RESUMEN
Pseudo-Response Regulator (PRR) proteins constitute a fundamental set of circadian clock components in plants. PRRs have an amino acid sequence stretch with similarity to the receiver (REC) domain of response regulators (RRs) in the Multi-Step Phosphorelay (MSP). However, it has never been elucidated whether PRRs interact with Histidine-containing Phosphotransfer (HPt) proteins, which transfer a phosphate to RRs. Here, we studied whether PRRs interact with HPts in the moss Physcomitrium patens by the Yeast Two-Hybrid system and Bimolecular Fluorescence Complementation. P. patens PRR1/2/3 interacted with HPt1/2 in the nucleus, but not with HPt3, suggesting that P. patens PRRs function as authentic RRs. We discuss these results in relation to the evolution and diversity of the plant circadian clocks.
Asunto(s)
Bryopsida , Núcleo Celular , Proteínas de Plantas , Bryopsida/metabolismo , Bryopsida/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Núcleo Celular/metabolismo , Relojes Circadianos/fisiología , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Histidina/metabolismo , Técnicas del Sistema de Dos Híbridos , Regulación de la Expresión Génica de las PlantasRESUMEN
BACKGROUND: Hox proteins interact with DNA and many other proteins, co-factors, transcriptional factors, chromatin remodeling components, non-coding RNAs and even the extracellular matrix that assembles the Hox complexes. The number of interacting partners continues to grow with diverse components and more transcriptional factors than initially thought. Hox complexes present many activities, but their molecular mechanisms to modulate their target genes remain unsolved. RESULTS: In this paper we showed the protein-protein interaction of Antp with Ubx through the homeodomain using BiFC in Drosophila. Analysis of Antp-deletional mutants showed that AntpHD helixes 1 and 2 are required for the interaction with Ubx. Also, we found a novel interaction of Ubx with TBP, in which the PolyQ domain of TBP is required for the interaction. Moreover, we also detected the formation of two new trimeric complexes of Antp with Ubx, TBP and Exd using BiFC-FRET; these proteins, however, do not form a trimeric interaction with BIP2 or TFIIEß. The novel trimeric complexes reduced Antp transcriptional activity, indicating that they could confer specificity for repression. CONCLUSIONS: Our results increase the number of transcriptional factors in the Antp and Ubx interactomes that form two novel trimeric complexes with TBP and Exd. We also report a new Ubx interaction with TBP. These novel interactions provide important clues of the dynamics of Hox-interacting complexes involved in transcriptional regulation, contributing to better understand Hox function.
Asunto(s)
Proteínas de Drosophila , Proteínas de Homeodominio , Proteína de Unión a TATA-Box , Factores de Transcripción , Animales , Proteína con Homeodominio Antennapedia/genética , Proteína con Homeodominio Antennapedia/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Unión Proteica , Proteína de Unión a TATA-Box/metabolismo , Proteína de Unión a TATA-Box/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
Polyglutamine (polyQ)-mediated spinocerebellar ataxia (SCA), including SCA1, 2, 3, 6, 7, and 17, are caused by mutant genes with expanded CAG repeats, leading to the intracellular accumulation of aggregated proteins, the production of reactive oxygen species, and cell death. Among SCA, SCA3 is caused by a mutation in the ATXN3 (ataxin-3) gene. In a circumstance of polyQ aggregation, the autophagic pathway is induced to degrade the aggregated proteins, thereby suppressing downstream deleterious effects and promoting neuronal survival. In this study, we tested the effects of synthetic indole (NC009-1, -2, -3, -6) and coumarin (LM-022, -031) derivatives as chemical chaperones to assist mutant ATXN3-Q75 folding, as well as autophagy inducers to clear aggregated protein. Among the tested compounds, NC009-1, -2, and -6 and LM-031 interfered with Escherichia coli-derived ATXN3-Q75 aggregation in thioflavin T binding and filter trap assays. In SH-SY5Y cells expressing GFP-fused ATXN3-Q75, these compounds displayed aggregation-inhibitory and neurite growth-promoting potentials compared to untreated cells. Furthermore, these compounds activated autophagy by increasing the phosphatidylethanolamine-conjugated LC3 (microtubule associated protein 1 light chain 3)-II:cytosolic LC3-I ratio in these cells. A biochemical co-immunoprecipitation assay by using a mixture of HEK 293T cell lysates containing recombinant ATXN3-Q75-Venus-C-terminus (VC) or Venus-N-terminus (VN)-LC3 protein indicated that NC009-1 and -2 and LM-031 served as an autophagosome-tethering compound (ATTEC) to interact with ATXN3-Q75 and LC3, and the interaction was further confirmed by bimolecular fluorescence complementation analysis in cells co-expressing both ATXN3-Q75-VC and VN-LC3 proteins. The study results suggest the potential of NC009-1 and -2 and LM-031 as an ATTEC in treating SCA3 and, probably, other polyQ diseases.
Asunto(s)
Ataxina-3 , Autofagia , Proteínas Asociadas a Microtúbulos , Péptidos , Ataxina-3/metabolismo , Ataxina-3/genética , Humanos , Péptidos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Unión Proteica , Mutación , Línea Celular Tumoral , Indoles/farmacología , Indoles/metabolismo , Proteínas RepresorasRESUMEN
Refolding based Bimolecular Fluorescence Complementation (BiFC) has emerged as an important in vivo technique to identify protein interactions. Significant improvements have been made to enhance the detection capacities of BiFC, however less attention has been paid to the detection of expression levels of proteins. Here we demonstrate development and validation of an improved method to identify protein interactions that incorporates an expression control based on bicistronic expression of the protein of interest and a fluorescent protein separated by a self-cleaving peptide. This method gives robust identification of positive interactions and more reliably identifies absence of interactions. We also show an earlier identified non-interacting pair in yeast two-hybrid (Y2H) to be interacting in vivo. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01477-y.
RESUMEN
Protein tyrosine phosphatase 1B (PTP1B, also known as PTPN1) is an established regulator of cell-matrix adhesion and motility. However, the nature of substrate targets at adhesion sites remains to be validated. Here, we used bimolecular fluorescence complementation assays, in combination with a substrate trapping mutant of PTP1B, to directly examine whether relevant phosphotyrosines on paxillin and focal adhesion kinase (FAK, also known as PTK2) are substrates of the phosphatase in the context of cell-matrix adhesion sites. We found that the formation of catalytic complexes at cell-matrix adhesions requires intact tyrosine residues Y31 and Y118 on paxillin, and the localization of FAK at adhesion sites. Additionally, we found that PTP1B specifically targets Y925 on the focal adhesion targeting (FAT) domain of FAK at adhesion sites. Electrostatic analysis indicated that dephosphorylation of this residue promotes the closed conformation of the FAT 4-helix bundle and its interaction with paxillin at adhesion sites.
Asunto(s)
Fosfoproteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Uniones Célula-Matriz/metabolismo , Proteínas del Citoesqueleto/metabolismo , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Paxillin/genética , Paxillin/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismoRESUMEN
Root gravitropism includes gravity perception in the root cap, signal transduction between root cap and elongation zone, and curvature response in the elongation zone. The barley (Hordeum vulgare) mutant enhanced gravitropism 2 (egt2) displays a hypergravitropic root phenotype. We compared the transcriptomic reprogramming of the root cap, the meristem, and the elongation zone of wild-type (WT) and egt2 seminal roots upon gravistimulation in a time-course experiment and identified direct interaction partners of EGT2 by yeast-two-hybrid screening and bimolecular fluorescence complementation validation. We demonstrated that the elongation zone is subjected to most transcriptomic changes after gravistimulation. Here, 33% of graviregulated genes are also transcriptionally controlled by EGT2, suggesting a central role of this gene in controlling the molecular networks associated with gravitropic bending. Gene co-expression analyses suggested a role of EGT2 in cell wall and reactive oxygen species-related processes, in which direct interaction partners of EGT2 regulated by EGT2 and gravity might be involved. Taken together, this study demonstrated the central role of EGT2 and its interaction partners in the networks controlling root zone-specific transcriptomic reprogramming of barley roots upon gravistimulation. These findings can contribute to the development of novel root idiotypes leading to improved crop performance.
Asunto(s)
Gravitropismo , Hordeum , Gravitropismo/genética , Hordeum/genética , Raíces de Plantas , Gravitación , MeristemaRESUMEN
Bamboo is a nontimber woody plant featuring a long vegetative stage and uncertain flowering time. Therefore, the genes belonging to flowering repressors might be essential in regulating the transition from the vegetative to reproductive stage in bamboo. The Short Vegetative Phase ( SVP) gene plays a pivotal role in floral transition and development. However, little is known about the bamboo SVP homologues. In this study, Phyllostachys violascens PvSVP1 is isolated by analysis of the P. edulis transcriptome database. Phylogenetic analysis shows that PvSVP1 is closely related to OsMADS55 (rice SVP homolog). PvSVP1 is ubiquitously expressed in various tissues, predominantly in vegetative tissues. To investigate the function of PvSVP1, PvSVP1 is overexpressed in Arabidopsis and rice under the influence of the 35S promoter. Overexpression of PvSVP1 in Arabidopsis causes early flowering and produces abnormal petals and sepals. Quantitative real-time PCR reveals that overexpression in Arabidopsis produces an early flowering phenotype by downregulating FLC and upregulating FT and produces abnormal floral organs by upregulating AP1, AP3 and PI expressions. Simultaneously, overexpression of PvSVP1 in rice alters the expressions of flowering-related genes such as Hd3a, RFT1, OsMADS56 and Ghd7 and promotes flowering under field conditions. In addition, PvSVP1 may be a nuclear protein which interacts with PvVRN1 and PvMADS56 on the yeast two-hybrid and BiFC systems. Our study suggests that PvSVP1 may play a vital role in flowering time and development by interacting with PvVRN1 and PvMADS56 in the nucleus. Furthermore, this study paves the way toward understanding the complex flowering process of bamboo.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Factores de Transcripción/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
A promising approach for the genetic engineering of multiprotein complexes in living cells involves designing and reconstructing the interaction between two proteins that lack native affinity. Thylakoid-embedded multiprotein complexes execute the light reaction of plant photosynthesis, but their engineering remains challenging, likely due to difficulties in accurately targeting heterologous membrane-bound proteins to various sub-compartments of thylakoids. In this study, we developed a ubiquitin-based module (Nub-Cub) capable of directing interactions in vivo between two chloroplast proteins lacking native affinities. We applied this module to genetically modify thylakoid multiprotein complexes. We demonstrated the functionality of the Nub-Cub module in the model organism Arabidopsis thaliana. Employing this system, we successfully modified the Photosystem II (PSII) complex by ectopically attaching an extrinsic subunit of PSII, PsbTn1, to CP26-a component of the antenna system of PSII. Surprisingly, this mandatory interaction between CP26 and PsbTn1 in plants impairs the efficiency of electron transport in PSII and unexpectedly results in noticeable defects in leaf development. Our study not only offers a general strategy to modify multiprotein complexes embedded in thylakoid membranes but it also sheds light on the possible interplay between two proteins without native interaction.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ubiquitina/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Arabidopsis/genéticaRESUMEN
In this study, we focused on a member of the Ole e 1 domain-containing family, AtSAH7, in Arabidopsis thaliana. Our lab reports for the first time on this protein, AtSAH7, that was found to interact with Selenium-binding protein 1 (AtSBP1). We studied by GUS assisted promoter deletion analysis the expression pattern of AtSAH7 and determined that the sequence 1420 bp upstream of the transcription start can act as a minimal promoter inducing expression in vasculature tissues. Moreover, mRNA levels of AtSAH7 were acutely increased under selenite treatment in response to oxidative stress. We confirmed the aforementioned interaction in vivo, in silico and in planta. Following a bimolecular fluorescent complementation approach, we determined that the subcellular localization of the AtSAH7 and the AtSAH7/AtSBP1 interaction occur in the ER. Our results indicate the participation of AtSAH7 in a biochemical network regulated by selenite, possibly associated with responses to ROS production.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Selenioso , Proteínas de Unión al Selenio , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Ácido Selenioso/metabolismo , Proteínas de Unión al Selenio/genéticaRESUMEN
Coiled-coil domain-containing 124 (CCDC124) is a recently discovered ribosome-binding protein conserved in eukaryotes. CCDC124 has regulatory functions on the mediation of reversible ribosomal hibernation and translational recovery by direct attachment to large subunit ribosomal protein uL5, 25S rRNA backbone, and tRNA-binding P/A-site major groove. Moreover, it independently mediates cell division and cellular stress response by facilitating cytokinetic abscission and disulfide stress-dependent transcriptional regulation, respectively. However, the structural characterization and intracellular physiological status of CCDC124 remain unknown. In this study, we employed advanced in silico protein modeling and characterization tools to generate a native-like tertiary structure of CCDC124 and examine the disorder, low sequence complexity, and aggregation propensities, as well as high-order dimeric/oligomeric states. Subsequently, dimerization of CCDC124 was investigated with co-immunoprecipitation (CO-IP) analysis, immunostaining, and a recent live-cell protein-protein interaction method, bimolecular fluorescence complementation (BiFC). Results revealed CCDC124 as a highly disordered protein consisting of low complexity regions at the N-terminus and an aggregation sequence (151-IAVLSV-156) located in the middle region. Molecular docking and post-docking binding free energy analyses highlighted a potential involvement of V153 residue on the generation of high-order dimeric/oligomeric structures. Co-IP, immunostaining, and BiFC analyses were used to further confirm the dimeric state of CCDC124 predominantly localized at the cytoplasm. In conclusion, our findings revealed in silico structural characterization and in vivo subcellular physiological state of CCDC124, suggesting low-complexity regions located at the N-terminus of disordered CCDC124 may regulate the formation of aggregates or high-order dimeric/oligomeric states.
Asunto(s)
Proteínas de Ciclo Celular , Péptidos y Proteínas de Señalización Intracelular , Multimerización de Proteína/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de ProteínaRESUMEN
BACKGROUND: Biological nitrogen fixation (BNF) is an important nitrogen source for legume plants, and highly efficient nitrogen fixation requires sufficient phosphorus (P). However, the mechanism of maintaining nitrogen fixation of the legume nodules under low P concentration remains largely unknown. RESULTS: A nodule-localized SPX protein, GmSPX8, was discovered by transcriptome and functional analysis of its role in N2 fixation was characterized in soybean nodules. GmSPX8 was preferentially expressed in nodules and its expression was gradually increased during nodule development. And also the expression pattern was investigated using reporter gene ß-glucuronidase (GUS) driven by the promoter of GmSPX8. GmSPX8 was greatly induced and the GUS activity was increased by 12.2% under P deficiency. Overexpression of GmSPX8 in transgenic plants resulted in increased nodule number, nodule fresh weight and nitrogenase activity by 15.0%, 16.0%, 42.5%, subsequently leading to increased N and P content by 17.0% and 19.0%, while suppression of GmSPX8 showed significantly impaired nodule development and nitrogen fixation efficiency under low P stress. These data indicated that GmSPX8 conferred nodule development and nitrogen fixation under low P condition. By yeast two-hybrid screening, GmPTF1 was identified as a potential interacting protein of GmSPX8, which was further confirmed by BiFC, Y2H and pull down assay. Transcript accumulation of GmPTF1 and its downstream genes such as GmEXLB1 and EXPB2 were increased in GmSPX8 overexpressed transgenic nodules, and in the presence of GmSPX8, the transcriptional activity of GmPTF1 in yeast cells and tobacco leaves was greatly enhanced. CONCLUSIONS: In summary, these findings contribute novel insights towards the role of GmSPX8 in nodule development and nitrogen fixation partly through interacting with GmPTF1 in soybean under low P condition.
Asunto(s)
Fabaceae , Fijación del Nitrógeno , Fabaceae/metabolismo , Fijación del Nitrógeno/genética , Fósforo/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Glycine max/metabolismoRESUMEN
MAIN CONCLUSION: VvTOR interacts with VvSnRK1.1 and regulates sugar accumulation and sugar-related genes expression in grape. Target of rapamycin (TOR) and sucrose-non-fermenting-related protein kinase 1.1 (SnRK1.1) both are critical proteins in plant sugar metabolism. Glucose-TOR signaling dictates transcriptional reprogramming of gene sets involved in central and secondary metabolism, cell cycle, transcription, signaling, transport and folding. SnRK1.1 is involved in sucrose-induced hypocotyl elongation. However, the relationship of TOR and SnRK1.1 in regulating sugar metabolism is unclear. In the study, we utilized grape (Vitis vinifera) calli to explore the relationship between TOR and SnRK1.1 in the sugar metabolism. We found that VvTOR interacted with VvSnRK1.1. By subcellular localization, VvTOR was found in the nucleus and cell membrane. Transgenic grape calli achieved by Agrobacterium-mediated transformation contained less glucose compared to WT calli. The fructose contents were markedly increased in the overexpressing VvTOR (OE-VvTOR), OE-VvTOR + RNAi-VvSnRK1.1 and RNAi-VvTOR + OE-VvSnRK1.1 transgenic calli. Sucrose contents were significantly increased in the OE-VvTOR transgenic calli and reduced in the OE-VvTOR + RNAi-VvSnRK1.1 transgenic calli, which implied that the pathway of VvTOR improving sucrose content might need the expression of VvSnRK1.1. VvTOR interacted with VvSnRK1.1 and regulated sugar metabolism in grape. These results suggest that there is a crosstalk between TOR and SnRK1.1 in plant sugar metabolism.
Asunto(s)
Vitis , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo , Vitis/genética , Vitis/metabolismoRESUMEN
Plant protoplasts are generated by treatment with digestion enzymes, producing plant cells devoid of the cell wall and competent for efficient polyethylene glycol mediated transformation. This way fluorescently tagged proteins can be introduced to the protoplasts creating an excellent system to probe the localization and function of uncharacterized plant proteins in vivo. We implement the method of laser microirradiation to generate DNA lesions in Arabidopsis thaliana, which enables monitoring the recruitment and dynamics of the DNA repair factors as well as bimolecular fluorescence complementation assay to test transient, conditional interactions of proteins directly at sites of DNA damage. We demonstrate that laser microirradiation in protoplasts yields a physiological cellular response to DNA lesions, based on proliferating cell nuclear antigen (PCNA) redistribution in the nucleus and show that factors involved in DNA repair, such as MRE11 or PCNA are recruited to induced DNA lesions. This technique is relatively easy to adopt by other laboratories and extends the current toolkit of methods aimed to understand the details of DNA damage response in plants. The presented method is fast, flexible and facilitates work with different mutant backgrounds or even different species, extending the utility of the system.
Asunto(s)
Arabidopsis , Reparación del ADN , Arabidopsis/genética , Arabidopsis/metabolismo , ADN , Daño del ADN , Rayos Láser , Antígeno Nuclear de Célula en Proliferación/metabolismo , ProteínasRESUMEN
Molecular processes depend on the concerted and dynamic interactions of proteins, either by one-on-one interactions of the same or different proteins or by the assembly of larger protein complexes consisting of many different proteins. Here, not only the protein-protein interaction (PPI) itself, but also the localization and activity of the protein of interest (POI) within the cell is essential. Therefore, in all cell biological experiments, preserving the spatio-temporal state of one POI relative to another is key to understanding the underlying complex and dynamic regulatory mechanisms in vivo. In this review, we examine some of the applicable techniques to measure PPIs in planta as well as recent combinatorial advances of PPI methods to measure the formation of higher order complexes with an emphasis on in vivo imaging techniques. We compare the different methods and discuss their benefits and potential pitfalls to facilitate the selection of appropriate techniques by providing a comprehensive overview of how to measure in vivo PPIs in plants.
Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Mapeo de Interacción de Proteínas , Transferencia Resonante de Energía de Fluorescencia/métodos , Plantas , Mapeo de Interacción de Proteínas/métodosRESUMEN
BACKGROUND: Hox proteins finely coordinate antero-posterior axis during embryonic development and through their action specific target genes are expressed at the right time and space to determine the embryo body plan. As master transcriptional regulators, Hox proteins recognize DNA through the homeodomain (HD) and interact with a multitude of proteins, including general transcription factors and other cofactors. HD binding specificity increases by protein-protein interactions with a diversity of cofactors that outline the Hox interactome and determine the transcriptional landscape of the selected target genes. All these interactions clearly demonstrate Hox-driven transcriptional regulation, but its precise mechanism remains to be elucidated. RESULTS: Here we report Antennapedia (Antp) Hox protein-protein interaction with the TATA-binding protein (TBP) and the formation of novel trimeric complexes with TFIIEß and Extradenticle (Exd), as well as its participation in transcriptional regulation. Using Bimolecular Fluorescence Complementation (BiFC), we detected the interaction of Antp-TBP and, in combination with Förster Resonance Energy Transfer (BiFC-FRET), the formation of the trimeric complex with TFIIEß and Exd in living cells. Mutational analysis showed that Antp interacts with TBP through their N-terminal polyglutamine-stretches. The trimeric complexes of Antp-TBP with TFIIEß and Exd were validated using different Antp mutations to disrupt the trimeric complexes. Interestingly, the trimeric complex Antp-TBP-TFIIEß significantly increased the transcriptional activity of Antp, whereas Exd diminished its transactivation. CONCLUSIONS: Our findings provide important insights into the Antp interactome with the direct interaction of Antp with TBP and the two new trimeric complexes with TFIIEß and Exd. These novel interactions open the possibility to analyze promoter function and gene expression to measure transcription factor binding dynamics at target sites throughout the genome.
Asunto(s)
Proteína con Homeodominio Antennapedia , Proteínas de Drosophila , Proteínas de Homeodominio , Proteína de Unión a TATA-Box , Factores de Transcripción TFII , Factores de Transcripción , Proteína con Homeodominio Antennapedia/genética , Proteína con Homeodominio Antennapedia/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismoRESUMEN
Glutaredoxin (Grx) is an important oxidoreductase to maintain the redox homoeostasis of cells. In our previous study, cold-adapted Grx from Psychrobacter sp. ANT206 (PsGrx) has been characterized. Here, we constructed an in-frame deletion mutant of psgrx (Δpsgrx). Mutant Δpsgrx was more sensitive to low temperature, demonstrating that psgrx was conducive to the growth of ANT206. Mutant Δpsgrx also had more malondialdehyde (MDA) and protein carbonylation content, suggesting that PsGrx could play a part in the regulation of tolerance against low temperature. A yeast two-hybrid system was adopted to screen interacting proteins of 26 components. Furthermore, two target proteins, glutathione reductase (GR) and alkyl hydroperoxide reductase subunit C (AhpC), were regulated by PsGrx under low temperature, and the interactions were confirmed via bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP). Moreover, PsGrx could enhance GR activity. trxR expression in Δpsgrx, Δahpc, and ANT206 were illustrated 3.7, 2.4, and 10-fold more than mutant Δpsgrx Δahpc, indicating that PsGrx might increase the expression of trxR by interacting with AhpC. In conclusion, PsGrx may participate in glutathione metabolism and ROS-scavenging by regulating GR and AhpC to protect the growth of ANT206. These findings preliminarily suggest the role of PsGrx in the regulation of oxidative stress, which could improve the low-temperature tolerance of ANT206.
Asunto(s)
Glutarredoxinas/metabolismo , Psychrobacter/genética , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Frío , Glutarredoxinas/fisiología , Glutatión Reductasa/metabolismo , Glutatión Reductasa/fisiología , Homeostasis , Cinética , Modelos Moleculares , Oxidación-Reducción , Estrés Oxidativo , Peroxirredoxinas/metabolismo , Peroxirredoxinas/fisiología , Psychrobacter/metabolismo , TemperaturaRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. During KSHV lytic infection, lytic-related genes, categorized as immediate-early, early, and late genes, are expressed in a temporal manner. The transcription of late genes requires the virus-specific pre-initiation complex (vPIC), which consists of viral transcription factors. However, the protein-protein interactions of the vPIC factors have not been completely elucidated. KSHV ORF18 is one of the vPIC factors, and its interaction with other viral proteins has not been sufficiently revealed. In order to clarify these issues, we analyzed the interaction between ORF18 and another vPIC factor, ORF30, in living cells using the bimolecular fluorescence complementation (BiFC) assay. We identified four amino-acid residues (Leu29, Glu36, His41, and Trp170) of ORF18 that were responsible for its interaction with ORF30. Pull-down assays also showed that these four residues were required for the ORF18-ORF30 interaction. The artificial intelligence (AI) system AlphaFold2 predicted that the identified four residues are localized on the surface of ORF18 and are in proximity to each other. Thus, our AI-predicted model supports the importance of the four residues for binding ORF18 to ORF30. These results indicated that wet experiments in combination with AI may enhance the structural characterization of vPIC protein-protein interactions.
Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Inteligencia Artificial , Fluorescencia , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , Humanos , Replicación Viral/genéticaRESUMEN
SERINC5 is a multipass intrinsic membrane protein that suppresses HIV-1 infectivity when incorporated into budding virions. The HIV-1 Nef virulence factor prevents viral incorporation of SERINC5 by triggering its down-regulation from the producer cell membrane through an AP-2-dependent endolysosomal pathway. However, the mechanistic basis for SERINC5 down-regulation by Nef remains elusive. Here we demonstrate that Nef homodimers are important for SERINC5 down-regulation, trafficking to late endosomes, and exclusion from newly synthesized viral particles. Based on previous X-ray crystal structures, we mutated three conserved residues in the Nef dimer interface (Leu112, Tyr115, and Phe121) and demonstrated attenuated homodimer formation in a cell-based fluorescence complementation assay. Point mutations at each position reduced the infectivity of HIV-1 produced from transfected 293T cells, the Jurkat TAg T-cell line, and donor mononuclear cells in a SERINC5-dependent manner. In SERINC5-transfected 293T cells, virion incorporation of SERINC5 was increased by dimerization-defective Nef mutants, whereas down-regulation of SERINC5 from the membrane of transfected Jurkat cells by these mutants was significantly reduced. Nef dimer interface mutants also failed to trigger internalization of SERINC5 and localization to Rab7+ late endosomes in T cells. Importantly, fluorescence complementation assays demonstrated that dimerization-defective Nef mutants retained interaction with both SERINC5 and AP-2. These results show that down-regulation of SERINC5 and subsequent enhancement of viral infectivity require Nef homodimers and support a mechanism by which the Nef dimer bridges SERINC5 to AP-2 for endocytosis. Pharmacological disruption of Nef homodimers may control HIV-1 infectivity and viral spread by enhancing virion incorporation of SERINC5.
Asunto(s)
VIH-1/fisiología , Proteínas de la Membrana/metabolismo , Factor de Transcripción AP-2/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Dimerización , Regulación hacia Abajo , Endocitosis , Endosomas/metabolismo , Células HEK293 , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , VIH-1/metabolismo , Humanos , Células Jurkat , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Factor de Transcripción AP-2/química , Factor de Transcripción AP-2/genética , Internalización del Virus , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
The HIV-1 virulence factor Nef promotes high-titer viral replication, immune escape, and pathogenicity. Nef interacts with interleukin-2-inducible T-cell kinase (Itk) and Bruton's tyrosine kinase (Btk), two Tec-family kinases expressed in HIV-1 target cells (CD4 T cells and macrophages, respectively). Using a cell-based bimolecular fluorescence complementation assay, here we demonstrate that Nef recruits both Itk and Btk to the cell membrane and induces constitutive kinase activation in transfected 293T cells. Nef homodimerization-defective mutants retained their interaction with both kinases but failed to induce activation, supporting a role for Nef homodimer formation in the activation mechanism. HIV-1 infection up-regulates endogenous Itk activity in SupT1 T cells and donor-derived peripheral blood mononuclear cells. However, HIV-1 strains expressing Nef variants with mutations in the dimerization interface replicated poorly and were significantly attenuated in Itk activation. We conclude that direct activation of Itk and Btk by Nef at the membrane in HIV-infected cells may override normal immune receptor control of Tec-family kinase activity to enhance the viral life cycle.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Membrana Celular/metabolismo , Infecciones por VIH/inmunología , VIH-1/inmunología , Proteínas Tirosina Quinasas/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Agammaglobulinemia Tirosina Quinasa/genética , Antivirales/farmacología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Multimerización de Proteína , Proteínas Tirosina Quinasas/genética , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/virología , Replicación Viral , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismoRESUMEN
Antiretroviral therapy has revolutionized the treatment of AIDS, turning a deadly disease into a manageable chronic condition. Life-long treatment is required because existing drugs do not eradicate HIV-infected cells. The emergence of drug-resistant viral strains and uncertain vaccine prospects highlight the pressing need for new therapeutic approaches with the potential to clear the virus. The HIV-1 accessory protein Nef is essential for viral pathogenesis, making it a promising target for antiretroviral drug discovery. Nef enhances viral replication and promotes immune escape of HIV-infected cells but lacks intrinsic enzymatic activity. Instead, Nef works through diverse interactions with host cell proteins primarily related to kinase signaling pathways and endosomal trafficking. This review emphasizes the structure, function, and biological relevance of Nef interactions with host cell protein-tyrosine kinases in the broader context of Nef functions related to enhancement of the viral life cycle and immune escape. Drug discovery targeting Nef-mediated kinase activation has allowed identification of promising inhibitors of multiple Nef functions. Pharmacological inhibitors of Nef-induced MHC-I down-regulation restore the adaptive immune response to HIV-infected cells in vitro and have the potential to enhance immune recognition of latent viral reservoirs as part of a strategy for HIV clearance.