RESUMEN
The development of non-biological applications of DNA has not only resulted in delicately shaped DNA-based nano-objects with complex functions but also spawned their use for novel catalytic applications. From the multitude of applications of DNAzymes that operate on a relatively simple substrate, we have witnessed the emergence of multifunctional catalytically active DNA-based nanostructures for one of the most challenging tasks known to a chemist: the controlled and precise modification of a wild-type protein in its natural environment. By incorporating various elements associated with post-translational modification (PTM) writer enzymes into complex nanostructures, it is now possible to chemically modify a specific protein in cell lysates under the influence of an externally added trigger, clearly illustrating the promising future for this approach.
RESUMEN
Antimicrobial susceptibility testing plays a pivotal role in the discovery of new antibiotics. However, the development of simple, sensitive, and rapid assessment approaches remains challenging. Herein, we report an activated alkyne-based cascade signal amplification strategy for ultrafast and high-throughput antibiotic screening. First of all, a novel water-soluble aggregation-induced emission (AIE) luminogen is synthesized, which contains an activated alkyne group to enable fluorescence turn-on and metal-free click bioconjugation under physiological conditions. Taking advantage of the in-house established method for bacterial lysis, a number of clickable biological substances (i.e., bacterial solutes and debris) are released from the bacterial bodies, which remarkably increases the quantity of analytes. By means of the activated alkyne-mediated turn-on click bioconjugation, the system fluorescence signal is significantly amplified due to the increased labeling sites as well as the AIE effect. Such a cascade signal amplification strategy efficiently improves the detection sensitivity and thus enables ultrafast antimicrobial susceptibility assessment. By integration with a microplate reader, this approach is further applied to high-throughput antibiotic screening.
Asunto(s)
Alquinos , Antibacterianos , Antibacterianos/farmacología , Fluorescencia , Química Clic/métodos , AzidasRESUMEN
Self-assembled protein cages are attractive scaffolds for organizing various proteins of interest (POIs) toward applications in synthetic biology and medical science. However, specifically attaching multiple POIs to a single protein cage remains challenging, resulting in diversity among the functionalized particles. Here, we present the engineering of a self-assembled protein cage, DTMi3ST, capable of independently recruiting two different POIs using SpyCatcher (SC)/SpyTag (ST) and DogCatcher (DC)/DogTag (DT) chemistries, thereby reducing variability between assemblies. Using fluorescent proteins as models, we demonstrate controlled targeting of two different POIs onto DTMi3ST protein cages both in vitro and inside living cells. Furthermore, dual functionalization of the DTMi3ST protein cage with a membrane-targeting peptide and ß-galactosidase resulted in the construction of membrane-bound enzyme assemblies in Escherichia coli, leading to a 69.6% enhancement in substrate utilization across the membrane. This versatile protein cage platform provides dual functional nanotools for biological and biomedical applications.
Asunto(s)
Escherichia coli , Ingeniería de Proteínas , Escherichia coli/genética , Péptidos/química , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , HumanosRESUMEN
Klebsiella pneumoniae is the leading cause of neonatal sepsis and is increasingly difficult to treat owing to antibiotic resistance. Vaccination represents a tractable approach to combat this resistant bacterium; however, there is currently not a licensed vaccine. Surface polysaccharides, including O-antigens of lipopolysaccharide, have long been attractive candidates for vaccine inclusion. Herein we describe the generation of a bioconjugate vaccine targeting 7 predominant O-antigen subtypes in K. pneumoniae. Each bioconjugate was immunogenic in isolation, with limited cross-reactivity among subtypes. Vaccine-induced antibodies demonstrated varying degrees of binding to a wide variety of K. pneumoniae strains. Furthermore, serum from vaccinated mice induced complement-mediated killing of many of these strains. Finally, increased capsule interfered with the ability of O-antigen antibodies to bind and mediate killing of some K. pneumoniae strains. Taken together, these data indicate that this novel heptavalent O-antigen bioconjugate vaccine formulation exhibits limited efficacy against some, but not all, K. pneumoniae isolates.
Asunto(s)
Anticuerpos Antibacterianos , Vacunas Bacterianas , Infecciones por Klebsiella , Klebsiella pneumoniae , Antígenos O , Klebsiella pneumoniae/inmunología , Antígenos O/inmunología , Antígenos O/química , Animales , Anticuerpos Antibacterianos/inmunología , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/prevención & control , Infecciones por Klebsiella/microbiología , Vacunas Bacterianas/inmunología , Ratones , Femenino , Vacunas Conjugadas/inmunología , Ratones Endogámicos BALB C , HumanosRESUMEN
Bispecific antibodies (bsAbs) have recently emerged as a promising platform for the treatment of several conditions, most importantly cancer. Based on the combination of two different antigen-binding motifs in a single macromolecule; bsAbs can either display the combined characteristics of their parent antibodies, or new therapeutic features, inaccessible by the sole combination of two distinct antibodies. While bsAbs are traditionally produced by molecular biology techniques, the chemical development of bsAbs holds great promises and strategies have just begun to surface. In this context, we took advantage of a chemical strategy based on the use of the Ugi reaction for the site-selective conjugation of whole antibodies and coupled the resulting conjugates in a bioorthogonal manner with Fab fragments, derived from various antibodies. We thus managed to produce five different bsAbs with 2 : 1 valency, with yields ranging from 20 % to 48 %, and showed that the affinity of the parent antibody was preserved in all bsAbs. We further demonstrated the interest of our strategy by producing two other bsAbs behaving as cytotoxic T cell engagers with IC50 values in the picomolar range inâ vitro.
Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/biosíntesis , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Linfocitos T Citotóxicos/inmunologíaRESUMEN
Antibody-enzyme conjugates have shown potential as tissue-specific prodrug activators by antibody-directed enzyme prodrug therapy (ADEPT), but the approach met challenges clinically due to systemic drug release. Here, we report a novel dual-targeting ADEPT system (DuADEPT) which is based on active cancer receptor targeting of both a trastuzumab-sialidase conjugate (Tz-Sia) and a highly potent sialidase-activated monomethyl auristatin E (MMAE) prodrug scaffold. The scaffold is based on a four-way junction of the artificial nucleic acid analog acyclic (L)-threoninol nucleic acid ((L)-aTNA) which at the ends of its four arms carries one nanobody targeting HER2 and three copies of the prodrug. Dual-targeting of the constructs to two proximal epitopes of HER2 was shown by flow cytometry, and a dual-targeted enzymatic drug release assay revealed cytotoxicity upon prodrug activation specifically for HER2-positive cancer cells. The specific delivery and activation of prodrugs in this way could potentially be used to decrease systemic side effects and increase drug efficacy, and utilization of Tz-Sia provides an opportunity to combine the local chemotherapeutic effect of the DuADEPT with an anticancer immune response.
RESUMEN
Flavin-dependent halogenases (FDHs) are the most extensively researched halogenases and show great potential for biotransformation applications. These enzymes use chloride, bromide, or iodide ions as halogen donors to catalyze the oxygen-dependent halogenation of electron-rich aryl moieties, requiring stochiometric amounts of FADH2 in the process. This makes FDH-catalyzed aryl halogenation a highly selective and environmentally friendly tool for the synthesis of aryl halides. The latter in turn serve as valuable intermediates for transition metal catalyzed cross coupling reactions for C-C bond formation. Previous research made extensive use of this approach to halogenate small molecules as building blocks for late-stage functionalization by transition-metal catalyzed cross-coupling reactions. Based on these results, several groups have managed to expand this research to protein targets over the past two years. Their work indicates an emerging methodology for bioconjugation using late-stage biocatalytic halogenation in conjunction with biorthogonal Suzuki-Miyaura cross-coupling. This strategy could present an attractive alternative to existing approaches due to the stability of the C-C bond bridging the generated biaryl moiety and the ease of late-stage enzymatic modification while maintaining excellent selectivity under mild conditions.
RESUMEN
A one-to-one conjugate of cross-linked human hemoglobin and human serum albumin results from a strain-promoted alkyne-azide cycloaddition (SPAAC) of the modified proteins. Additions of a strained alkyne-substituted maleimide to the Cys-34 thiol of human serum albumin and an azide-containing cross-link between the amino groups of each ß-unit at Lys-82 of human hemoglobin provide sites for coupling by the SPAAC process. The coupled hemoglobin-albumin conjugate can be readily purified from unreacted hemoglobin. The oxygen binding properties of the two-protein bioconjugate demonstrate oxygen affinity and cooperativity that are suitable for use in an acellular oxygen carrier.
Asunto(s)
Alquinos , Azidas , Reacción de Cicloadición , Hemoglobinas , Albúmina Sérica , Alquinos/química , Azidas/química , Humanos , Hemoglobinas/química , Albúmina Sérica/química , Oxígeno/química , Maleimidas/químicaRESUMEN
The continuous development of click reactions with new connecting linkage is crucial for advancing the frontiers of click chemistry. Selenium-nitrogen exchange (SeNEx) chemistry, a versatile chemistry in click chemistry, represents an all-encompassing term for nucleophilic substitution events that replace nitrogen at an electrophilic selenium(II) center, enabling the flexible and efficient assembly of linkages around a Se(II) core. Several SeNEx chemistries have been developed inspired by the biochemical reaction between Ebselen and cysteine residue, and demonstrated significant potential in on-plate nanomole-scale parallel synthesis, selenium-containing DNA-encoded library (SeDEL) synthesis, as well as peptide and protein bioconjugation. This concept aims to present the origins, advancements, and applications of selenium(II)-nitrogen exchange (SeNEx) chemistry while also outlining the potential directions for future research in this field.
RESUMEN
A series of biotin-functionalized transition metal complexes was prepared by iClick reaction from the corresponding azido complexes with a novel alkyne-functionalized biotin derivative ([Au(triazolatoR,R')(PPh3)], [Pt(dpb)(triazolatoR,R')], [Pt(triazolatoR,R')(terpy)]PF6, and [Ir(ppy)(triazolatoR,R')(terpy)]PF6 with dpb = 1,3-di(2-pyridyl)benzene, ppy = 2-phenylpyridine, and terpy = 2,2':6',2''-terpyridine and R = C6H5, R' = biotin). The complexes were compared to reference compounds lacking the biotin moiety. The binding affinity toward avidin and streptavidin was evaluated with the HABA assay as well as isothermal titration calorimetry (ITC). All compounds exhibit the same binding stoichiometry of complex-to-avidin of 4:1, but the ITC results show that the octahedral Ir(III) compound exhibits a higher binding affinity than the square-planar Pt(II) complex. The antibacterial activity of the compounds was evaluated on a series of Gram-negative and Gram-positive bacterial strains. In particular, the neutral Au(I) and Pt(II) complexes showed significant antibacterial activity against Staphylococcus aureus and Enterococcus faecium at very low micromolar concentrations. The cytotoxicity against a range of eukaryotic cell lines was studied and revealed that the octahedral Ir(III) complex was non-toxic, while the square-planar Pt(II) and linear Au(I) complexes displayed non-selective micromolar activity.
Asunto(s)
Antibacterianos , Biotina , Oro , Iridio , Pruebas de Sensibilidad Microbiana , Platino (Metal) , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Biotina/química , Oro/química , Oro/farmacología , Iridio/química , Iridio/farmacología , Platino (Metal)/química , Platino (Metal)/farmacología , Humanos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Staphylococcus aureus/efectos de los fármacos , Estructura Molecular , Relación Estructura-ActividadRESUMEN
Iminoboronates and diazaborines are related classes of compounds that feature an imine ortho to an arylboronic acid (iminoboronate) or a hydrazone that cyclizes with an ortho arylboronic acid (diazaborine). Rather than acting as independent chemical motifs, the arylboronic acid impacts the rate of imine/hydrazone formation, hydrolysis, and exchange with competing nucleophiles. Increasing evidence has shown that the imine/hydrazone functionality also impacts arylboronic acid reactivity toward diols and reactive oxygen and nitrogen species (ROS/RNS). Untangling the communication between C=N linked functionalities and arylboronic acids has revealed a powerful and tunable motif for bioconjugation chemistries and other applications in chemical biology. Here, we survey the applications of iminoboronates and diazaborines in these fields with an eye toward understanding their utility as a function of neighboring group effects.
Asunto(s)
Ácidos Borónicos , Iminas , Ácidos Borónicos/química , Iminas/química , Hidrazonas/química , BiologíaRESUMEN
The chemical bioconjugation of proteins has seen tremendous applications in the past decades, with the booming of antibody-drug conjugates and their use in oncology. While genetic engineering has permitted to produce bespoke proteins featuring key (un-)natural amino acid residues poised for site-selective modifications, the conjugation of native proteins is riddled with selectivity issues. Chemoselective strategies are plentiful and enable the precise modification of virtually any residue with a reactive side-chain; site-selective methods are less common and usually most effective on small and medium-sized proteins. In this context, we studied the application of the Ugi multicomponent reaction for the site-selective conjugation of amine and carboxylate groups on proteins, and antibodies in particular. Through an in-depth mechanistic methodology work supported by peptide mapping studies, we managed to develop a set of conditions allowing the highly selective modification of antibodies bearing N-terminal glutamate and aspartate residues. We demonstrated that this strategy did not alter their affinity toward their target antigen and produced an antibody-drug conjugate with subnanomolar potency. Excitingly, we showed that the high site selectivity of our strategy was maintained on other protein formats, especially on anticalins, for which directed mutagenesis helped to highlight the key importance of a single lysine residue.
Asunto(s)
Inmunoconjugados , Proteínas , Proteínas/química , Lisina/química , Aminoácidos , Anticuerpos , Fenómenos QuímicosRESUMEN
Nanostructured materials represent promising substrates for biocatalyst immobilization and activation. Cellulose nanocrystals (CNCs), accessible from waste and/or renewable sources, are sustainable and biodegradable, show high specific surface area for anchoring a high number of enzymatic units, and high thermal and mechanical stability. In this work, we present a holistic enzyme-based approach to functional antibacterial materials by bioconjugation between the lysozyme from chicken egg white and enzymatic cellulose nanocrystals. The neutral CNCs were prepared by endoglucanase hydrolysis from Avicel. We explore the covalent immobilization of lysozyme on enzymatic CNCs and on their TEMPO oxidized derivatives (TO-CNCs), comparing immobilization yields, material properties, and enzymatic activities. The materials were characterized by X-ray diffractometry (XRD), attenuated total reflectance Fourier Transform infrared spectroscopy (ATR-FTIR), bicinchoninic acid (BCA) assay, field-emission scanning electron microscopy (FE-SEM) and dynamic light scattering (DLS). We demonstrate the higher overall efficiency of the immobilization process carried out on TO-CNCs, based on the success of covalent bonding and on the stability of the isolated bioconjugates.
Asunto(s)
Celulosa , Enzimas Inmovilizadas , Muramidasa , Nanopartículas , Celulosa/química , Muramidasa/química , Muramidasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Nanopartículas/química , Pollos , Espectroscopía Infrarroja por Transformada de Fourier , Animales , Difracción de Rayos X , Hidrólisis , Óxidos N-Cíclicos/química , Antibacterianos/químicaRESUMEN
α-Silylated diazoalkynes are stabilized diazo compounds that can selectively react with carboxylic residues in buffered aqueous media. In-situ fluoride induced desilylation increases this reactivity, leading to a very fast reaction. Application to the selective functionalization of RNase A, followed by post-functionalization using click chemistry, is described. These new reagents expand the toolbox for native protein modification at carboxylic residues.
Asunto(s)
Compuestos Azo , Proteínas , Proteínas/química , Procesamiento Proteico-Postraduccional , Fluoruros/química , Química ClicRESUMEN
The RNA molecule plays a pivotal role in many biological processes by relaying genetic information, regulating gene expression, and serving as molecular machines and catalyzers. This inherent versatility of RNA has fueled significant advancements in the field of RNA nanotechnology, driving the engineering of complex nanoscale architectures toward biomedical applications, including targeted drug delivery and bioimaging. RNA polymers, serving as building blocks, offer programmability and predictability of Watson-Crick base pairing, as well as non-canonical base pairing, for the construction of nanostructures with high precision and stoichiometry. Leveraging the ease of chemical modifications to protect the RNA from degradation, researchers have developed highly functional and biocompatible RNA architectures and integrated them into preclinical studies for the delivery of payloads and imaging agents. This review offers an educational introduction to the use of RNA as a biopolymer in the design of multifunctional nanostructures applied to targeted delivery in vivo, summarizing physical and biological barriers along with strategies to overcome them. Furthermore, we highlight the most recent progress in the development of both small and larger RNA nanostructures, with a particular focus on imaging reagents and targeted cancer therapeutics in pre-clinical models and provide insights into the prospects of this rapidly evolving field.
Asunto(s)
Nanoestructuras , Neoplasias , Humanos , ARN/genética , ADN/química , Nanoestructuras/química , Nanotecnología/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/genéticaRESUMEN
Enterotoxigenic Escherichia coli (ETEC) strains, which produce the heat-stable enterotoxin (ST) either alone or in combination with the heat-labile enterotoxin, contribute to the bulk of the burden of child diarrheal disease in resource-limited countries and are associated with mortality. Developing an effective vaccine targeting ST presents challenges due to its potent enterotoxicity, non-immunogenicity, and the risk of autoimmune reaction stemming from its structural similarity to the human endogenous ligands, guanylin, and uroguanylin. This study aimed to assess a novel synthetic vaccine carrier platform employing a single chemical coupling step for making human ST (STh) immunogenic. Specifically, the method involved cross-linking STh to an 8-arm N-hydroxysuccinimide (NHS) ester-activated PEG cross-linker. A conjugate of STh with 8-arm structure was prepared, and its formation was confirmed through immunoblotting analysis. The impact of conjugation on STh epitopes was assessed using ELISAs with polyclonal and monoclonal antibodies targeting various epitopes of STh. Immunization of mice with the conjugate induced the production of anti-STh antibodies, exhibiting neutralizing activity against STh.
RESUMEN
The compositional scope of polymer zwitterions has grown significantly in recent years and now offers designer synthetic materials that are broadly applicable across numerous areas, including supracolloidal structures, electronic materials interfaces, and macromolecular therapeutics. Among recent developments in polymer zwitterion syntheses are those that allow insertion of reactive functionality directly into the zwitterionic moiety, yielding new monomer and polymer structures that hold potential for maximizing the impact of zwitterions on the macromolecular materials chemistry field. This manuscript describes the preparation of zwitterionic choline phosphate (CP) methacrylates containing either aromatic or aliphatic thiols embedded directly into the zwitterionic moiety. The polymerization of these functional CP methacrylates by reversible addition-fragmentation chain-transfer methodology yields polymeric zwitterionic thiols containing protected thiol functionality in the zwitterionic units. After polymerization, the protected thiols are liberated to yield thiol-rich polymer zwitterions which serve as precursors to subsequent reactions that produce polymer networks as well as polymer-protein bioconjugates.
Asunto(s)
Polimerizacion , Polímeros , Compuestos de Sulfhidrilo , Compuestos de Sulfhidrilo/química , Polímeros/química , Polímeros/síntesis química , Fosforilcolina/química , Fosforilcolina/análogos & derivados , Estructura Molecular , Metacrilatos/químicaRESUMEN
Antibody-Drug Conjugates (ADC) are a new class of anticancer therapeutics with immense potential. They have been rapidly advancing in the last two decades. This fast speed of development has become possible due to several new technologies and methods. One of them is Click Chemistry, an approach that was created only two decades ago, but already is actively utilized for bioconjugation, material science and drug discovery. In this review, we researched the impact of Click Chemistry reactions on the synthesis and development of ADCs. The information about the most frequently utilized reactions, such as Michael's addition, Copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC), Strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), oxime bond formation, hydrazine-iso-Pictet-Spengler Ligation (HIPS), Diels-Alder reactions have been summarized. The implementation of thiol-maleimide Click Chemistry reaction in the synthesis of numerous FDA-approved Antibody-Drug Conjugates has been reported. The data amassed in the present review provides better understanding of the importance of Click Chemistry in the synthesis, development and improvement of the Antibody-Drug Conjugates and it will be helpful for further researches related to ADCs.
Asunto(s)
Azidas , Química Clic , Maleimidas , Compuestos de Sulfhidrilo , Azidas/química , Alquinos/química , Reacción de Cicloadición , Cobre/químicaRESUMEN
Antibody drug conjugates are an exciting therapeutic modality that combines the targeting specificity of antibodies with potent cytotoxins to selectively kill cancer cells. The targeting component improves efficacy and protects non-target cells from the harmful effects of the payload. To date 15 ADCs have been approved by regulatory agencies for commercial use and shown to be valuable tools in the treatment of cancer.The assembly of an ADC requires the chemical ligation of a linker-payload to an antibody. Conventional conjugation methods targeting accessible lysines and cysteines have produced all the ADCs currently on the market. While successful, technologies aiming to improve the homogeneity and stability of ADCs are being developed and tested.Here we provide a review of developing methods for ADC construction. These include enzymatic methods, oligosaccharide remodelling, and technologies using genetic code expansion techniques. The virtues and limitations of each technology are discussed.Emerging conjugation technologies are being applied to produce new formats of ADCs with enhanced functionality including bispecific ADCs, dual-payload ADCs, and nanoparticles for targeted drug delivery. The benefits of these novel formats are highlighted.
Asunto(s)
Inmunoconjugados , Neoplasias , Ingeniería de Proteínas , Humanos , Neoplasias/tratamiento farmacológico , Ingeniería de Proteínas/métodos , Sistemas de Liberación de Medicamentos , Antineoplásicos/farmacologíaRESUMEN
The opioids are potent and widely used pain management medicines despite also possessing severe liabilities that have fueled the opioid crisis. The pharmacological properties of the opioids primarily derive from agonism or antagonism of the opioid receptors, but additional effects may arise from specific compounds, opioid receptors, or independent targets. The study of the opioids, their receptors, and the development of remediation strategies has benefitted from derivatization of the opioids as chemical tools. While these studies have primarily focused on the opioids in the context of the opioid receptors, these chemical tools may also play a role in delineating mechanisms that are independent of the opioid receptors. In this review, we describe recent advances in the development and applications of opioid derivatives as chemical tools and highlight opportunities for the future.