Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.381
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(15): 3227-3244.e20, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339632

RESUMEN

Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Animales , Ribosomas/metabolismo , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Codón de Terminación/metabolismo , Mamíferos/metabolismo
2.
EMBO Rep ; 25(10): 4488-4514, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39261742

RESUMEN

Protein quality control serves as the primary defense mechanism for cells against proteotoxicity induced by proteasome dysfunction. While cells can limit the build-up of ubiquitinated misfolded proteins during proteasome inhibition, the precise mechanism is unclear. Here, we find that protein kinase Ca2+/Calmodulin (CaM)-dependent protein kinase II (CaMKII) maintains proteostasis during proteasome inhibition. We show that proteasome inhibition activates CaMKII, which phosphorylates B-cell lymphoma 2 (Bcl-2)-associated athanogene 3 (BAG3) at residues S173, S377, and S386. Phosphorylated BAG3 activates the heme-regulated inhibitor (HRI)- eukaryotic initiation factor-2α (eIF2α) signaling pathway, suppressing protein synthesis and the production of aggregated ubiquitinated misfolded proteins, ultimately mitigating the proteotoxic crisis. Inhibition of CaMKII exacerbates the accumulation of aggregated misfolded proteins and paraptosis induced by proteasome inhibitors. Based on these findings, we validate that combined targeting of proteasome and CaMKII accelerates tumor cell death and enhances the efficacy of proteasome inhibitors in tumor treatment. Our data unveil a new proteasomal inhibition-induced misfolded protein quality control mechanism and propose a novel therapeutic intervention for proteasome inhibitor-mediated tumor treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Complejo de la Endopetidasa Proteasomal , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Humanos , Fosforilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Transducción de Señal/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Animales , Factor 2 Eucariótico de Iniciación/metabolismo , Ratones , Línea Celular Tumoral
3.
EMBO Rep ; 25(4): 2045-2070, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454159

RESUMEN

Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.


Asunto(s)
Proteínas del Citoesqueleto , Infertilidad Masculina , Teratozoospermia , Tiazoles , Animales , Humanos , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dineínas/metabolismo , Proteínas del Choque Térmico HSC70/genética , Proteínas del Choque Térmico HSC70/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Semen/metabolismo , Cabeza del Espermatozoide/fisiología , Espermatogénesis/genética , Espermatozoides/metabolismo , Teratozoospermia/metabolismo , Teratozoospermia/patología
4.
EMBO Rep ; 25(4): 1859-1885, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499810

RESUMEN

Dinoflagellates are a diverse group of ecologically significant micro-eukaryotes that can serve as a model system for plastid symbiogenesis due to their susceptibility to plastid loss and replacement via serial endosymbiosis. Kareniaceae harbor fucoxanthin-pigmented plastids instead of the ancestral peridinin-pigmented ones and support them with a diverse range of nucleus-encoded plastid-targeted proteins originating from the haptophyte endosymbiont, dinoflagellate host, and/or lateral gene transfers (LGT). Here, we present predicted plastid proteomes from seven distantly related kareniaceans in three genera (Karenia, Karlodinium, and Takayama) and analyze their evolutionary patterns using automated tree building and sorting. We project a relatively limited ( ~ 10%) haptophyte signal pointing towards a shared origin in the family Chrysochromulinaceae. Our data establish significant variations in the functional distributions of these signals, emphasizing the importance of micro-evolutionary processes in shaping the chimeric proteomes. Analysis of plastid genome sequences recontextualizes these results by a striking finding the extant kareniacean plastids are in fact not all of the same origin, as two of the studied species (Karlodinium armiger, Takayama helix) possess plastids from different haptophyte orders than the rest.


Asunto(s)
Dinoflagelados , Dinoflagelados/genética , Dinoflagelados/metabolismo , Simbiosis/genética , Filogenia , Proteoma/genética , Proteoma/metabolismo , Plastidios/genética
5.
Proc Natl Acad Sci U S A ; 120(45): e2314781120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903258

RESUMEN

Recognition that common human amyloidoses are prion diseases makes the use of the Saccharomyces cerevisiae prion model systems to screen for possible anti-prion components of increasing importance. [PSI+] and [URE3] are amyloid-based prions of Sup35p and Ure2p, respectively. Yeast has at least six anti-prion systems that together cure nearly all [PSI+] and [URE3] prions arising in their absence. We made a GAL-promoted bank of 14,913 human open reading frames in a yeast shuttle plasmid and isolated 20 genes whose expression cures [PSI+] or [URE3]. PRPF19 is an E3 ubiquitin ligase that cures [URE3] if its U-box is intact. DNAJA1 is a J protein that cures [PSI+] unless its interaction with Hsp70s is defective. Human Bag5 efficiently cures [URE3] and [PSI+]. Bag family proteins share a 110 to 130 residue "BAG domain"; Bag 1, 2, 3, 4, and 6 each have one BAG domain while Bag5 has five BAG domains. Two BAG domains are necessary for curing [PSI+], but one can suffice to cure [URE3]. Although most Bag proteins affect autophagy in mammalian cells, mutations blocking autophagy in yeast do not affect Bag5 curing of [PSI+] or [URE3]. Curing by Bag proteins depends on their interaction with Hsp70s, impairing their role, with Hsp104 and Sis1, in the amyloid filament cleavage necessary for prion propagation. Since Bag5 curing is reduced by overproduction of Sis1, we propose that Bag5 cures prions by blocking Sis1 access to Hsp70s in its role with Hsp104 in filament cleavage.


Asunto(s)
Priones , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Priones/genética , Priones/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mutación , Amiloide/genética , Amiloide/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Proteínas Fúngicas/metabolismo , Mamíferos/metabolismo , Factores de Empalme de ARN/genética , Proteínas Nucleares/metabolismo , Enzimas Reparadoras del ADN/genética
6.
Proc Natl Acad Sci U S A ; 120(2): e2210690120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36598950

RESUMEN

The filovirus VP40 protein directs virion egress, which is regulated either positively or negatively by select VP40-host interactions. We demonstrate that host BAG3 and HSP70 recognize VP40 as a client and inhibit the egress of VP40 virus-like particles (VLPs) by promoting degradation of VP40 via Chaperone-assisted selective autophagy (CASA). Pharmacological inhibition of either the early stage formation of the VP40/BAG3/HSP70 tripartite complex, or late stage formation of autolysosomes, rescued VP40 VLP egress back to WT levels. The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of autophagy, and we found that surface expression of EBOV GP on either VLPs or an infectious VSV recombinant virus, activated mTORC1. Notably, pharmacological suppression of mTORC1 signaling by rapamycin activated CASA in a BAG3-dependent manner to restrict the egress of both VLPs and infectious EBOV in Huh7 cells. In sum, our findings highlight the involvement of the mTORC1/CASA axis in regulating filovirus egress.


Asunto(s)
Ebolavirus , Humanos , Ebolavirus/metabolismo , Transducción de Señal , Macroautofagia , Virión/metabolismo , Proteínas de la Matriz Viral/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
7.
Traffic ; 24(12): 564-575, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37654251

RESUMEN

The co-chaperone BAG3 is a hub for a variety of cellular pathways via its multiple domains and its interaction with chaperones of the HSP70 family or small HSPs. During aging and under cellular stress conditions in particular, BAG3, together with molecular chaperones, ensures the sequestration of aggregated or aggregation-prone ubiquitinated proteins to the autophagic-lysosomal system via ubiquitin receptors. Accumulating evidence for BAG3-mediated selective autophagy independent of cargo ubiquitination led to analyses predicting a direct interaction of BAG3 with LC3 proteins. Phylogenetically, BAG3 comprises several highly conserved potential LIRs, LC3-interacting regions, which might allow for the direct targeting of BAG3 including its cargo to autophagosomes and drive their autophagic degradation. Based on pull-down experiments, peptide arrays and proximity ligation assays, our results provide evidence of an interaction of BAG3 with LC3B. In addition, we could demonstrate that disabling all predicted LIRs abolished the inducibility of a colocalization of BAG3 with LC3B-positive structures and resulted in a substantial decrease of BAG3 levels within purified native autophagic vesicles compared with wild-type BAG3. These results suggest an autophagic targeting of BAG3 via interaction with LC3B. Therefore, we conclude that, in addition to being a key co-chaperone to HSP70, BAG3 may also act as a cargo receptor for client proteins, which would significantly extend the role of BAG3 in selective macroautophagy and protein quality control.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Chaperonas Moleculares/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Portadoras
8.
EMBO Rep ; 24(8): e55895, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37317656

RESUMEN

Hexanucleotide repeat expansions within C9orf72 are a frequent cause of amyotrophic lateral sclerosis and frontotemporal dementia. Haploinsufficiency leading to reduced C9orf72 protein contributes to disease pathogenesis. C9orf72 binds SMCR8 to form a robust complex that regulates small GTPases, lysosomal integrity, and autophagy. In contrast to this functional understanding, we know far less about the assembly and turnover of the C9orf72-SMCR8 complex. Loss of either subunit causes the concurrent ablation of the respective partner. However, the molecular mechanism underlying this interdependence remains elusive. Here, we identify C9orf72 as a substrate of branched ubiquitin chain-dependent protein quality control. We find that SMCR8 prevents C9orf72 from rapid degradation by the proteasome. Mass spectrometry and biochemical analyses reveal the E3 ligase UBR5 and the BAG6 chaperone complex as C9orf72-interacting proteins, which are components of the machinery that modifies proteins with K11/K48-linked heterotypic ubiquitin chains. Depletion of UBR5 results in reduced K11/K48 ubiquitination and increased C9orf72 when SMCR8 is absent. Our data provide novel insights into C9orf72 regulation with potential implication for strategies to antagonize C9orf72 loss during disease progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Ubiquitina/metabolismo , Proteínas Portadoras/metabolismo , Proteínas/genética , Proteínas/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Chaperonas Moleculares/metabolismo
9.
J Mol Cell Cardiol ; 193: 53-66, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838815

RESUMEN

The HSP70 co-chaperone BAG3 targets unfolded proteins to degradation via chaperone assisted selective autophagy (CASA), thereby playing pivotal roles in the proteostasis of adult cardiomyocytes (CMs). However, the complex functions of BAG3 for regulating autophagy in cardiac disease are not completely understood. Here, we demonstrate that conditional inactivation of Bag3 in murine CMs leads to age-dependent dysregulation of autophagy, associated with progressive cardiomyopathy. Surprisingly, Bag3-deficient CMs show increased canonical and non-canonical autophagic flux in the juvenile period when first signs of cardiac dysfunction appear, but reduced autophagy during later stages of the disease. Juvenile Bag3-deficient CMs are characterized by decreased levels of soluble proteins involved in synchronous contraction of the heart, including the gap junction protein Connexin 43 (CX43). Reiterative administration of chloroquine (CQ), an inhibitor of canonical and non-canonical autophagy, but not inactivation of Atg5, restores normal concentrations of soluble cardiac proteins in juvenile Bag3-deficient CMs without an increase of detergent-insoluble proteins, leading to complete recovery of early-stage cardiac dysfunction in Bag3-deficient mice. We conclude that loss of Bag3 in CMs leads to age-dependent differences in autophagy and cardiac dysfunction. Increased non-canonical autophagic flux in the juvenile period removes soluble proteins involved in cardiac contraction, leading to early-stage cardiomyopathy, which is prevented by reiterative CQ treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Autofagia , Cardiomiopatías , Miocitos Cardíacos , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/deficiencia , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones , Miocardio/metabolismo , Miocardio/patología , Cloroquina/farmacología , Ratones Noqueados
10.
Dev Biol ; 493: 103-108, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423673

RESUMEN

Drosophila ovary has been one of the most mature and excellent systems for studying the in vivo regulatory mechanisms of stem cell fate determination. It has been well-known that the bone morphogenetic protein (BMP) signaling released by the niche cells promotes the maintenance of germline stem cells (GSCs) through inhibiting the transcription of the bag-of-marbles (bam) gene, which encodes a key factor for GSC differentiation. However, whether Bam is regulated at the post-translational level remains largely unknown. Here we show that the E3 ligase Cullin-2 (Cul2) is involved in modulating Bam ubiquitination, which occurs probably at multiple lysine residues of Bam's C-terminal region. Genetic evidence further supports the notion that Cul2-mediated Bam ubiquitination and turnover are essential for GSC maintenance and proper germline development. Collectively, our data not only uncovers a novel regulatory mechanism by which Bam is controlled at the post-translational level, but also provides new insights into how Cullin family protein determines the differentiation fate of early germ cells.


Asunto(s)
Drosophila , Ubiquitina-Proteína Ligasas , Femenino , Animales , Proteínas Cullin/genética , Células Germinativas , Diferenciación Celular/genética
11.
Ecol Lett ; 27(5): e14415, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712683

RESUMEN

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Asunto(s)
Hojas de la Planta , Ciclo del Carbono , Carbono/metabolismo
12.
Breast Cancer Res ; 26(1): 33, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409088

RESUMEN

INTRODUCTION: Estrogen receptor (ER) positive patients compromise about 70% of breast cancers. Tamoxifen, an antagonist of ERα66 (the classic ER), is the most effective and the standard first-line drug. However, its efficacy is limited by the development of acquired resistance. METHODS: A specific inhibitor of Hsp70-Bim protein-protein interaction (PPI), S1g-2, together with an inhibitor of Hsp70-Bag3 PPI, MKT-077 and an ATP-competitive inhibitor VER155008, were used as chemical tools. Cell viability assays, co-immunoprecipitation and gene knockdown were used to investigate the role of Hsp70 in tamoxifen resistance. A xenograft model was established in which tamoxifen-resistant breast cancer (MCF-7/TAM-R) cells maintained in the presence of 5 µM tamoxifen were subcutaneously inoculated. The anti-tumor efficiency of S1g-2 was measured after a daily injection of 0.8 mg/kg for 14 days. RESULTS: It was revealed that Hsp70-Bim PPI protects ERα-positive breast cancer from tamoxifen-induced apoptosis through binding and stabilizing ERα36, rather than ERα66, resulting in sustained EGFR mRNA and protein expression. Disruption of Hsp70-Bim PPI and downregulation of ERα36 expression in tumor samples are consistent with the in vitro functions of S1g-2, resulting in about a three-fold reduction in tumor volume. CONCLUSIONS: The in vivo activity and safety of S1g-2 illustrated that it is a potential strategy for Hsp70-Bim disruption to overcome tamoxifen-resistant ER-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Tamoxifeno/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica
13.
Am J Physiol Heart Circ Physiol ; 326(5): H1124-H1130, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488519

RESUMEN

The co-chaperone Bcl2-associated athanogene 3 (BAG3) is a central node in protein quality control in the heart. In humans and animal models, decreased BAG3 expression is associated with cardiac dysfunction and dilated cardiomyopathy. Although previous studies focused on BAG3 in cardiomyocytes, cardiac fibroblasts are also critical drivers of pathologic remodeling. Yet, the role of BAG3 in cardiac fibroblasts is almost completely unexplored. Here, we show that BAG3 is expressed in primary rat neonatal cardiac fibroblasts and preferentially localizes to mitochondria. Knockdown of BAG3 reduces mitophagy and enhances fibroblast activation, which is associated with fibrotic remodeling. Heat shock protein 70 (Hsp70) is a critical binding partner for BAG3 and inhibiting this interaction in fibroblasts using the drug JG-98 decreased autophagy, decreased mitofusin-2 expression, and disrupted mitochondrial morphology. Together, these data indicate that BAG3 is expressed in cardiac fibroblasts, where it facilitates mitophagy and promotes fibroblast quiescence. This suggests that depressed BAG3 levels in heart failure may exacerbate fibrotic pathology, thus contributing to myocardial dysfunction through sarcomere-independent pathways.NEW & NOTEWORTHY We report BAG3's localization to mitochondria and its role in mitophagy for the first time in primary ventricular cardiac fibroblasts. We have also collected the first evidence showing that loss of BAG3 increases cardiac fibroblast activation into myofibroblasts, which are major drivers of cardiac fibrosis and pathological remodeling during heart disease.


Asunto(s)
Cardiomiopatías , Mitofagia , Animales , Ratas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiomiopatías/metabolismo , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo
14.
J Virol ; 97(6): e0028423, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37255472

RESUMEN

Hepatitis-pericardial syndrome (HHS) is an acute highly infectious avian disease caused by fowl adenovirus serotype 4 (FAdV-4), characterized by fulminant hepatitis and hydropericardium in broilers. Since 2015, a widespread epidemic has occurred in China due to the emergence of hypervirulent FAdV-4 (HPFAdV-4), causing huge losses to the stakeholders. However, the pathogenesis of HPFAdV-4 and the host responses to its infection remain elusive. Here, we show that infection of leghorn male hepatocellular (LMH) cells by HPFAdV-4 induced complete autophagy in cells and that the autophagy induced by recombinant HPFAdV-4-ON1 (rHPFAdV-4-ON1), a viral strain generated by replacing the hexon gene of wild-type HPFAdV-4 (HPFAdV-4-WT) with the one of nonpathogenic strain FAdV-4-ON1, was remarkably mitigated compared to that of the rHPFAdV-4-WT control, suggesting that HPFAdV-4 hexon is responsible for virus-induced autophagy. Importantly, we found that hexon interacted with a cellular protein, BAG3, a host protein that initiates autophagy, and that BAG3 expression increased in cells infected with HPFAdV-4. Furthermore, knockdown of BAG3 by RNA interference (RNAi) significantly inhibited HPFAdV-4- or hexon-induced autophagy and suppressed viral replication. On the contrary, expression of hexon markedly upregulated the expression of BAG3 via activating the P38 signaling pathway, triggering autophagy. Thus, these findings reveal that HPFAdV-4 hexon interacts with the host protein BAG3 and promotes BAG3 expression by activating P38 signaling pathway, thereby inducing autophagy and enhancing viral proliferation, which immensely furthers our understanding of the pathogenesis of HPFAdV-4 infection. IMPORTANCE HHS, mainly caused by HPFAdV-4, has caused large economic losses to the stakeholders in recent years. Infection of leghorn male hepatocellular (LMH) cells by HPFAdV-4 induced complete autophagy that is essential for HPFAdV-4 replication. By a screening strategy, the viral protein hexon was found responsible for virus-induced autophagy in cells. Importantly, hexon was identified as a factor promoting viral replication by interaction with BAG3, an initiator of host cell autophagy. These findings will help us to better understand the host response to HPFAdV-4 infection, providing a novel insight into the pathogenesis of HPFAdV-4 infection.


Asunto(s)
Infecciones por Adenoviridae , Autofagia , Proteínas de la Cápside , Enfermedades de las Aves de Corral , Replicación Viral , Animales , Masculino , Adenoviridae/genética , Adenoviridae/fisiología , Infecciones por Adenoviridae/veterinaria , Pollos , Enfermedades de las Aves de Corral/virología , Serogrupo
15.
Cardiovasc Diabetol ; 23(1): 140, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664681

RESUMEN

BACKGROUND: Diabetic vascular remodeling is the most important pathological basis of diabetic cardiovascular complications. The accumulation of advanced glycation end products (AGEs) caused by elevated blood glucose promotes the proliferation and migration of vascular smooth muscle cells (VSMCs), leading to arterial wall thickening and ultimately vascular remodeling. Therefore, the excessive proliferation and migration of VSMCs is considered as an important therapeutic target for vascular remodeling in diabetes mellitus. However, due to the lack of breakthrough in experiments, there is currently no effective treatment for the excessive proliferation and migration of VSMCs in diabetic patients. Bcl-2-associated athanogene 3 (BAG3) protein is a multifunctional protein highly expressed in skeletal muscle and myocardium. Previous research has confirmed that BAG3 can not only regulate cell survival and apoptosis, but also affect cell proliferation and migration. Since the excessive proliferation and migration of VSMCs is an important pathogenesis of vascular remodeling in diabetes, the role of BAG3 in the excessive proliferation and migration of VSMCs and its molecular mechanism deserve further investigation. METHODS: In this study, BAG3 gene was manipulated in smooth muscle to acquire SM22αCre; BAG3FL/FL mice and streptozotocin (STZ) was used to simulate diabetes. Expression of proteins and aortic thickness of mice were detected by immunofluorescence, ultrasound and hematoxylin-eosin (HE) staining. Using human aorta smooth muscle cell line (HASMC), cell viability was measured by CCK-8 and proliferation was measured by colony formation experiment. Migration was detected by transwell, scratch experiments and Phalloidin staining. Western Blot was used to detect protein expression and Co-Immunoprecipitation (Co-IP) was used to detect protein interaction. RESULTS: In diabetic vascular remodeling, AGEs could promote the interaction between BAG3 and signal transducer and activator of transcription 3 (STAT3), leading to the enhanced interaction between STAT3 and Janus kinase 2 (JAK2) and reduced interaction between STAT3 and extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in accumulated p-STAT3(705) and reduced p-STAT3(727). Subsequently, the expression of matrix metallopeptidase 2 (MMP2) is upregulated, thus promoting the migration of VSMCs. CONCLUSIONS: BAG3 upregulates the expression of MMP2 by increasing p-STAT3(705) and decreasing p-STAT3(727) levels, thereby promoting vascular remodeling in diabetes. This provides a new orientation for the prevention and treatment of diabetic vascular remodeling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Movimiento Celular , Proliferación Celular , Músculo Liso Vascular , Miocitos del Músculo Liso , Factor de Transcripción STAT3 , Transducción de Señal , Remodelación Vascular , Factor de Transcripción STAT3/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Animales , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Fosforilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/genética , Masculino , Células Cultivadas , Ratones Noqueados , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Humanos , Ratones Endogámicos C57BL , Productos Finales de Glicación Avanzada/metabolismo
16.
Acta Neuropathol ; 148(1): 52, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394356

RESUMEN

Growing evidence supports that early- or middle-life traumatic brain injury (TBI) is a risk factor for developing Alzheimer's disease (AD) and AD-related dementia (ADRD). Nevertheless, the molecular mechanisms underlying TBI-induced AD-like pathology and cognitive deficits remain unclear. In this study, we found that a single TBI (induced by controlled cortical impact) reduced the expression of BCL2-associated athanogene 3 (BAG3) in neurons and oligodendrocytes, which is associated with decreased proteins related to the autophagy-lysosome pathway (ALP) and increased hyperphosphorylated tau (ptau) accumulation in excitatory neurons and oligodendrocytes, gliosis, synaptic dysfunction, and cognitive deficits in wild-type (WT) and human tau knock-in (hTKI) mice. These pathological changes were also found in human cases with a TBI history and exaggerated in human AD cases with TBI. The knockdown of BAG3 significantly inhibited autophagic flux, while overexpression of BAG3 significantly increased it in vitro. Specific overexpression of neuronal BAG3 in the hippocampus attenuated AD-like pathology and cognitive deficits induced by TBI in hTKI mice, which is associated with increased ALP-related proteins. Our data suggest that targeting neuronal BAG3 may be a therapeutic strategy for preventing or reducing AD-like pathology and cognitive deficits induced by TBI.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Autofagia , Lesiones Traumáticas del Encéfalo , Disfunción Cognitiva , Lisosomas , Neuronas , Proteínas tau , Animales , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Autofagia/fisiología , Proteínas tau/metabolismo , Humanos , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Fosforilación , Ratones , Neuronas/metabolismo , Neuronas/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Lisosomas/metabolismo , Masculino , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Sinapsis/patología , Sinapsis/metabolismo , Femenino , Persona de Mediana Edad
17.
Parasite Immunol ; 46(2): e13023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38372452

RESUMEN

Toxoplasmosis is one of the most dangerous zoonotic diseases, causing serious economic losses worldwide due to abortion and reproductive problems. Vaccination is the best way to prevent disease; thus, it is imperative to develop a candidate vaccine for toxoplasmosis. BAG1 and ROP8 have the potential to become vaccine candidates. In this study, rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 were used to evaluate the immune effect of vaccines in each group by detecting the humoral and cellular immune response levels of BABL/c mice after immunization and the ability to resist acute and chronic infection with Toxoplasma gondii (T. gondii). We divided the mice into vaccine groups with different proteins, and the mice were immunized on days 0, 14, and 28. The protective effects of different proteins against T. gondii were analysed by measuring the cytokines, serum antibodies, splenocyte proliferation assay results, survival time, and number and diameter of brain cysts of mice after infection. The vaccine groups exhibited substantially higher IgG, IgG1, and IgG2a levels and effectively stimulated lymphocyte proliferation. The levels of IFN-γ and IL-2 in the vaccine group were significantly increased. The survival time of the mice in each vaccine group was prolonged and the diameter of the cysts in the vaccine group was smaller; rTgBAG1-rTgROP8 had a better protection. Our study showed that the rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 recombinant protein vaccines are partial but effective approaches against acute or chronic T. gondii infection. They are potential candidates for a toxoplasmosis vaccine.


Asunto(s)
Vacunas Antiprotozoos , Toxoplasmosis , Animales , Ratones , Anticuerpos Antiprotozoarios , Antígenos de Protozoos/genética , Inmunidad Celular , Inmunización , Inmunoglobulina G , Ratones Endogámicos BALB C , Proteínas Protozoarias , Vacunas Antiprotozoos/inmunología , Proteínas Recombinantes/genética , Toxoplasma , Toxoplasmosis/prevención & control , Vacunación
18.
Eur J Clin Microbiol Infect Dis ; 43(3): 489-499, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38195783

RESUMEN

INTRODUCTION: Dead space management following debridement surgery in chronic osteomyelitis or septic non-unions is one of the most crucial and discussed steps for the success of the surgical treatment of these conditions. In this retrospective clinical study, we described the efficacy and safety profile of surgical debridement and local application of S53P4 bioactive glass (S53P4 BAG) in the treatment of bone infections. METHODS: A consecutive single-center series of 38 patients with chronic osteomyelitis (24) and septic non-unions (14), treated with bioactive glass S53P4 as dead space management following surgical debridement between May 2015 and November 2020, were identified and evaluated retrospectively. RESULTS: Infection eradication was reached in 22 out of 24 patients (91.7%) with chronic osteomyelitis. Eleven out of 14 patients (78.6%) with septic non-union achieved both fracture healing and infection healing in 9.1 ± 4.9 months. Three patients (7.9%) developed prolonged serous discharge with wound dehiscence but healed within 2 months with no further surgical intervention. Average patient follow-up time was 19.8 months ± 7.6 months. CONCLUSION: S53P4 bioactive glass is an effective and safe therapeutic option in the treatment of chronic osteomyelitis and septic non-unions because of its unique antibacterial properties, but also for its ability to generate a growth response in the remaining healthy bone at the bone-glass interface.


Asunto(s)
Sustitutos de Huesos , Osteomielitis , Humanos , Estudios Retrospectivos , Sustitutos de Huesos/uso terapéutico , Antibacterianos/uso terapéutico , Infección Persistente , Osteomielitis/tratamiento farmacológico , Osteomielitis/cirugía , Osteomielitis/microbiología
19.
Stat Appl Genet Mol Biol ; 22(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991399

RESUMEN

The ongoing development of high-throughput technologies is allowing the simultaneous monitoring of the expression levels for hundreds or thousands of biological inputs with the proliferation of what has been coined as omic data sources. One relevant issue when analyzing such data sources is concerned with the detection of differential expression across two experimental conditions, clinical status or two classes of a biological outcome. While a great deal of univariate data analysis approaches have been developed to address the issue, strategies for assessing interaction patterns of differential expression are scarce in the literature and have been limited to ad hoc solutions. This paper contributes to the problem by exploiting the facilities of an ensemble learning algorithm like random forests to propose a measure that assesses the differential expression explained by the interaction of the omic variables so subtle biological patterns may be uncovered as a result. The out of bag error rate, which is an estimate of the predictive accuracy of a random forests classifier, is used as a by-product to propose a new measure that assesses interaction patterns of differential expression. Its performance is studied in synthetic scenarios and it is also applied to real studies on SARS-CoV-2 and colon cancer data where it uncovers associations that remain undetected by other methods. Our proposal is aimed at providing a novel approach that may help the experts in biomedical and life sciences to unravel insightful interaction patterns that may decipher the molecular mechanisms underlying biological and clinical outcomes.


Asunto(s)
Algoritmos , Neoplasias del Colon , Humanos , Neoplasias del Colon/genética , Aprendizaje Automático
20.
J Biomed Inform ; 156: 104667, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848885

RESUMEN

OBJECTIVES: Candidemia is the most frequent invasive fungal disease and the fourth most frequent bloodstream infection in hospitalized patients. Its optimal management is crucial for improving patients' survival. The quality of candidemia management can be assessed with the EQUAL Candida Score. The objective of this work is to support its automatic calculation by extracting central venous catheter-related information from Italian text in clinical notes of electronic medical records. MATERIALS AND METHODS: The sample includes 4,787 clinical notes of 108 patients hospitalized between January 2018 to December 2020 in the Intensive Care Units of the IRCCS San Martino Polyclinic Hospital in Genoa (Italy). The devised pipeline exploits natural language processing (NLP) to produce numerical representations of clinical notes used as input of machine learning (ML) algorithms to identify CVC presence and removal. It compares the performances of (i) rule-based method, (ii) count-based method together with a ML algorithm, and (iii) a transformers-based model. RESULTS: Results, obtained with three different approaches, were evaluated in terms of weighted F1 Score. The random forest classifier showed the higher performance in both tasks reaching 82.35%. CONCLUSION: The present work constitutes a first step towards the automatic calculation of the EQUAL Candida Score from unstructured daily collected data by combining ML and NLP methods. The automatic calculation of the EQUAL Candida Score could provide crucial real-time feedback on the quality of candidemia management, aimed at further improving patients' health.


Asunto(s)
Algoritmos , Candidemia , Enfermedad Crítica , Registros Electrónicos de Salud , Unidades de Cuidados Intensivos , Procesamiento de Lenguaje Natural , Humanos , Aprendizaje Automático , Italia , Catéteres Venosos Centrales/microbiología , Candida/aislamiento & purificación , Femenino , Masculino , Anciano , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA