenges of local brain disease treatment may prove useful for investigating new therapy options.


Asunto(s)
Encefalopatías , Neuroglía , Humanos , Resveratrol/farmacología , Resveratrol/metabolismo , Neuroglía/metabolismo , Astrocitos/metabolismo , Microglía/metabolismo , Encefalopatías/metabolismo , Oxígeno/metabolismo
19.
J Neurosci ; 42(31): 5992-6006, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35760531

RESUMEN

Cognitive decline is a debilitating aspect of aging and neurodegenerative diseases such as Alzheimer's disease are closely associated with mitochondrial dysfunction, increased reactive oxygen species, neuroinflammation, and astrogliosis. This study investigated the effects of decreased mitochondrial antioxidant response specifically in astrocytes on cognitive performance and neuronal function in C57BL/6J mice using a tamoxifen-inducible astrocyte-specific knockout of manganese superoxide dismutase (aSOD2-KO), a mitochondrial matrix antioxidant that detoxifies superoxide generated during mitochondrial respiration. We reduced astrocyte SOD2 levels in male and female mice at 11-12 months of age and tested in an automated home cage (PhenoTyper) apparatus for diurnal patterns, spatial learning, and memory function at 15 months of age. aSOD2-KO impaired hippocampal-dependent spatial working memory and decreased cognitive flexibility in the reversal phase of the testing paradigm in males. Female aSOD2-KO showed no learning and memory deficits compared with age-matched controls despite significant reduction in hippocampal SOD2 expression. aSOD2-KO males further showed decreased hippocampal long-term potentiation, but paired-pulse facilitation was unaffected. Levels of d-serine, an NMDA receptor coagonist, were also reduced in aSOD2-KO mice, but female knockouts showed a compensatory increase in serine racemase expression. Furthermore, aSOD2-KO mice demonstrated increased density of astrocytes, indicative of astrogliosis, in the hippocampus compared with age-matched controls. These data demonstrate that reduction in mitochondrial antioxidant stress response in astrocytes recapitulates age-related deficits in cognitive function, d-serine availability, and astrogliosis. Therefore, improving astrocyte mitochondrial homeostasis may provide a therapeutic target for intervention for cognitive impairment in aging.SIGNIFICANCE STATEMENT Diminished antioxidant response is associated with increased astrogliosis in aging and in Alzheimer's disease. Manganese superoxide dismutase (SOD2) is an antioxidant in the mitochondrial matrix that detoxifies superoxide and maintains mitochondrial homeostasis. We show that astrocytic ablation of SOD2 impairs hippocampal-dependent plasticity in spatial working memory, reduces long-term potentiation of hippocampal neurons and levels of the neuromodulator d-serine, and increases astrogliosis, consistent with defects in advanced aging and Alzheimer's disease. Our data provide strong evidence for sex-specific effects of astrocytic SOD2 functions in age-related cognitive dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Superóxido Dismutasa , Enfermedad de Alzheimer/metabolismo , Animales , Antioxidantes/metabolismo , Astrocitos/metabolismo , Cognición/fisiología , Femenino , Gliosis/metabolismo , Hipocampo/metabolismo , Masculino , Memoria a Corto Plazo , Ratones , Ratones Endogámicos C57BL , Serina/metabolismo , Factores Sexuales , Superóxido Dismutasa/genética , Superóxidos/metabolismo
20.
J Neurochem ; 164(3): 309-324, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34931315

RESUMEN

Astrocytes are highly efficient homeostatic glial cells playing a crucial role in optimal brain functioning and homeostasis. Astrocytes respond to changes in brain homoeostasis following central nervous system (CNS) injury/diseased state by a specific defence mechanism called reactive astrogliosis. Recent studies have implicated and placed reactive astrogliosis in the centre of pathophysiology of Alzheimer's disease (AD) and other neurodegenerative disorders. The AD biomarker field is evolving rapidly with new findings providing strong evidence which supports the notion that a reactive astrogliosis is an early event in the time course of AD progression which may precede other pathological hallmarks of AD. Clinical/translational in vivo PET and in vitro postmortem brain imaging studies demonstrated 'a first and second wave' of reactive astrogliosis in AD with distinct close-loop relationships with other pathological biomarkers at different stages of the disease. At the end stages, reactive astrocytes are found to be associated, or in proximity, with amyloid plaque and tau pathological deposits in postmortem AD brains. Several new PET-tracers, which are being in pipeline and validated at a very fast pace for mapping and visualising reactive astrogliosis in the brain, will provide further invaluable mechanistic insights into AD and other non-AD dementia pathologies. The complementary roles of microglia and astrocyte activation in AD progression, along with the clinical value of new fluid astrocytes biomarkers in the context of existing biomarkers, are the latest avenue that needs further exploration.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Gliosis/patología , Sistema Nervioso Central , Encéfalo/patología , Astrocitos/fisiología , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA