RESUMEN
Bacterial sensing by intestinal tumor cells contributes to tumor growth through cell-intrinsic activation of the calcineurin-NFAT axis, but the role of this pathway in other intestinal cells remains unclear. Here, we found that myeloid-specific deletion of calcineurin in mice activated protective CD8+ T cell responses and inhibited colorectal cancer (CRC) growth. Microbial sensing by myeloid cells promoted calcineurin- and NFAT-dependent interleukin 6 (IL-6) release, expression of the co-inhibitory molecules B7H3 and B7H4 by tumor cells, and inhibition of CD8+ T cell-dependent anti-tumor immunity. Accordingly, targeting members of this pathway activated protective CD8+ T cell responses and inhibited primary and metastatic CRC growth. B7H3 and B7H4 were expressed by the majority of human primary CRCs and metastases, which was associated with low numbers of tumor-infiltrating CD8+ T cells and poor survival. Therefore, a microbiota-, calcineurin-, and B7H3/B7H4-dependent pathway controls anti-tumor immunity, revealing additional targets for immune checkpoint inhibition in microsatellite-stable CRC.
Asunto(s)
Neoplasias Colorrectales , Microbiota , Animales , Antígenos B7 , Linfocitos T CD8-positivos , Calcineurina/metabolismo , Neoplasias Colorrectales/metabolismo , Ratones , Factores de Transcripción NFATC/metabolismo , Inhibidor 1 de la Activación de Células T con Dominio V-SetRESUMEN
B7-H3 (B7 homology 3 protein) is an important transmembrane immunoregulatory protein expressed in immune cells, antigen-presenting cells, and tumor cells. Studies reveal a multifaceted role of B7-H3 in tumor progression by modulating various cancer hallmarks involving angiogenesis, immune evasion, and tumor microenvironment, and it is also a promising candidate for cancer immunotherapy. In colorectal cancer (CRC), B7-H3 has been associated with various aspects of disease progression, such as evasion of tumor immune surveillance, tumor-node metastasis, and poor prognosis. Strategies to block or interfere with B7-H3 in its immunological and non-immunological functions are under investigation. In this study, we explore the role of B7-H3 in tumor plasticity, emphasizing tumor glucose metabolism, angiogenesis, epithelial-mesenchymal transition, cancer stem cells, apoptosis, and changing immune signatures in the tumor immune landscape. We discuss how B7-H3-induced tumor plasticity contributes to immune evasion, metastasis, and therapy resistance. Furthermore, we delve into the most recent advancements in targeting B7-H3-based tumor immunotherapy as a potential approach to CRC treatment.
Asunto(s)
Antígenos B7 , Neoplasias Colorrectales , Humanos , Antígenos B7/metabolismo , Neoplasias Colorrectales/patología , Inmunoterapia , Microambiente TumoralRESUMEN
Neuroblastoma (NB), a common solid tumour in young children originating from the sympathetic nervous system during embryonic development, poses challenges despite therapeutic advances like high-dose chemotherapy and immunotherapy. Some survivors still grapple with severe side effects and drug resistance. The role of lncRNA NUTM2A-AS1 has been explored in various cancers, but its function in drug-resistant NB progression is unclear. Our study found that NUTM2A-AS1 expression in cisplatin-resistant NB cells increased in a time- and dose-dependent manner. Knockdown of NUTM2A-AS1 significantly improved NB cell sensitivity to cisplatin and inhibited metastatic abilities. Additionally, we identified B7-H3, an immune checkpoint-related protein, as a NUTM2A-AS1-associated protein in NB cells. NUTM2A-AS1 was shown to inhibit the protein degradation of B7-H3. Moreover, NUTM2A-AS1 modulated immune evasion in cisplatin-resistant NB cells through B7-H3. Furthermore, NUTM2A-AS1 expression in cisplatin-resistant NB cells was transactivated by NR1D1. In summary, our results unveil the molecular or biological relationship within the NR1D1/NUTM2A-AS1/B7-H3 axis in NB cells under cisplatin treatment, providing an intriguing avenue for fundamental research into cisplatin-resistant NB.
Asunto(s)
Antígenos B7 , Cisplatino , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neuroblastoma , ARN Largo no Codificante , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Resistencia a Antineoplásicos/genética , Antígenos B7/metabolismo , Antígenos B7/genética , ARN Largo no Codificante/genética , Cisplatino/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Evasión Inmune , Animales , Proteolisis/efectos de los fármacos , RatonesRESUMEN
In recent years, in the development of emerging immunotherapy, B7-H3 is also termed as CD276 and has become a novel chimeric antigen receptor (CAR)-T target against glioma and other tumours, and aroused extensive attention. However, B7-H3 has three isoforms (2, 3 and 4Ig) with the controversial expression and elusive function in tumour especially glioma. The current study mainly focuses on the regulatory factors and related mechanisms of generation of different B7-H3 isoforms. First, we have determined that 2Ig is dominant in glioma with high malignancy, and 4Ig is widely expressed, whereas 3Ig shows negative expression in all glioma. Next, we have further found that RNA binding protein annexin A2 (ANXA2) is essential for B7-H3 isoform maintenance, but fail to determine the choice of 4Ig or 2Ig. RNA methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and 5-methylcytosine reader Y-box binding protein 1 (YBX1) facilitate the production of 2Ig. Our findings have uncovered a series of factors (ANXA2/NSUN2/YBX1) that can determine the alternative generation of different isoforms of B7-H3 in glioma. Our result aims to help peers gain a clearer understanding of the expression and regulatory mechanisms of B7H3 in tumour patients, and to provide better strategies for designing B7H3 as a target in immunotherapy.
Asunto(s)
Anexina A2 , Antígenos B7 , Regulación Neoplásica de la Expresión Génica , Glioma , Isoformas de Proteínas , Humanos , Glioma/genética , Glioma/metabolismo , Glioma/patología , Antígenos B7/metabolismo , Antígenos B7/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Anexina A2/metabolismo , Anexina A2/genética , Línea Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologíaRESUMEN
Despite surgical treatment combined with multidrug therapy having made some progress, chemotherapy resistance is the main cause of recurrence and death of gastric cancer (GC). Gastric cancer mesenchymal stem cells (GCMSCs) have been reported to be correlated with the limited efficacy of chemotherapy in GC, but the mechanism of GCMSCs regulating GC resistance needs to be further studied. The gene set enrichment analysis (GSEA) was performed to explore the glycolysis-related pathways heterogeneity across different cell subpopulations. Glucose uptake and lactate production assays were used to evaluate the importance of B7H3 expression in GCMSCs-treated GC cells. The therapeutic efficacy of oxaliplatin (OXA) and paclitaxel (PTX) was determined using CCK-8 and colony formation assays. Signaling pathways altered by GCMSCs-CM were revealed by immunoblotting. The expression of TNF-α in GCMSCs and bone marrow mesenchymal stem cells (BMMSCs) was detected by western blot analysis and qPCR. Our results showed that the OXA and PTX resistance of GC cells were significantly enhanced in the GCMSCs-CM treated GC cells. Acquired OXA and PTX resistance was characterized by increased cell viability for OXA and PTX, the formation of cell colonies, and decreased levels of cell apoptosis, which were accompanied by reduced levels of cleaved caspase-3 and Bax expression, and increased levels of Bcl-2, HK2, MDR1, and B7H3 expression. Blocking TNF-α in GCMSCs-CM, B7H3 knockdown or the use of 2-DG, a key enzyme inhibitor of glycolysis in GC cells suppressed the OXA and PTX resistance of GC cells that had been treated with GCMSCs-CM. This study shows that GCMSCs-CM derived TNF-α could upregulate the expression of B7H3 of GC cells to promote tumor chemoresistance. Our results provide a new basis for the treatment of GC.
Asunto(s)
Células Madre Mesenquimatosas , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Quimioterapia Combinada , Glucólisis , Leprostáticos/farmacología , Células Madre Mesenquimatosas/metabolismo , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Targeting novel inhibitory ligands beyond anti-PD-1 and PD-L1 and CTLA-4 therapies is essential for the next decade of the immunotherapy era. Agents for the B7 family molecules B7-H3, B7-H4, and B7-H5 are emerging in clinical trial phases; therefore, further accumulation of evidence from both clinical and basic aspects is vital. Here, we applied a 7-color multiplexed imaging technique to analyze the profile of B7 family B7-H3/B7-H4/B7-H5 expression, in addition to PD-L1, and the spatial characteristics of immune cell infiltrates in urothelial carcinoma (UC). The results revealed that B7-H3 and B7-H4 were mainly expressed on tumor cells and B7-H5 on immune cells in UC, and most of the B7-H3/B7-H4/B7-H5-positive cells were mutually exclusive with PD-L1-positive cells. Also, the expression of B7-H4 was elevated in patients with advanced pathologic stages, and high B7-H4 expression was a significant factor affecting overall mortality following surgery in UC. Furthermore, spatial analysis revealed that the distance from the B7-H4+ cells to the nearest CD8+ cells was markedly far compared with other B7 family-positive tumor cells. Interestingly, the distance from B7-H4+ cells to the nearest CD8+ cells was significantly farther in patients dying from cancer after surgery or immune checkpoint inhibitors compared with cancer survivors; thus, high B7-H4 expression in tumor cells may inhibit CD8 infiltration into the tumor space and that B7-H4-positive cells form a specific spatial niche. In summary, we performed a comprehensive evaluation of B7 family member expression and found that the spatial distribution of B7-H4 suggests the potentially useful role of combination blockade with both B7-H4 and the current anti-PD-1/PD-L1 axis in the treatment of UC.
Asunto(s)
Antígenos B7 , Neoplasias de la Vejiga Urinaria , Inhibidor 1 de la Activación de Células T con Dominio V-Set , Humanos , Antígenos B7/metabolismo , Inhibidor 1 de la Activación de Células T con Dominio V-Set/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología , Femenino , Masculino , Persona de Mediana Edad , Antígeno B7-H1/metabolismo , Anciano , Análisis de la Célula Individual , Carcinoma de Células Transicionales/metabolismo , Carcinoma de Células Transicionales/inmunología , InmunoglobulinasRESUMEN
BACKGROUND: Glioblastoma multiforme (GBM) is the most lethal primary brain tumor for which novel therapies are needed. Recently, chimeric antigen receptor (CAR) T cell therapy has been shown to be effective against GBM, but it is a personalized medicine and requires high cost and long time for the cell production. CAR-transduced natural killer (NK) cells can be used for "off-the-shelf" cellular immunotherapy because they do not induce graft-versus-host disease. Therefore, we aimed to analyze the anti-GBM effect of CAR-T or NK cells targeting B7-H3, which is known to be highly expressed in GBM. METHODS: CAR-T cells targeting B7-H3 were generated using previously reported anti-B7-H3 scFv sequences. Cord blood (CB)-derived NK cells transduced with the B7-H3 CAR were also generated. Their anti-GBM effect was analyzed in vitro. The antitumor effect of intracranial injection of the B7-H3 CAR-T or NK cells was investigated in an in vivo xenograft model with patient-derived GBM cells. RESULTS: Both B7-H3 CAR-T cells and CAR-NK cells exhibited marked cytotoxicity against patient-derived GBM cells in vitro. Furthermore, intracranial injection of CAR-T cells and CAR-NK cells targeting B7-H3 resulted in a significant antitumor effect against patient-derived GBM xenografts. CONCLUSION: Not only CAR-T cells but also CB-derived CAR-NK cells targeting B7-H3 may have the potential to eliminate GBM cells.
Asunto(s)
Antígenos B7 , Neoplasias Encefálicas , Glioblastoma , Inmunoterapia Adoptiva , Células Asesinas Naturales , Receptores Quiméricos de Antígenos , Ensayos Antitumor por Modelo de Xenoinjerto , Glioblastoma/terapia , Glioblastoma/inmunología , Glioblastoma/patología , Animales , Humanos , Antígenos B7/inmunología , Antígenos B7/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/trasplante , Ratones , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Línea Celular Tumoral , FemeninoRESUMEN
BACKGROUND: GD2-directed immunotherapy is highly effective in the treatment of high-risk neuroblastoma (NB), and might be an interesting target also in other high-risk tumors. METHODS: The German-Austrian Retinoblastoma Registry, Essen, was searched for patients, who were treated with anti-GD2 monoclonal antibody (mAb) dinutuximab beta (Db) in order to evaluate toxicity, response and outcome in these patients. Additionally, we evaluated anti-GD2 antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in retinoblastoma cell lines in vitro. Furthermore, in vitro cytotoxicity assays directed against B7-H3 (CD276), a new identified potential target in RB, were performed. RESULTS: We identified four patients with relapsed stage IV retinoblastoma, who were treated with Db following autologous stem cell transplantation (ASCT). Two out of two evaluable patients with detectable tumors responded to immunotherapy. One of these and another patient who received immunotherapy without residual disease relapsed 10 and 12 months after start of Db. The other patients remained in remission until last follow-up 26 and 45 months, respectively. In vitro, significant lysis of RB cell lines by ADCC and CDC with samples from patients and healthy donors and anti-GD2 and anti-CD276-mAbs were demonstrated. CONCLUSION: Anti-GD2-directed immunotherapy represents an additional therapeutic option in high-risk metastasized RB. Moreover, CD276 is another target of interest.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/terapia , Trasplante Autólogo , Recurrencia Local de Neoplasia , Inmunoterapia , Gangliósidos , Antígenos B7RESUMEN
Recent studies have indicated that combining oncolytic viruses with CAR-T cells in therapy has shown superior anti-tumor effects, representing a promising approach. Nonetheless, the localized delivery method of intratumoral injection poses challenges for treating metastatic tumors or distal tumors that are difficult to reach. To address this obstacle, we employed HSV-1-infected CAR-T cells, which systemically delivery HSV into solid tumors. The biological function of CAR-T cells remained intact after loading them with HSV for a period of three days. In both immunocompromised and immunocompetent GBM orthotopic mouse models, B7-H3 CAR-T cells effectively delivered HSV to tumor lesions, resulting in enhanced T-cell infiltration and significantly prolonged survival in mice. We also employed a bilateral subcutaneous tumor model and observed that the group receiving intratumoral virus injection exhibited a significant reduction in tumor volume on the injected side, while the group receiving intravenous infusion of CAR-T cells carrying HSV displayed suppressed tumor growth on both sides. Hence, CAR-THSV cells offer notable advantages in the systemic delivery of HSV to distant tumors. In conclusion, our findings emphasize the potential of CAR-T cells as carriers for HSV, presenting significant advantages for oncolytic virotherapy targeting distant tumors.
Asunto(s)
Inmunoterapia Adoptiva , Viroterapia Oncolítica , Virus Oncolíticos , Receptores Quiméricos de Antígenos , Animales , Ratones , Viroterapia Oncolítica/métodos , Humanos , Virus Oncolíticos/inmunología , Virus Oncolíticos/genética , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Herpesvirus Humano 1/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Linfocitos T/inmunología , Femenino , Glioblastoma/terapia , Glioblastoma/inmunologíaRESUMEN
Chordoma is a rare bone tumor that frequently recurs after surgery, and the prognosis is poor with current treatments. This study aimed to identify potential novel immunotherapeutic targets for chordomas by identifying target proteins in clinical samples as well as tumor microenvironmental factors to enhance efficacy. Fourteen chordoma samples were analyzed by single-cell RNA sequencing, and B7-H3 and IL-7 were identified as potential targets and potentiators, respectively. B7-H3-targeted chimeric antigen receptor T (CAR-T) cells and B7-H3 CAR-T cells expressing IL-7 were synthesized and their anti-tumor activity evaluated in vitro, including in primary chordoma organoid models. The B7-H3 CAR-T/IL-7 therapy showed enhanced cytotoxicity and prolonged duration of action against tumor cells. Additionally, IL-7 modulated favorable subpopulations of cultured CAR-T cells, diminished immune checkpoint expression on T-cell surfaces, and enhanced T-cell functionality. The incorporation of IL-7 molecules into the B7-H3 CAR structure augmented CAR-T-cell function and improved CAR-T-cell efficacy, thus providing a novel dual therapeutic strategy for chordoma treatment.
Asunto(s)
Antígenos B7 , Cordoma , Inmunoterapia Adoptiva , Interleucina-7 , Receptores Quiméricos de Antígenos , Cordoma/inmunología , Cordoma/terapia , Cordoma/patología , Cordoma/metabolismo , Cordoma/genética , Humanos , Interleucina-7/metabolismo , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/genética , Antígenos B7/metabolismo , Antígenos B7/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Microambiente Tumoral/inmunología , Supervivencia Celular , Línea Celular Tumoral , AdultoRESUMEN
BACKGROUND: Breast cancer (BC) is the most common malignancy in women. Immunotherapy has revolutionized treatment options in many malignancies, and the introduction of immune checkpoint inhibition yielded beneficial results also in BC. However, many BC patients are ineligible for this T cell-based therapy, others do not respond or only briefly. Thus, there remains a high medical need for new therapies, particularly for triple-negative BC. CD276 (B7-H3) is overexpressed in several tumors on both tumor cells and tumor vessels, constituting a promising target for immunotherapy. METHODS: We analyzed tumor samples of 25 patients using immunohistochemistry to assess CD276 levels. The potential of CC-3, a novel bispecific CD276xCD3 antibody, for BC treatment was evaluated using various functional in vitro assays. RESULTS: Pronounced expression of CD276 was observed in all analyzed tumor samples including triple negative BC. In analyses with BC cells, CC-3 induced profound T cell activation, proliferation, and T cell memory subset formation. Moreover, treatment with CC-3 induced cytokine secretion and potent tumor cell lysis. CONCLUSION: Our findings characterize CD276 as promising target and preclinically document the therapeutic potential of CC-3 for BC treatment, providing a strong rationale for evaluation of CC-3 in BC patients in a clinical trial for which the recruitment has recently started.
Asunto(s)
Antígenos B7 , Neoplasias de la Mama , Inmunoterapia , Linfocitos T , Humanos , Femenino , Antígenos B7/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Inmunoterapia/métodos , Linfocitos T/inmunología , Línea Celular Tumoral , Persona de Mediana Edad , Activación de Linfocitos/inmunología , Proliferación Celular , Anciano , Citocinas/metabolismo , AdultoRESUMEN
Neuroblastoma (NB) is a solid, neuroendocrine pediatric solid tumor with divergent clinical behavior. Patients with high-risk diseases have poor prognoses despite complex multimodal therapy, which requires the search for new therapeutic approaches. Chimeric antigen receptor T cells (CAR-T) have led to dramatic improvements in the survival of cancer patients, most notably those with hematologic malignancies. Early-phase clinical trials of CAR-T cell therapy for NB have proven safe and feasible, but limited clinical efficacy. At the same time, multiple experimental and preclinical studies have shown that the most common in clinical trials single 2nd or 3rd generation CAR structure is not sufficient for a complete response in solid tumors. Here, we review the recent advances and future perspectives associated with engineered receptors, including several antigens binding, armored CAR-T of 4th and 5th generation and CAR-T cell combination strategies with other immunotherapy. We also summarize the results and shortcomings of ongoing clinical trials of CAR-T therapy for NB.
Asunto(s)
Inmunoterapia Adoptiva , Neuroblastoma , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Neuroblastoma/terapia , Neuroblastoma/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/uso terapéutico , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Ensayos Clínicos como Asunto , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/uso terapéutico , Receptores de Antígenos de Linfocitos T/genética , Animales , Terapia Combinada/métodosRESUMEN
Breast cancer (BC) is the second-leading factor of mortality for women globally and is brought on by a variety of genetic and environmental causes. The conventional treatments for this disease have limitations, making it difficult to improve the lifespan of breast cancer patients. As a result, extensive research has been conducted over the past decade to find innovative solutions to these challenges. Targeting of the antitumor immune response through the immunomodulatory checkpoint protein B7 family has revolutionized cancer treatment and led to intermittent patient responses. B7-H3 has recently received attention because of its significant demodulation and its immunomodulatory effects in many cancers. Uncontrolled B7-H3 expression and a bad outlook are strongly associated, according to a substantial body of cancer research. Numerous studies have shown that BC has significant B7-H3 expression, and B7-H3 induces an immune evasion phenotype, consequently enhancing the survival, proliferation, metastasis, and drug resistance of BC cells. Thus, an innovative target for immunotherapy against BC may be the B7-H3 checkpoint.In this review, we discuss the structure and regulation of B7-H3 and its double costimulatory/coinhibitory function within the framework of cancer and normal physiology. Then we expound the malignant behavior of B7-H3 in BC and its role in the tumor microenvironment (TME) and finally focus on targeted drugs against B7-H3 that have opened new therapeutic opportunities in BC.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Antígenos B7/metabolismo , Inmunoterapia , Inmunomodulación , Microambiente TumoralRESUMEN
PURPOSE: Targeted therapy development in soft tissue sarcoma (STS) has been burdened by the heterogeneity of this group of rare tumors. B7 homolog 3 protein (B7-H3) is a molecule in the same family as programmed death-ligand 1 (PD-L1). It has limited expression in noncancerous tissues and is overexpressed in many cancers, making it an attractive target for cancer therapy, and clinical trials targeting B7-H3 are actively underway. While available data demonstrate high expression levels of B7-H3 in individual sarcoma subtypes, its expression patterns across STS subtypes are not well described. The purpose of this study was to characterize the expression patterns of B7-H3 in STS. PATIENTS AND METHODS: This retrospective analysis evaluated STS tumor specimens from patients with a variety of different subtypes. Specimens were evaluated by immunohistochemistry (IHC) for expression and staining pattern of B7-H3 both in tumors and in associated vasculature. RESULTS: Specimens from 153 sarcoma patients included 15 different STS subtypes. B7-H3 was broadly expressed in 97% of samples (95% CI 0.93-0.99) and 69.2% demonstrated high levels of B7-H3 expression (95% CI 0.61-0.76). No significant association between B7-H3 positivity or expression level and prior treatment(s), tumor size, tumor grade, or patient age. B7-H3 positivity in vessels was found in 94.7% (145/153) of samples. In tumors that had been previously assessed for PD-L1 and PD-1, there was no correlation between B7-H3 positivity or expression and the positivity or expression level of PD-L1 or PD-1. CONCLUSION: These data show high levels of B7-H3 positivity across soft tissue sarcoma subtypes, suggesting its feasibility as a therapeutic target for future sarcoma treatments. Future clinical trials are needed to evaluate whether targeting B7-H3 can provide clinical benefit to help patients with sarcoma.
Asunto(s)
Antígenos B7 , Sarcoma , Humanos , Antígenos B7/metabolismo , Sarcoma/metabolismo , Sarcoma/patología , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Inmunohistoquímica , Anciano de 80 o más Años , Adulto Joven , AdolescenteRESUMEN
B7-H3 has emerged as a promising target and potential biomarker for diagnosing tumors, evaluating treatment efficacy, and determining patient prognosis. Hu4G4 is a recombinant humanized antibody that selectively targets the extracellular domain of human B7-H3. In this study, we describe the radiolabeling of hu4G4 with the positron emission tomography (PET) emitter radionuclide zirconium 89 (89Zr) and evaluate its potency as an immuno-PET tracer for B7-H3-targeted imaging by comparing it in vitro and in vivo to [89Zr]Zr-DFO-DS-5573a using various models. The radiolabeled compound, [89Zr]Zr-desferrioxamine-hu4G4 ([89Zr]Zr-DFO-hu4G4), demonstrated a high radiochemical purity (RCP) of greater than 99% and a specific activity of 74 MBq/mg following purification. Additionally, it maintained stability in human serum albumin (HSA) and acetate buffer, preserving over 90% of its RCP after 7 days. Three cell lines targeting human B7-H3(U87/CT26-CD276/GL261-CD276) were used. Flow cytometry analysis indicated that the B7-H3-positive cells (U87/CT26-CD276/GL261-CD276) had a higher B7-H3 protein level with no expression in the B7-H3-negative cells (CT26-wt/GL261-wt) (P < 0.001). Moreover, the cellular uptake was 45.71 ± 3.78% for [89Zr]Zr-DFO-hu4G4 in CT26-CD276 cells versus only 0.93 ± 0.47% in CT26-wt cells and 30.26 ± 0.70% when [89Zr]Zr-DFO-hu4G4 in CT26-CD276 cells were blocked with 100× 8H9. The cellular uptake of [89Zr]Zr-DFO-hu4G4 was akin to that observed with [89Zr]Zr-DFO-DS-5573a with no significant differences (45.71 ± 3.78 % vs 47.07 ± 0.86 %) in CT26-CD276 cells. Similarly, the CT26-CD276 mouse model demonstrated markedly low organ uptake and elevated tumor uptake 48 h after [89Zr]Zr-DFO-hu4G4 injection. PET/CT analysis showed that the tumor-to-muscle (T/M) ratios were substantially higher compared to other imaging groups: 27.65 ± 3.17 in CT26-CD276 mice versus 11.68 ± 4.19 in CT26-wt mice (P < 0.001) and 16.40 ± 0.78 when 100× 8H9 was used to block [89Zr]Zr-DFO-hu4G4 in CT26-CD276 mice (P < 0.01) at 48 h post-injection. Additionally, the tracer showed markedly high accumulation in the tumor region (22.57 ± 3.03% ID/g), comparable to the uptake of [89Zr]Zr-DFO-DS-5573a (24.76 ± 5.36% ID/g). A dosimetry estimation study revealed that the effective dose for [89Zr]Zr-DFO-hu4G4 was 2.96 × 10-01 mSv/MBq, which falls within the acceptable range for further research in nuclear medicine. Collectively, these results indicated that [89Zr]Zr-DFO-hu4G4 was successfully fabricated and applied in B7-H3-targeted tumor PET/CT imaging, which showed excellent imaging quality and tumor detection efficacy in tumor-bearing mice. It is a promising imaging agent for identifying tumors that overexpress B7-H3 for future clinical applications.
Asunto(s)
Antígenos B7 , Tomografía de Emisión de Positrones , Radioisótopos , Circonio , Circonio/química , Animales , Humanos , Antígenos B7/metabolismo , Ratones , Radioisótopos/química , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Radiofármacos/farmacocinética , Anticuerpos Monoclonales Humanizados/química , Distribución Tisular , Femenino , Deferoxamina/química , Neoplasias/diagnóstico por imagen , Ratones Endogámicos BALB C , Ratones DesnudosRESUMEN
Immune checkpoint blockade therapy has demonstrated significant therapeutic efficacy in certain cancer types; however, the impact of dietary restriction remains scarcely reported in this context. This study aimed to investigate the influence of dietary restriction on anti-PDL-1 therapy and the interplay of immune cells within this context. Using an anti-PDL-1 regimen combined with dietary restrictions, tumor progression was assessed in LLC-bearing mice. Flow cytometry was employed to analyze immune cell infiltration and differentiation levels within the tumor microenvironment. The expression of mTORC1/B7-H3 in tumors subjected to dietary restriction was also examined. LLC tumors with elevated B7-H3 expression were validated in mice to determine its inhibitory effect on immune cell proliferation and differentiation. A CD3/B7-H3 chimeric antibody was developed for therapeutic intervention in B7-H3 overexpressing tumors, with subsequent T cell responses assessed through flow cytometry. Dietary restriction potentiated the effect of anti-PDL1 therapy by suppressing the intratumorally mTORC1/B7-H3 axis. In vivo experiments demonstrated that elevated B7-H3 expression in tumors reduced infiltration and activation of CD8 + T cells within the tumor, while it did not affect tumor-infiltrating Tregs. In vitro studies revealed that high B7-H3 expression influenced the proliferation and activation of CD8 + T cells within a Coculture system. The constructed CD3/B7-H3 chimeric antibody prominently activated TCR within B7-H3 overexpressing tumors and impeded tumor progression. The findings suggest that dietary restriction enhances the efficacy of immune checkpoint blockade by modulating the intratumoral mTORC1/B7-H3 axis.
Asunto(s)
Antígenos B7 , Inhibidores de Puntos de Control Inmunológico , Diana Mecanicista del Complejo 1 de la Rapamicina , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Antígenos B7/metabolismo , Antígenos B7/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones Endogámicos C57BL , Línea Celular Tumoral , Microambiente Tumoral/inmunologíaRESUMEN
T cell-based immunotherapy has revolutionized oncological treatment. However, many patients do not respond to treatment, and long-term remissions remain rare, particularly in gastrointestinal cancers like colorectal cancer (CRC). B7-H3 is overexpressed in multiple cancer entities including CRC on both tumor cells and tumor vasculature, the latter facilitating influx of effector cells into the tumor site upon therapeutic targeting. We generated a panel of T cell-recruiting B7-H3xCD3 bispecific antibodies (bsAbs) and show that targeting a membrane-proximal B7-H3 epitope allows for a 100-fold reduction of CD3 affinity. In vitro, our lead compound CC-3 showed superior tumor cell killing, T cell activation, proliferation, and memory formation, whereas undesired cytokine release was reduced. In vivo, CC-3 mediated potent antitumor activity in three independent models using immunocompromised mice adoptively transferred with human effector cells with regard to prevention of lung metastasis and flank tumor growth as well as elimination of large established tumors. Thus, fine-tuning of both target and CD3 affinities as well as binding epitopes allowed for the generation of a B7-H3xCD3 bsAbs with promising therapeutic activity. CC-3 is presently undergoing good manufacturing practice (GMP) production to enable evaluation in a clinical "first-in-human" study in CRC.
Asunto(s)
Anticuerpos Biespecíficos , Neoplasias Gastrointestinales , Humanos , Ratones , Animales , Inmunoglobulina G , Linfocitos T , Neoplasias Gastrointestinales/terapia , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Inmunoterapia , Línea Celular TumoralRESUMEN
BACKGROUND: B7-H3 has been implicated in clinical pathological features and prognosis across various cancer types, suggesting its potential as a cancer biomarker. Nevertheless, consensus remains elusive regarding its clinical-pathological and prognostic significance in bladder cancer. To address this gap, we conducted a systematic review and meta-analysis. METHODS: We systematically searched PubMed, Embase, Web of Science, Cochrane, and CNKI databases from their inception up to October 6, 2022. We evaluated the literature's quality using the Newcastle-Ottawa Scale. We performed meta-analysis using Review Manager 5.3 and STATA 12.0, synthesizing data and calculating odds ratios (ORs) or hazard ratios (HRs) with corresponding 95% confidence intervals (CIs). RESULTS: After applying eligibility criteria and conducting assessments, we included data from 8 studies, encompassing 1622 bladder cancer patients. Bladder tumor tissues exhibited significantly elevated B7-H3 protein expression compared to normal bladder tissues. Elevated B7-H3 expression was notably associated with patient age, tumor infiltration, and recurrence in bladder cancer. However, no significant correlations were observed with other clinical characteristics. Our pooled HR analysis indicated no significant association between B7-H3 expression and overall survival in bladder cancer patients. CONCLUSION: Our meta-analysis unveils the complex role of B7-H3 in bladder cancer progression. It appears to be directly involved in tumor infiltration and recurrence but cannot definitively serve as a prognostic biomarker for bladder cancer. To validate these findings, further well-designed studies, encompassing larger sample sizes and diverse racial backgrounds, are warranted. PROSPERO REGISTRATION: No. CRD42022364688.
Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Pronóstico , Modelos de Riesgos Proporcionales , Vejiga Urinaria , Biomarcadores de TumorRESUMEN
Brain metastasis is a significant challenge for some breast cancer patients, marked by its aggressive nature, limited treatment options, and poor clinical outcomes. Immunotherapies have emerged as a promising avenue for brain metastasis treatment. B7-H3 (CD276) is an immune checkpoint molecule involved in T cell suppression, which is associated with poor survival in cancer patients. Given the increasing number of clinical trials using B7-H3 targeting CAR T cell therapies, we examined B7-H3 expression across breast cancer subtypes and in breast cancer brain metastases to assess its potential as an interventional target. B7-H3 expression was investigated using immunohistochemistry on tissue microarrays of three clinical cohorts: (i) unselected primary breast cancers (n = 347); (ii) brain metastatic breast cancers (n = 61) and breast cancer brain metastases (n = 80, including a subset of 53 patient-matched breast and brain metastasis cases); and (iii) mixed brain metastases from a range of primary tumours (n = 137). In primary breast cancers, B7-H3 expression significantly correlated with higher tumour grades and aggressive breast cancer subtypes, as well as poorer 5-year survival outcomes. Subcellular localisation of B7-H3 impacted breast cancer-specific survival, with cytoplasmic staining also correlating with a poorer outcome. Its expression was frequently detected in brain metastases from breast cancers, with up to 90% expressing B7-H3. However, not all brain metastases showed high levels of expression, with those from colorectal and renal tumours showing a low frequency of B7-H3 expression (0/14 and 2/16, respectively). The prevalence of B7-H3 expression in breast cancers and breast cancer brain metastases indicates potential opportunities for B7-H3 targeted therapies in breast cancer management.
Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Mama , Encéfalo , Factores de Transcripción , Antígenos B7/genéticaRESUMEN
Despite the enormous successes of anti-PD-1/PD-L1 immunotherapy in multiple other cancer types, the overall response rates of breast cancer remain suboptimal. Therefore, exploring additional immune checkpoint molecules for potential cancer treatment is crucial. B7H3, a T-cell coinhibitory molecule, is specifically overexpressed in breast cancer compared with normal breast tissue and benign lesions, making it an attractive therapeutic target. However, the mechanism by which B7H3 contributes to the cancer phenotype is unclear. Here we show that the expression of B7H3 is negatively related to the number of CD8+ T cells in breast tumor sites. In addition, analysis of the differentially expressed B7H3 reveals that it is inversely correlated to autophagic flux both in breast cancer cell lines and clinical tumor tissues. Furthermore, block of autophagy by bafilomycin A1 (Baf A1) increases B7H3 levels and attenuates CD8+ T cell activation, while promotion of autophagy by V9302, a small-molecule inhibitor of glutamine metabolism, decreases B7H3 expression and enhances granzyme B (GzB) production of CD8+ T cells via regulation of reactive oxygen species (ROS) accumulation. We demonstrate that combined treatment with V9302 and anti-PD-1 monoclonal antibody (mAb) enhances antitumor immunity in syngeneic mouse models. Collectively, our findings unveil the beneficial effect of V9302 in boosting antitumor immune response in breast cancer and illustrate that anti-PD-1 together with V9302 treatment may provide synergistic effects in the treatment of patients insensitive to anti-PD-1 therapy.