Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.010
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(2): 457-468, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38198228

RESUMEN

Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea mays L.), one of the most highly produced cereal crops worldwide, would have a global impact on human health. PLASTID TERMINAL OXIDASE (PTOX) genes play an important role in carotenoid metabolism; however, the possible function of PTOX in carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maize PTOX locus by forward- and reverse-genetic analyses. While most higher plant species possess a single copy of the PTOX gene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid-deficient phenotype. We identified mutations in the PTOX genes as being causal of the classic maize mutant, albescent1. Remarkably, overexpression of ZmPTOX1 significantly improved the content of carotenoids, especially ß-carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maize PTOX locus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine-tuning the expression of this gene could improve the nutritional value of cereal grains.


Asunto(s)
Oxidorreductasas , Zea mays , Humanos , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Carotenoides/metabolismo , beta Caroteno/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Plastidios/genética , Plastidios/metabolismo
2.
EMBO Rep ; 24(1): e55542, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36394374

RESUMEN

The Zn content in cereal seeds is an important trait for crop production as well as for human health. However, little is known about how Zn is loaded to plant seeds. Here, through a genome-wide association study (GWAS), we identify the Zn-NA (nicotianamine) transporter gene ZmYSL2 that is responsible for loading Zn to maize kernels. High promoter sequence variation in ZmYSL2 most likely drives the natural variation in Zn concentrations in maize kernels. ZmYSL2 is specifically localized on the plasma membrane facing the maternal tissue of the basal endosperm transfer cell layer (BETL) and functions in loading Zn-NA into the BETL. Overexpression of ZmYSL2 increases the Zn concentration in the kernels by 31.6%, which achieves the goal of Zn biofortification of maize. These findings resolve the mystery underlying the loading of Zn into plant seeds, providing an efficient strategy for breeding or engineering maize varieties with enriched Zn nutrition.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Humanos , Zea mays/genética , Zea mays/metabolismo , Zinc/metabolismo , Fitomejoramiento , Semillas/genética , Proteínas de Transporte de Membrana/genética
3.
Plant J ; 113(4): 749-771, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36573652

RESUMEN

Rice (Oryza sativa) is an important staple crop to address the Hidden Hunger problem not only in Asia but also in Africa where rice is fast becoming an important source of calories. The brown rice (whole grain with bran) is known to be more nutritious due to elevated mineral composition. The genetics underlying brown rice ionome (sum total of such mineral composition) remains largely unexplored. Hence, we conducted a comprehensive study to dissect the genetic architecture of the brown rice ionome. We used genome-wide association studies, gene set analysis, and targeted association analysis for 12 micronutrients in the brown rice grains. A diverse panel of 300 resequenced indica accessions, with more than 1.02 million single nucleotide polymorphisms, was used. We identified 109 candidate genes with 5-20% phenotypic variation explained for the 12 micronutrients and identified epistatic interactions with multiple micronutrients. Pooling all candidate genes per micronutrient exhibited phenotypic variation explained values ranging from 11% to almost 40%. The key donor lines with larger concentrations for most of the micronutrients possessed superior alleles, which were absent in the breeding lines. Through gene regulatory networks we identified enriched functional pathways for central regulators that were detected as key candidate genes through genome-wide association studies. This study provided important insights on the ionome variations in rice, on the genetic basis of the genome-ionome relationships and on the molecular mechanisms underlying micronutrient signatures.


Asunto(s)
Oryza , Oligoelementos , Micronutrientes/análisis , Oryza/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fitomejoramiento
4.
BMC Genomics ; 25(1): 95, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262915

RESUMEN

BACKGROUND: Evolutionarily conserved in plants, the enzyme D-myo-inositol-3-phosphate synthase (MIPS; EC 5.5.1.4) regulates the initial, rate-limiting reaction in the phytic acid biosynthetic pathway. They are reported to be transcriptional regulators involved in various physiological functions in the plants, growth, and biotic/abiotic stress responses. Even though the genomes of most legumes are fully sequenced and available, an all-inclusive study of the MIPS family members in legumes is still ongoing. RESULTS: We found 24 MIPS genes in ten legumes: Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata. The total number of MIPS genes found in each species ranged from two to three. The MIPS genes were classified into five clades based on their evolutionary relationships with Arabidopsis genes. The structural patterns of intron/exon and the protein motifs that were conserved in each gene were highly group-specific. In legumes, MIPS genes were inconsistently distributed across their genomes. A comparison of genomes and gene sequences showed that this family was subjected to purifying selection and the gene expansion in MIPS family in legumes was mainly caused by segmental duplication. Through quantitative PCR, expression patterns of MIPS in response to various abiotic stresses, in the vegetative tissues of various legumes were studied. Expression pattern shows that MIPS genes control the development and differentiation of various organs, and have significant responses to salinity and drought stress. CONCLUSION: The MIPS genes in the genomes of legumes have been identified, characterized and their expression was analysed. The findings pave way for understanding their molecular functions and evolution, and lead to identify the putative MIPS genes associated with different cell and tissue development.


Asunto(s)
Arabidopsis , Cajanus , Cicer , Phaseolus , Verduras , Glycine max
5.
Funct Integr Genomics ; 24(2): 34, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365972

RESUMEN

Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.


Asunto(s)
Biofortificación , Hambre , Biofortificación/métodos , Fitomejoramiento , Productos Agrícolas/genética , Suelo
6.
BMC Plant Biol ; 24(1): 668, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004715

RESUMEN

BACKGROUND: Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT: Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS: By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.


Asunto(s)
Biofortificación , Desnutrición , Micronutrientes , Triticum , Triticum/metabolismo , Triticum/genética , Micronutrientes/metabolismo , Desnutrición/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Zinc/metabolismo , Valor Nutritivo
7.
BMC Plant Biol ; 24(1): 220, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532321

RESUMEN

BACKGROUND: Riboflavin is the precursor of several cofactors essential for normal physical and cognitive development, but only plants and some microorganisms can produce it. Humans thus rely on their dietary intake, which at a global level is mainly constituted by cereals (> 50%). Understanding the riboflavin biosynthesis players is key for advancing our knowledge on this essential pathway and can hold promise for biofortification strategies in major crop species. In some bacteria and in Arabidopsis, it is known that RibA1 is a bifunctional protein with distinct GTP cyclohydrolase II (GTPCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS) domains. Arabidopsis harbors three RibA isoforms, but only one retained its bifunctionality. In rice, however, the identification and characterization of RibA has not yet been described. RESULTS: Through mathematical kinetic modeling, we identified RibA as the rate-limiting step of riboflavin pathway and by bioinformatic analysis we confirmed that rice RibA proteins carry both domains, DHBPS and GTPCHII. Phylogenetic analysis revealed that OsRibA isoforms 1 and 2 are similar to Arabidopsis bifunctional RibA1. Heterologous expression of OsRibA1 completely restored the growth of the rib3∆ yeast mutant, lacking DHBPS expression, while causing a 60% growth improvement of the rib1∆ mutant, lacking GTPCHII activity. Regarding OsRibA2, its heterologous expression fully complemented GTPCHII activity, and improved rib3∆ growth by 30%. In vitro activity assays confirmed that both OsRibA1 and OsRibA2 proteins carry GTPCHII/DHBPS activities, but that OsRibA1 has higher DHBPS activity. The overexpression of OsRibA1 in rice callus resulted in a 28% increase in riboflavin content. CONCLUSIONS: Our study elucidates the critical role of RibA in rice riboflavin biosynthesis pathway, establishing it as the rate-limiting step in the pathway. By identifying and characterizing OsRibA1 and OsRibA2, showcasing their GTPCHII and DHBPS activities, we have advanced the understanding of riboflavin biosynthesis in this staple crop. We further demonstrated that OsRibA1 overexpression in rice callus increases its riboflavin content, providing supporting information for bioengineering efforts.


Asunto(s)
Arabidopsis , Oryza , Humanos , Riboflavina/genética , Riboflavina/metabolismo , Secuencia de Aminoácidos , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Oryza/metabolismo , Arabidopsis/metabolismo , Filogenia , Isoformas de Proteínas/metabolismo
8.
J Nutr ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936549

RESUMEN

BACKGROUND: South, East, and Southeast Asia are among the regions of the world with the highest estimated prevalence of inadequate zinc intake. Because populations in those regions eat rice as their main staple, zinc biofortification of rice can potentially improve zinc intake, especially among the most vulnerable. OBJECTIVES: We modeled the impact of the consumption of zinc-biofortified rice on zinc intake and inadequacy among women of childbearing age and young children nationally in Indonesia, the Philippines, and at a subnational level in Bangladesh. METHODS: We conducted an ex-ante analysis by applying increments of zinc content in rice, from a baseline level of 16 parts per million (ppm) to 100 ppm, and based on rice consumption data to substitute levels of conventional rice with zinc-biofortified rice varying between 10% and 70%. RESULTS: Among all datasets evaluated from these 3 countries, the prevalence of dietary zinc inadequacy at baseline was 94%-99% among women of childbearing age, 77%-100% among children 4-5 y old, and 27%-78% among children 1-3 y old. At the current breeding target of 28 ppm, zinc-biofortified rice has the potential to decrease zinc inadequacy by ≤50% among women and children in rural Bangladesh and among children in the Philippines where consumption of rice is higher compared with Indonesia. CONCLUSIONS: Our analysis shows that increasing zinc content in rice ≤45 ppm reduces the burden of zinc inadequacy substantially, after which we encourage programs to increase coverage to reach the highest number of beneficiaries.

9.
Int Microbiol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740653

RESUMEN

The current study was aimed for the generation of Pleurotus extracellular extract-mediated selenium and zinc-oxide nanoparticles (NPs). The Pleurotus djamor (PD) and Pleurotus sajor-caju (PSC) extracts were incubated with different concentrations of sodium selenate and zinc acetate to yield BioSeNPs and BioZnONPs. The NPs formation led to visual color change (brick-red and white for Se and Zn nanosols, respectively). The synthesized NPs were spherical with size of 124 and 68 nm and 84 and 91 nm for PD and PSC BioSeNPs and BioZnONPs respectively. The UV absorbance peaks were recorded at 293.2 and 292.2 nm and 365.9 and 325.5 nm for BioSeNPs and BioZnONPs derived from PD and PSC respectively. FT-IR spectroscopy indicated specific functional group adoration on metal-based NPs. On supplementation in straw, these NPs improved the fruit body yield besides enhancing their protein and Se/ Zn contents. These biofortified mushrooms could be potential dietary supplement/ nutraceutical.

10.
Mol Biol Rep ; 51(1): 242, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300326

RESUMEN

Sulfur-containing amino acids (SAA), namely methionine, and cysteine are crucial essential amino acids (EAA) considering the dietary requirements of humans and animals. However, a few crop plants, especially legumes, are characterized with suboptimal levels of these EAA thereby limiting their nutritive value. Hence, improved comprehension of the mechanistic perspective of sulfur transport and assimilation into storage reserve, seed storage protein (SSP), is imperative. Efforts to augment the level of SAA in seed storage protein form an integral component of strategies to balance nutritive quality and quantity. In this review, we highlight the emerging trends in the sulfur biofortification approaches namely transgenics, genetic and molecular breeding, and proteomic rebalancing with sulfur nutrition. The transgenic 'push and pull strategy' could enhance sulfur capture and storage by expressing genes that function as efficient transporters, sulfate assimilatory enzymes, sulfur-rich foreign protein sinks, or by suppressing catabolic enzymes. Modern molecular breeding approaches that adopt high throughput screening strategies and machine learning algorithms are invaluable in identifying candidate genes and alleles associated with SAA content and developing improved crop varieties. Sulfur is an essential plant nutrient and its optimal uptake is crucial for seed sulfur metabolism, thereby affecting seed quality and yields through proteomic rebalance between sulfur-rich and sulfur-poor seed storage proteins.


Asunto(s)
Aminoácidos Esenciales , Proteómica , Animales , Humanos , Transporte Biológico , Proteínas de Almacenamiento de Semillas , Azufre , Sulfatos
11.
Int J Phytoremediation ; : 1-13, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745404

RESUMEN

Soil contamination with chromium (Cr) is becoming a primary ecological and health concern, specifically in the Kasur and Sialkot regions of Pakistan. The main objective of the current study was to evaluate the impact of foliar application of zinc oxide nanoparticles (ZnO NPs) (0, 25, 50, 100 mg L-1) and Fe NPs (0, 5, 10, 20 mg L-1) in red sails lettuce plants grown in Cr-contaminated soil. Our results showed that both ZnO and Fe NPs improved plant growth, and photosynthetic attributes by minimizing oxidative stress in lettuce plants through the stimulation of antioxidant enzyme activities. At ZnO NPs (100 mgL-1), dry weights of shoots and roots and fresh weights of shoots and roots were improved by 53%, 58%, 34%, and 45%, respectively, as compared to the respective control plants. The Fe NPs treatment (20 mgL-1) increased the dry weight of shoots and the roots and fresh weights of shoots and roots by 53%, 76%, 42%, and 70%, respectively. Application of both NPs reduced the oxidative stress caused by Cr, as evident by the findings of the current study, i.e., at the ZnO NPs (100 mgL-1) and Fe NPs (20 mgL-1), the EL declined by 32% and 44%, respectively, in comparison with respective control plants. Moreover, Fe and ZnO NPs enhanced the Fe and Zn contents in red sails lettuce plants. Application of ZnO NPs at 100 mg L-1 and Fe NPs at 20 mg L-1, improved the Zn and Fe contents in plant leaves by 86%, and 68%, respectively, as compared to the control plants. This showed that the exogenous application of these NPs helped in Zn and Fe fortification in plants. At similar of concenteration ZnO NPs, CAT and APX activities were improved by 52% and 53%, respectively. Similarly, the POD contents were improved by 17% and 45% at 5 and 10 mg/L of Fe NPs. Furthermore, ZnO and Fe NPs limited the Cr uptake by plants, and the concentration of Cr in the leaves of lettuce was under the threshold limit. The exogenous application of ZnO NPs (100 mg L-1) and Fe NPs (20 mg L-1) reduced the Cr uptake in the leaves of red sails lettuce by 57% and 51%, respectively. In conclusion, ZnO and Fe NPs could be used for the improvement of plant growth and biomass as well as nutrient fortification in stressed environments. These findings not only underscore the efficacy of nanoparticle-assisted phytoremediation but also highlight its broader implications for sustainable agriculture and environmental health. However, future studies on other crops with molecular-level investigations are recommended for the validation of the results.


ZnO and Fe NPs improved the growth and photosynthesis of red sails lettuce plantsBoth NPs enhanced antioxidants enzymes activities in stressed plantsNPs mediated response reduced the oxidative stress and Cr uptake in red sails lettuceZnO and Fe NPs resulted in Zn and Fe fortification, respectively, in red sails lettuce.

12.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000115

RESUMEN

Selenium (Se) is an essential trace element for humans. Low concentrations of Se can promote plant growth and development. Enhancing grain yield and crop Se content is significant, as major food crops generally have low Se content. Studies have shown that Se biofortification can significantly increase Se content in plant tissues. In this study, the genetic transformation of wheat was conducted to evaluate the agronomic traits of non-transgenic control and transgenic wheat before and after Se application. Se content, speciation, and transfer coefficients in wheat grains were detected. Molecular docking simulations and transcriptome data were utilized to explore the effects of selenium-binding protein-A TaSBP-A on wheat growth and grain Se accumulation and transport. The results showed that TaSBP-A gene overexpression significantly increased plant height (by 18.50%), number of spikelets (by 11.74%), and number of grains in a spike (by 35.66%) in wheat. Under normal growth conditions, Se content in transgenic wheat grains did not change significantly, but after applying sodium selenite, Se content in transgenic wheat grains significantly increased. Analysis of Se speciation revealed that organic forms of selenomethionine (SeMet) and selenocysteine (SeCys) predominated in both W48 and transgenic wheat grains. Moreover, TaSBP-A significantly increased the transfer coefficients of Se from solution to roots and from flag leaves to grains. Additionally, it was found that with the increase in TaSBP-A gene overexpression levels in transgenic wheat, the transfer coefficient of Se from flag leaves to grains also increased.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Proteínas de Unión al Selenio , Selenio , Selenito de Sodio , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Proteínas de Unión al Selenio/metabolismo , Proteínas de Unión al Selenio/genética , Selenio/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Selenito de Sodio/metabolismo , Grano Comestible/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Simulación del Acoplamiento Molecular , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/genética , Semillas/efectos de los fármacos
13.
J Sci Food Agric ; 104(6): 3371-3380, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38092699

RESUMEN

BACKGROUND: The awareness of the importance of following dietary recommendations that meet specific biological requirements related to an individual's health status has significantly increased interest in personalized nutrition. The aim of this research was to test agronomic protocols based on soilless cultivation for providing consumers with new dietary sources of iodine (I), as well as alternative vegetable products to limit dietary potassium (K) intake; proposed cultivation techniques were evaluated according to their suitability to obtain such products without compromising agronomic performance. RESULTS: Two independent experiments, focused on I and K respectively, were conducted in a commercial greenhouse specializing in soilless production. Four different species were cultivated using three distinct concentrations of I (0, 1.5 and 3 mg L-1 ) and K (0, 60 and 120 mg L-1 ). Microgreens grown in I-rich nutrient solution accumulate more I, and the increase is dose-dependent. Compared to unbiofortified microgreens, the treatments with 1.5 and 3 mg L-1 of I resulted in 4.5 and 14 times higher I levels, respectively. Swiss chard has the highest levels of K (14 096 mg kg-1 of FW), followed by rocket, pea and radish. In radish, rocket and Swiss chard, a total reduction of K content in the nutrient solution (0 mg L-1 ) resulted in an average reduction of 45% in K content. CONCLUSION: It is possible to produce I-biofortified microgreens to address I deficiency, and K-reduced microgreens for chronic kidney disease-affected people. Species selection is crucial to customize nutritional profiles according to specific dietary requirements due to substantial mineral content variations across different species. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Insuficiencia Renal Crónica , Verduras , Humanos , Verduras/química , Agricultura
14.
J Sci Food Agric ; 104(11): 6733-6745, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38551620

RESUMEN

BACKGROUND: Low recovery of conventional fertilizers remains a significant bottleneck for maize production globally. In particular, with phosphate fertilization, zinc (Zn) is prone to precipitation in soil, reducing recovery of both phosphorus (P) and Zn by maize. RESULTS: The present study was designed to investigate the synergistic effect of zinc oxide (ZnO) nanoparticles (NPs) and P on maize crop growth, yield, and nutrient uptake under ZnO seed coating and foliar application in a randomized complete block design. However, plants were subjected to two ZnO NPs levels (0.5 and 12 kg ha-1) amended with two P levels (45 and 90 kg ha-1). ZnO NPs, especially in the form of foliar application, with a P dose of 90 Kg ha-1 significantly (P < 0.05) improved maize crop growth, yield, and nutrient uptake compared with control. In comparison with the control group, plants grown in these conditions absorbed higher levels of Zn and P. Zn uptake rose to 16.34 g ha-1, 137.88 g ha-1, and 166.89 g ha-1 in roots, grains, and stover respectively, and P uptake increased to 0.80 mg kg-1, 10.066 mg kg-1, and 12.17 mg kg-1 respectively. Additionally, seed emergence rate, plant height, and cob length increased by up to 2%, 1177 cm2, and 3.3 cm respectively compared with control. Furthermore, Zn use efficiency was increased up to 38.55% in ZnO NPs foliar application. CONCLUSIONS: Application of ZnO NPs at 0.5 kg ha-1 in the form of foliar application with 90 kg ha-1 P dose produced a more pronounced increment in the parameters studied than ZnO NPs seed coating did. © 2024 Society of Chemical Industry.


Asunto(s)
Fertilizantes , Nanopartículas , Fósforo , Zea mays , Óxido de Zinc , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/química , Óxido de Zinc/química , Óxido de Zinc/metabolismo , Fertilizantes/análisis , Fósforo/metabolismo , Nanopartículas/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Nutrientes/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/química , Semillas/efectos de los fármacos , Zinc/metabolismo , Suelo/química , Producción de Cultivos/métodos
15.
J Sci Food Agric ; 104(5): 2651-2659, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37985380

RESUMEN

BACKGROUND: Zinc (Zn) deficiency in humans is of worldwide concern. The objective of this study was to investigate the Zn intake gap in Chinese adults and identify the potential role of biofortification technologies for wheat and rice, including crop nutrient management and breeding, in filling the gap. RESULTS: We use data from the China Health and Nutrition Survey in 2011 to identify food consumption patterns and dietary Zn intake of 4512 adults to define and quantify the Zn intake gap in the population. The dietary Zn intake gap of surveyed adults ranged from -0.8 to 6.53 mg day-1 across nine provinces and differences were associated with differences in food consumption patterns. Both dietary Zn intake and Zn gap for males were higher than for females. The potential of changes in five management strategies (improved nitrogen fertilization, improved phosphorus fertilization, foliar Zn fertilization, improved water management and growing varieties reaching the grain Zn breeding target) was analyzed. Breeding and foliar Zn fertilization were shown to be the two most effective management strategies that could increase dietary intake by 1.29 to 5 mg Zn day-1 dependent on sex and province. CONCLUSION: This study shows that the Zn gap varied across regions in China, with some large enough to warrant interventions. Wheat and rice as two major Zn sources could be targeted without a direct need for dietary diversification. By promoting both biofortification breeding of wheat and rice and Zn fertilization, dietary Zn intake could be enhanced to contribute to human health improvement in China. © 2023 Society of Chemical Industry.


Asunto(s)
Oryza , Zinc , Masculino , Adulto , Femenino , Humanos , Zinc/análisis , Biofortificación , Triticum , Fitomejoramiento , Minerales , Ingestión de Alimentos , China
16.
J Sci Food Agric ; 104(9): 4950-4965, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38294182

RESUMEN

BACKGROUND: Previous research has established that using high-quality planting material during the early phase of vegetable production significantly impacts success and efficiency, leading to improved crop performance, faster time to harvest and better profitability. In the present study, we conducted a global analysis of vegetable seedlings and transplants, providing a comprehensive overview of research trends in seedling and transplant production to enhance the nutritional quality of vegetables. RESULTS: The analysis involved reviewing and quantitatively analysing 762 articles and 5248 keywords from the Scopus database from 1971 to 2022. We used statistical, mathematical and clustering tools to analyse bibliometrics and visualise the most relevant research topics. A visualisation map was generated to identify the evolution of keywords used in the articles, resulting in five clusters for further analysis. Our study highlights the importance of the size of seed trays for the type of crop, the mechanical seeder used and the greenhouse facilities to produce desirable transplants. We identified grafting and light-emitting diode (LED) lighting technology as rapidly expanding technologies in vegetable seedlings and transplant production used to promote plant qualitative profile. CONCLUSION: There is a need for sustainable growing media to optimise resources and reduce input use. Thus, applying grafting, LED artificial lighting, biostimulants, biofortification and plant growth-promoting microorganisms in seedling production can enhance efficiency and promote sustainable vegetable nutritional quality by accumulating biocompounds. Further research is needed to explore the working mechanisms and devise novel strategies to enhance the product quality of vegetables, commencing from the early stages of food production. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Plantones , Verduras , Plantones/crecimiento & desarrollo , Verduras/crecimiento & desarrollo , Verduras/metabolismo , Verduras/química , Producción de Cultivos/métodos , Valor Nutritivo
17.
J Sci Food Agric ; 104(10): 6100-6107, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38445779

RESUMEN

BACKGROUND: Dietary selenium (Se) deficiency, stemming from low Se concentrations in agricultural products, threatens human health. While Se-containing fertilizers can enhance the Se content in crops, the key factors governing Se biofortification with Se fertilization remain unclear. RESULTS: This study constructed a global meta-analysis dataset based on field experiments comprising 364 entries on Se content in agricultural products and 271 entries on their yield. Random forest models and mixed effects meta-analyses revealed that plant types (i.e., cereals, vegetables, legumes, and forages) primarily influenced Se biofortification, with Se fertilization rates being the next significant factor. The random forest model, which included variables like plant types, Se fertilization rates, methods and types of Se application, initial soil conditions (including Se content, organic carbon content, and pH), soil types, mean annual precipitation, and temperature, explained 82.14% of the variation in Se content and 48.42% of the yield variation in agricultural products. For the same agricultural products, the increase in Se content decreased with higher rates of Se fertilization. The increase in Se content in their edible parts will be negligible for cereals, forages, legumes, and vegetable crops, when Se fertilization rates were 164, 103, 144, and 147 g Se ha-1, respectively. Conversely, while low Se fertilization rates enhanced yields, high rates led to a yield reduction, particularly in cereals. CONCLUSION: Our findings highlight the need for balanced and precise Se fertilization strategies to optimize Se biofortification benefits and minimize the risk of yield reduction. © 2024 Society of Chemical Industry.


Asunto(s)
Biofortificación , Productos Agrícolas , Fertilizantes , Selenio , Suelo , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Grano Comestible/química , Grano Comestible/metabolismo , Fabaceae/química , Fabaceae/metabolismo , Fabaceae/crecimiento & desarrollo , Fertilizantes/análisis , Selenio/análisis , Selenio/metabolismo , Suelo/química , Verduras/química , Verduras/metabolismo , Verduras/crecimiento & desarrollo
18.
J Integr Plant Biol ; 66(2): 252-264, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38018375

RESUMEN

Rice is a staple food for half of the world's population, but it is a poor dietary source of calcium (Ca) due to the low concentration. It is an important issue to boost Ca concentration in this grain to improve Ca deficiency risk, but the mechanisms underlying Ca accumulation are poorly understood. Here, we obtained a rice (Oryza sativa) mutant with high shoot Ca accumulation. The mutant exhibited 26%-53% higher Ca in shoots than did wild-type rice (WT) at different Ca supplies. Ca concentration in the xylem sap was 36% higher in the mutant than in the WT. There was no difference in agronomic traits between the WT and mutant, but the mutant showed 25% higher Ca in the polished grain compared with the WT. Map-based cloning combined with a complementation test revealed that the mutant phenotype was caused by an 18-bp deletion of a gene, OsK5.2, belonging to the Shaker-like K+ channel family. OsK5.2 was highly expressed in the mature region of the roots and its expression in the roots was not affected by Ca levels, but upregulated by low K. Immunostaining showed that OsK5.2 was mainly expressed in the pericycle of the roots. Taken together, our results revealed a novel role for OsK5.2 in Ca translocation in rice, and will be a good target for Ca biofortification in rice.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Calcio/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo
19.
J Environ Sci (China) ; 138: 506-515, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135416

RESUMEN

Toxic arsenic (As) and trace element selenium (Se) are transformed by microorganisms but their complex interactions in soil-plant systems have not been fully understood. An As- and Se- oxidizing bacterium, Agrobacterium sp. T3F4, was applied to a native seleniferous As-polluted soil to investigate As/Se uptake by the vegetable Brassica rapa L. and As-Se interaction as mediated by strain T3F4. The Se content in the aboveground plants was significantly enhanced by 34.1%, but the As content was significantly decreased by 20.5% in the T3F4-inoculated pot culture compared to the control (P < 0.05). Similar result was shown in treatment with additional 5 mg/kg of Se(IV) in soil. In addition, the As contents in roots were significantly decreased by more than 35% under T3F4 or Se(IV) treatments (P<0.05). Analysis of As-Se-bacterium interaction in a soil simulation experiment showed that the bioavailability of Se significantly increased and As was immobilized with the addition of the T3F4 strain (P < 0.05). Furthermore, an As/Se co-exposure hydroponic experiment demonstrated that As uptake and accumulation in plants was reduced by increasing Se(IV) concentrations. The 50% growth inhibition concentration (IC50) values for As in plants were increased about one-fold and two-fold under co-exposure with 5 and 10 µmol/L Se(IV), respectively. In conclusion, strain T3F4 improves Se uptake but decreases As uptake by plants via oxidation of As and Se, resulting in decrease of soil As bioavailability and As/Se competitive absorption by plants. This provides a potential bioremediation strategy for Se biofortification and As immobilization in As-polluted soil.


Asunto(s)
Arsénico , Brassica rapa , Selenio , Agrobacterium , Arsénico/toxicidad , Bacterias , Suelo , Oxidación-Reducción
20.
Plant J ; 109(5): 1168-1182, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34902177

RESUMEN

Conventional breeding efforts for iron (Fe) and zinc (Zn) biofortification of bread wheat (Triticum aestivum L.) have been hindered by a lack of genetic variation for these traits and a negative correlation between grain Fe and Zn concentrations and yield. We have employed genetic engineering to constitutively express (CE) the rice (Oryza sativa) nicotianamine synthase 2 (OsNAS2) gene and upregulate biosynthesis of two metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - in bread wheat, resulting in increased Fe and Zn concentrations in wholemeal and white flour. Here we describe multi-location confined field trial (CFT) evaluation of a low-copy transgenic CE-OsNAS2 wheat event (CE-1) over 3 years and demonstrate higher concentrations of NA, DMA, Fe, and Zn in CE-1 wholemeal flour, white flour, and white bread and higher Fe bioavailability in CE-1 white flour relative to a null segregant (NS) control. Multi-environment models of agronomic and grain nutrition traits revealed a negative correlation between grain yield and grain Fe, Zn, and total protein concentrations, yet no correlation between grain yield and grain NA and DMA concentrations. White flour Fe bioavailability was positively correlated with white flour NA concentration, suggesting that NA-chelated Fe should be targeted in wheat Fe biofortification efforts.


Asunto(s)
Oryza , Triticum , Ácido Azetidinocarboxílico/análogos & derivados , Pan/análisis , Grano Comestible/metabolismo , Harina/análisis , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Triticum/genética , Triticum/metabolismo , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA