RESUMEN
Schistosomiasis is a snail-born, neglected tropical disease (NTD) caused by blood flukes (trematode worms) of the genusSchistosoma. It is the second most socioeconomically devastating parasitic disease after malaria. Urogenital schistosomiasis is caused by Schistosoma haematobium which is transmitted by snail intermediate host of the genus Bulinus. This genus is a model system for the study of polyploidy in animals. This study aims to investigate ploidy levels existing among the Bulinus species and their compatibility with S. haematobium. The specimens were collected from two governorates in Egypt. Chromosomal preparation was made from gonad tissue (ovotestis). This study found two ploidy levels (tetraploid, n = 36 and hexaploid, n = 54) of B. truncatus/tropicus complex in Egypt. Tetraploid B. truncatus was found in El-Beheira governorate while-unexpectedly and for the first time in Egypt, the hexaploid population was found in Giza governorate. This identification focused on shell morphology, chromosomal count, and spermatozoa of each species. Afterward, all species were exposed to S. haematobium miracidia where B. hexaploidus snails were the only refractory species. The histopathological study showed early destruction and abnormal development of S. haematobium in B. hexaploidus tissues. In addition, the hematological investigation showed increasing in the total hemocyte count, the formation of vacuoles, several pseudopodia, and more dense granules in the hemocytes of infected B. hexaploidus snails. In conclusion, there were two types of snails one was refractory and the other was susceptible.
Asunto(s)
Bulinus , Esquistosomiasis Urinaria , Masculino , Animales , Bulinus/genética , Bulinus/parasitología , Schistosoma haematobium/genética , Tetraploidía , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis Urinaria/parasitología , Vectores de EnfermedadesRESUMEN
Bulinus truncatus snail is one of the most medically important snails. The goal of this study was to evaluate the molluscicidal effect of saponin on these snails and study how it affects their biological functions. The present results showed that saponin had a molluscicidal activity against adult B. truncatus snails after 24h and 72h with LC50 (57.5 and 27.1 ppm, respectively) and had ovicidal acivity on the snails' embryos. By studying the effect of the sublethal concentrations (LC10 48.63 ppm or LC25 52.83 ppm) exposure on B. truncatus snails, they resulted in significant decreases in the survivorship, egg-laying, and the reproductive rate compared to untreated snails. Both concentrations caused morphological changes to the snails' hemocytes, where, after the exposure, granulocytes and hyalinocytes had irregular outer cell membrane and some cell formed pseudopodia. Granulocytes had large number of granules, vacuoles, while hyalinocytes' nucleus was shrunken. Also, these concentrations resulted in significant increases in sex hormone levels (17ß-estradiol and testosterone) in tissue homogenate of B. truncatus snails. It resulted in significant decrease in total antioxidant (TAO) activity, while, significantly increased lipid peroxidase (LPO) level, superoxide dismutase (SOD), nitrogen oxide (NO), and glutathione-S-transferase (GST) as compared to control group. Histopathological and genotoxicological damages occurred in snails' tissue after exposure to these concentrations. Conclusion, saponin has a molluscicidal effect on B. truncatus snails and might be used for the control of schistosomiasis haematobium. Besides, these snails could be used as invertebrate models to reflect the toxic effects of saponin in the aquatic ecosystem.
Asunto(s)
Moluscocidas , Saponinas , Animales , Bulinus , Saponinas/farmacología , Ecosistema , Caracoles , Moluscocidas/toxicidad , Estrés OxidativoRESUMEN
BACKGROUND: Sound knowledge of the abundance and distribution of intermediate host snails is key to understanding schistosomiasis transmission and to inform effective interventions in endemic areas. METHODS: A longitudinal field survey of freshwater snails of biomedical importance was undertaken in the Niger River Valley (NRV) between July 2011 and January 2016, targeting Bulinus spp. and Biomphalaria pfeifferi (intermediate hosts of Schistosoma spp.), and Radix natalensis (intermediate host of Fasciola spp.). Monthly snail collections were carried out in 92 sites, near 20 localities endemic for S. haematobium. All bulinids and Bi. pfeifferi were inspected for infection with Schistosoma spp., and R. natalensis for infection with Fasciola spp. RESULTS: Bulinus truncatus was the most abundant species found, followed by Bulinus forskalii, R. natalensis and Bi. pfeifferi. High abundance was associated with irrigation canals for all species with highest numbers of Bulinus spp. and R. natalensis. Seasonality in abundance was statistically significant in all species, with greater numbers associated with dry season months in the first half of the year. Both B. truncatus and R. natalensis showed a negative association with some wet season months, particularly August. Prevalences of Schistosoma spp. within snails across the entire study were as follows: Bi. pfeifferi: 3.45% (79/2290); B. truncatus: 0.8% (342/42,500); and B. forskalii: 0.2% (24/11,989). No R. natalensis (n = 2530) were infected. Seasonality of infection was evident for B. truncatus, with highest proportions shedding in the middle of the dry season and lowest in the rainy season, and month being a significant predictor of infection. Bulinus spp. and Bi. pfeifferi showed a significant correlation of snail abundance with the number of snails shedding. In B. truncatus, both prevalence of Schistosoma spp. infection, and abundance of shedding snails were significantly higher in pond habitats than in irrigation canals. CONCLUSIONS: Evidence of seasonality in both overall snail abundance and infection with Schistosoma spp. in B. truncatus, the main intermediate host in the region, has significant implications for monitoring and interrupting transmission of Schistosoma spp. in the NRV. Monthly longitudinal surveys, representing intensive sampling effort have provided the resolution needed to ascertain both temporal and spatial trends in this study. These data can inform planning of interventions and treatment within the region.