RESUMEN
Neurodevelopmental cognitive disorders provide insights into mechanisms of human brain development. Here, we report an intellectual disability syndrome caused by the loss of APC7, a core component of the E3 ubiquitin ligase anaphase promoting complex (APC). In mechanistic studies, we uncover a critical role for APC7 during the recruitment and ubiquitination of APC substrates. In proteomics analyses of the brain from mice harboring the patient-specific APC7 mutation, we identify the chromatin-associated protein Ki-67 as an APC7-dependent substrate of the APC in neurons. Conditional knockout of the APC coactivator protein Cdh1, but not Cdc20, leads to the accumulation of Ki-67 protein in neurons in vivo, suggesting that APC7 is required for the function of Cdh1-APC in the brain. Deregulated neuronal Ki-67 upon APC7 loss localizes predominantly to constitutive heterochromatin. Our findings define an essential function for APC7 and Cdh1-APC in neuronal heterochromatin regulation, with implications for understanding human brain development and disease.
Asunto(s)
Subunidad Apc7 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Encéfalo/enzimología , Heterocromatina/metabolismo , Discapacidad Intelectual/enzimología , Células-Madre Neurales/enzimología , Neurogénesis , Adolescente , Animales , Antígenos CD , Subunidad Apc7 del Ciclosoma-Complejo Promotor de la Anafase/genética , Conducta Animal , Encéfalo/crecimiento & desarrollo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Heterocromatina/genética , Humanos , Lactante , Discapacidad Intelectual/patología , Discapacidad Intelectual/fisiopatología , Discapacidad Intelectual/psicología , Inteligencia , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitosis , Mutación , Células-Madre Neurales/patología , Proteolisis , Transducción de Señal , Síndrome , Ubiquitinación , Adulto JovenRESUMEN
Hematopoiesis occurs in distinct waves. "Definitive" hematopoietic stem cells (HSCs) with the potential for all blood lineages emerge in the aorta-gonado-mesonephros, while "primitive" progenitors, whose potential is thought to be limited to erythrocytes, megakaryocytes, and macrophages, arise earlier in the yolk sac (YS). Here, we questioned whether other YS lineages exist that have not been identified, partially owing to limitations of current lineage tracing models. We established the use of Cdh5-CreERT2 for hematopoietic fate mapping, which revealed the YS origin of mast cells (MCs). YS-derived MCs were replaced by definitive MCs, which maintained themselves independently from the bone marrow in the adult. Replacement occurred with tissue-specific kinetics. MCs in the embryonic skin, but not other organs, remained largely YS derived prenatally and were phenotypically and transcriptomically distinct from definite adult MCs. We conclude that within myeloid lineages, dual hematopoietic origin is shared between macrophages and MCs.
Asunto(s)
Linaje de la Célula/inmunología , Hematopoyesis/fisiología , Mastocitos/citología , Animales , Hemangioblastos/citología , Células Madre Hematopoyéticas/citología , Macrófagos/citología , Macrófagos/inmunología , Mastocitos/inmunología , Ratones , Piel/citología , Piel/inmunología , Saco Vitelino/citología , Saco Vitelino/embriologíaRESUMEN
Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin. The Cdh23 gene is composed of 69 exons, and we show here that exon 68 is subjected to hair cell-specific alternative splicing. Tip-link formation is not affected in genetically modified mutant mice lacking Cdh23 exon 68. Instead, the stability of tip links is compromised in the mutants, which also suffer from progressive and noise-induced hearing loss. Moreover, we show that the cytoplasmic tail of CDH23(+68) but not CDH23(-68) cooperates with harmonin in phase separation-mediated condensate formation. In conclusion, our work provides evidence that inclusion of Cdh23 exon 68 is critical for the stability of tip links through regulating condensate formation of UTLD components.
Asunto(s)
Sordera , Pérdida Auditiva , Ratones , Animales , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Células Ciliadas Auditivas/fisiología , Sordera/genética , Células Ciliadas Auditivas Internas/metabolismo , Cadherinas/metabolismo , Exones/genéticaRESUMEN
Loss of the cell-cell adhesion protein E-cadherin underlies the development of diffuse-type gastric cancer (DGC), which is characterized by the gradual accumulation of tumor cells originating from the gastric epithelium in the surrounding stroma. How E-cadherin deficiency drives DGC formation remains elusive. Therefore, we investigated the consequences of E-cadherin loss on gastric epithelial organization utilizing a human gastric organoid model and histological analyses of early-stage DGC lesions. E-cadherin depletion from gastric organoids recapitulates DGC initiation, with progressive loss of a single-layered architecture and detachment of individual cells. We found that E-cadherin deficiency in gastric epithelia does not lead to a general loss of epithelial cohesion but disrupts the spindle orientation machinery. This leads to a loss of planar cell division orientation and, consequently, daughter cells are positioned outside of the gastric epithelial layer. Although basally delaminated cells fail to detach and instead reintegrate into the epithelium, apically mispositioned daughter cells can trigger the gradual loss of the single-layered epithelial architecture. This impaired architecture hampers reintegration of mispositioned daughter cells and enables basally delaminated cells to disseminate into the surrounding matrix. Taken together, our findings describe how E-cadherin deficiency disrupts gastric epithelial architecture through displacement of dividing cells and provide new insights in the onset of DGC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
División Celular , Organoides , Neoplasias Gástricas , Células de Riñón Canino Madin Darby , Animales , Perros , Estómago/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Epitelio/metabolismo , Epitelio/patología , Proliferación CelularRESUMEN
In eukaryotes, most RNA molecules are exported into the cytoplasm after transcription. Long noncoding RNAs (lncRNAs) reside and function primarily inside the nucleus, but nuclear localization of mRNAs has been considered rare in both animals and plants. Here we show that Arabidopsis anaphase-promoting complex/cyclosome (APC/C) coactivator genes CDC20 and CCS52B (CDH1 ortholog) are co-expressed with their target cyclin B genes (CYCBs) during mitosis. CYCB transcripts can be exported and translated; however, CDC20 and CCS52B mRNAs are confined to the nucleus at prophase, and the cognate proteins are not translated until the redistribution of the mRNAs to the cytoplasm after nuclear envelope breakdown (NEBD) at prometaphase. The 5' untranslated region (UTR) plays dual roles in CDC20 mRNA nuclear localization and translation. Mitotic accumulation of CDC20 and CCS52B transcripts enables the timely and rapid activation of APC/C, while the nuclear sequestration of these transcripts at prophase appears to protect cyclins from precocious degradation.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Cdc20/genética , Proteínas de Ciclo Celular/genética , Ciclo Celular , Núcleo Celular/genética , Tallos de la Planta/metabolismo , ARN Mensajero/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Tallos de la Planta/citología , Tallos de la Planta/genética , ARN Mensajero/genética , Nicho de Células MadreRESUMEN
Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.
Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Enfermedad Pulmonar Obstructiva Crónica/genética , Diferenciación Celular , Metilación de ADN , Progresión de la Enfermedad , Epigénesis Genética , Oxigenasas de Función Mixta , Proteínas Proto-OncogénicasRESUMEN
Our study was conducted to investigate whether cadherin-5 (CDH5), a vascular endothelial cell adhesion glycoprotein, could facilitate the differentiation of human induced pluripotent stem cells (hiPSCs) into sinoatrial node-like pacemaker cells (SANLPCs), following previous findings of silk-fibroin hydrogel-induced direct conversion of quiescent cardiomyocytes into pacemaker cells in rats through the activation of CDH5. In this study, the differentiating hiPSCs were treated with CDH5 (40 ng/mL) between Day 5 and 7 during cardiomyocytes differentiation. The findings in the present study demonstrated that CDH5 stimulated the expression of pacemaker-specific markers while suppressing markers associated with working cardiomyocytes, resulting in an increased proportion of SANLPCs among hiPSCs-derived cardiomyocytes (hiPSC-CMs) population. Moreover, CDH5 induced typical electrophysiological characteristics resembling cardiac pacemaker cells in hiPSC-CMs. Further mechanistic investigations revealed that the enriched differentiation of hiPSCs into SANLPCs induced by CDH5 was partially reversed by iCRT14, an inhibitor of ß-catenin. Therefore, based on the aforementioned findings, it could be inferred that the regulation of ß-catenin by CDH5 played a crucial role in promoting the enriched differentiation of hiPSCs into SANLPCs, which presents a novel avenue for the construction of biological pacemakers in forthcoming research.
Asunto(s)
Cadherinas , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , beta Catenina , Animales , Humanos , Ratas , Antígenos CD , beta Catenina/metabolismo , Cadherinas/farmacología , Diferenciación Celular , Miocitos Cardíacos/metabolismo , Nodo SinoatrialRESUMEN
This research provides a glimmer of hope that the knockout of HCP5 leads to a therapy response to considerably prolong the life of patients with OC. RT-PCR evaluated the expression of lncRNA HCP5 in the ovarian cancer OVCAR-3 cell line. CRISPR knockout cell lines validated by western blot. Small genomic deletions at the targeted locus were induced. CCK-8 colony formation assays were used to analyze the effect of HCP5 knockout on the proliferation capacity of OVCAR-3 cells. Transwell migration and invasion assayed. Furthermore, the Sphere-formation assay isolated the most aggressive population of cancer stem cells. Bioinformatic analysis showed a significant correlation between lncRNA HCP5 up-regulation and OVCAR-3 cell proliferation. The ChIP technique assesses specific sites of interaction between transcription factors and DNA. Real-time PCR assays explored the relationship between HCP5, Hsa-miR-9-5p, CXCR4, CDH1, caspase-3, p53, bcl2 and survivin. PCR carried out amplification of the 448-bp band for sgRNA1 and sgRNA2 after the use of particular primers for HCP5. the number of breast cancer cells that moved to the bottom chamber reduced considerably after transfection with PX461-sgRNA1/2 vectors compared to the Blank control groups (P < 0.05). MTT assay designated growth curves that showed the rate of OVCAR-3 growth was significantly repressed (***P < 0.001) when compared with control OVCAR-3 cells after HCP5 knockdown. Also, the survival results of W.T cells in 24, 48 and 72 h showed 92%, 87% and 85%, respectively. This is while the cells of the CRISPR/Cas9 group in which LncRNA HCP5 was knocked out had 42% (*P < 0.05), 23%(**P < 0.01) and 14% (**P < 0.01) survival, respectively. The expression levels of caspase-3, Hsa-miR-9-5p, P53 genes in the HCP5 deletion of CRISPR/Cas9 group significantly increased than the W.T. control group; the deletion group showed a considerable reduction in HCP5 expression compared to the blank control group (3.6-fold, p < 0.01). Whereas BCL2, SURVIVIN, CXCR4, CDH1 genes expression markedly increased than in HCP5 knockout cells (5.8-fold, p < 0.05). These results indicate that CRISPR/Cas9-mediated HCP5 disruption on OVCAR-3 cell lines promotes anti-tumor biomarkers, suppressing ovarian cancer progression. Consistent with these results, HCP5 is one of the most critical lnc for the efficient proliferation and migration of OVCAR-3 cell lines.
Asunto(s)
MicroARNs , Neoplasias Ováricas , ARN Largo no Codificante , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Survivin/genética , Survivin/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Regulación hacia Arriba , MicroARNs/genética , Proliferación Celular/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Regulación Neoplásica de la Expresión GénicaRESUMEN
Hereditary diffuse gastric cancer (HDGC) is a dominantly inherited cancer syndrome characterized by a high incidence of diffuse gastric cancer (DGC) and lobular breast cancer (LBC). HDGC is caused by germline mutations in 2 genes involved in the epithelial adherens junction complex, CDH1 and CTNNA1. We discuss the genetics of HDGC and the variability of its clinical phenotype, in particular the variable penetrance of advanced DGC and LBC, both within and between families. We review the pathology of the disease, the mechanism of tumor initiation, and its natural history. Finally, we describe current best practice for the clinical management of HDGC, including emerging genetic testing criteria for the identification of new families, methods for endoscopic surveillance, the complications associated with prophylactic surgery, postoperative quality of life, and the emerging field of HDGC chemoprevention.
Asunto(s)
Neoplasias de la Mama , Carcinoma Lobular , Neoplasias Gástricas , Humanos , Femenino , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/prevención & control , Calidad de Vida , Pruebas Genéticas/métodos , Mutación de Línea Germinal , Cadherinas/genética , Neoplasias de la Mama/genética , Predisposición Genética a la EnfermedadRESUMEN
Congenital diaphragmatic hernia (CDH) is a developmental disorder associated with diaphragm defects and lung hypoplasia. The etiology of CDH is complex and its clinical presentation is variable. We investigated the role of the pulmonary mesothelium in dysregulated lung growth noted in the Wt1 knockout mouse model of CDH. Loss of WT1 leads to intrafetal effusions, altered lung growth, and branching defects prior to normal closure of the diaphragm. We found significant differences in key genes; however, when Wt1 null lungs were cultured ex vivo, growth and branching were indistinguishable from wild-type littermates. Micro-CT imaging of embryos in situ within the uterus revealed a near absence of space in the dorsal chest cavity, but no difference in total chest cavity volume in Wt1 null embryos, indicating a redistribution of pleural space. The altered space and normal ex vivo growth suggest that physical constraints are contributing to the CDH lung phenotype observed in this mouse model. These studies emphasize the importance of examining the mesothelium and chest cavity as a whole, rather than focusing on single organs in isolation to understand early CDH etiology.
Asunto(s)
Diafragma/embriología , Epitelio/patología , Hernias Diafragmáticas Congénitas/genética , Pulmón/embriología , Proteínas WT1/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Tórax/anatomía & histologíaRESUMEN
CDH1 encodes for E-cadherin, and its loss of function is the hallmark of invasive lobular carcinoma (ILC). Albeit vanishingly rare, biallelic CDH1 alterations may be found in nonlobular breast carcinomas (NL-BCs). We sought to determine the clinicopathologic characteristics and repertoire of genetic alterations of NL-BCs harboring CDH1 biallelic genetic alterations. Analysis of 5842 breast cancers (BCs) subjected to clinical tumor-normal sequencing with an FDA-cleared multigene panel was conducted to identify BCs with biallelic CDH1 pathogenic/likely pathogenic somatic mutations lacking lobular features. The genomic profiles of NL-BCs with CDH1 biallelic genetic alterations were compared with those of ILCs and invasive ductal carcinomas (IDCs), matched by clinicopathologic characteristics. Of the 896 CDH1-altered BCs, 889 samples were excluded based on the diagnosis of invasive mixed ductal/lobular carcinoma or ILC or the detection of monoallelic CDH1 alterations. Only 7 of the 5842 (0.11%) BCs harbored biallelic CDH1 alterations and lacked lobular features. Of these, 4/7 (57%) cases were ER-positive/HER2-negative, 1/7 (14%) was ER-positive/HER2-positive, and 2/7 (29%) were ER-negative/HER2-negative. In total, 5/7 (71%) were of Nottingham grade 2, and 2/7 (29%) were of grade 3. The NL-BCs with CDH1 biallelic genetic alterations included a mucinous carcinoma (n = 1), IDCs with focal nested growth (n = 2), IDC with solid papillary (n = 1) or apocrine (n = 2) features, and an IDC of no special type (NST; n = 1). E-cadherin expression, as detected by immunohistochemistry, was absent (3/5) or aberrant (discontinuous membranous/cytoplasmic/granular; 2/5). However, NL-BCs with CDH1 biallelic genetic alterations displayed recurrent genetic alterations, including TP53, PIK3CA (57%, 4/7; each), FGFR1, and NCOR1 (28%, 2/7, each) alterations. Compared with CDH1 wild-type IDC-NSTs, NL-BCs less frequently harbored GATA3 mutations (0% vs 47%, P = .03), but no significant differences were detected when compared with matched ILCs. Therefore, NL-BCs with CDH1 biallelic genetic alterations are vanishingly rare, predominantly comprise IDCs with special histologic features, and have genomic features akin to luminal B ER-positive BCs.
Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Humanos , Femenino , Carcinoma Lobular/patología , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Cadherinas/genética , Genómica , Antígenos CD/genéticaRESUMEN
Invasive lobular carcinomas (ILC) are characterized by the loss of E-cadherin expression and CDH1 gene inactivation. Diagnostic reproducibility for this tumor type is currently suboptimal and could be improved by a better understanding of its histomolecular and clinical heterogeneity. We have analyzed the relationship between the presence, type, or position of CDH1 mutations, E-cadherin expression, and clinicopathological features (including outcome) in a retrospective series of 251 primary ILC with a long follow-up (median: 9.5 years). The mutational status of E-cadherin gene (CDH1) was determined by RNA sequencing from frozen tumor samples. E-cadherin immunohistochemistry (IHC) was performed with antibodies directed against the intracellular domain (clone 4A2C7) and the extracellular domain (clone NCH38). IHC expression of p120 and ß-catenin was also assessed in E-cadherin diffusely positive cases. Three major patterns of E-cadherin membrane expression were identified by IHC, with good agreement between the 2 clones (overall concordance: 83.8%, Kappa 0.67): null/focal expression (≤10%) (72.8% of cases for 4A2C7 and 83.8% for NCH38), heterogeneous expression (11%-89%) (19.2% of cases for 4A2C7 and 6.9% for NCH38), and diffuse expression (≥90%) (8% of cases for 4A2C7 and 9.3% for NCH38). E-cadherin membranous expression, when present, was abnormal (incomplete labeling and/or reduced intensity). ILC with diffuse E-cadherin expression showed abnormal ß-catenin or p120-catenin staining in 21% of cases. Interestingly, these cases with diffusely expressed E-cadherin had a CDH1 mutation rate as high as the E-cadherin null/focal cases (â¼70%) but were enriched in nontruncating mutations. Regarding CDH1 mutation location, intracytoplasmic domain mutations correlated with a divergent E-cadherin IHC phenotype between the 2 antibodies (4A2C7 ≤ 10%/NCH38 ≥ 10%). Clinico-pathological correlation analyses found that stromal amount (inversely correlated with tumor cellularity) and tumor-infiltrating lymphocytes were less abundant in ILC with E-cadherin null/focal cases. In addition, CDH1 truncating mutations were associated with radiohistologic size discordance and were identified in multivariate survival analysis as an independent poor prognosis factor in terms of metastasis risk and breast cancer-related mortality. Overall, our study highlights the importance of the precise mutational status of CDH1 in the clinical, radiological, histologic, and phenotypic expression of lobular carcinomas. These findings should be taken into account in future attempts to improve diagnostic criteria or methods for ILC, as well as for clinicobiological studies dedicated to this tumor type.
Asunto(s)
Antígenos CD , Biomarcadores de Tumor , Neoplasias de la Mama , Cadherinas , Carcinoma Lobular , Mutación , Humanos , Cadherinas/genética , Cadherinas/análisis , Carcinoma Lobular/genética , Carcinoma Lobular/patología , Carcinoma Lobular/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Femenino , Persona de Mediana Edad , Antígenos CD/genética , Anciano , Estudios Retrospectivos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Adulto , Anciano de 80 o más Años , InmunohistoquímicaRESUMEN
OBJECTIVE: To determine the prevalence of exercise-induced pulmonary hypertension (PH) among long-survivors of congenital diaphragmatic hernia repair. STUDY DESIGN: This is a single-center, retrospective cohort study of CDH survivors who underwent exercise stress echocardiography (ESE) at Boston Children's Hospital from January 2006 to June 2020. PH severity was assessed by echocardiogram at baseline and after exercise. Patients were categorized by right ventricular systolic pressure (RVSP) after exercise: Group 1 - no or mild PH; and Group 2 - moderate or severe PH (RVSP ≥ 60 mmHg or ≥ ½ systemic blood pressure). RESULTS: Eighty-four patients with CDH underwent 173 ESE with median age 8.1 (4.8 - 19.1) years at first ESE. Sixty-four patients were classified as Group 1, 11 as Group 2, and 9 had indeterminate RVSP with ESE. Moderate to severe PH after exercise was found in 8 (10%) patients with no or mild PH at rest. Exercise-induced PH was associated with larger CDH defect size, patch repair, use of ECMO, supplemental oxygen at discharge, and higher WHO functional class. Higher VE/VCO2 slope, lower peak oxygen saturation, and lower percent predicted FEV1, and FEV1/FVC ratio were associated with Group 2 classification. ESE changed management in 9/11 Group 2 patients. PH was confirmed in all 5 Group 2 patients undergoing cardiac catheterization after ESE. CONCLUSIONS: Among long-term CDH survivors, 10% had moderate-severe exercise-induced PH on ESE, indicating ongoing pulmonary vascular abnormalities. Further studies are needed to optimally define PH screening and treatment for patients with repaired CDH.
Asunto(s)
Hernias Diafragmáticas Congénitas , Hipertensión Pulmonar , Sobrevivientes , Humanos , Hernias Diafragmáticas Congénitas/complicaciones , Hernias Diafragmáticas Congénitas/cirugía , Hipertensión Pulmonar/etiología , Estudios Retrospectivos , Femenino , Masculino , Adolescente , Niño , Adulto Joven , Preescolar , Prueba de Esfuerzo , Ejercicio Físico/fisiología , Ecocardiografía , PrevalenciaRESUMEN
BACKGROUND: In the current era of effective adjuvant therapies and de-escalation of surgery, distinguishing which patients with high-risk stage II melanoma are at increased risk of recurrence after excision of the primary lesion is essential to determining appropriate treatment and surveillance plans. METHODS: A single-center retrospective study analyzed patients with stage IIB or IIC melanoma. Demographic and tumor data were collected, and genomic analysis of formalin-fixed, paraffin-embedded tissue samples was performed via an internal next-generation sequencing (NGS) platform (SNaPshot). The end points examined were relapse-free survival (RFS), distant metastasis-free survival (DMFS), overall survival (OS), and melanoma-specific survival (MSS). Uni- and multivariable Cox regressions were performed to calculate the hazard ratios. RESULTS: The study included 92 patients with a median age of 69 years and a male/female ratio of 2:1. A Breslow depth greater than 4 mm, a higher mitotic rate, an advanced T stage, and a KIT mutation had a negative impact on RFS. A primary lesion in the head and neck, a mitotic rate exceeding 10 mitoses per mm2, a CDH1 mutation, or a KIT mutation was significantly associated with a shorter DMFS. Overall survival was significantly lower with older age at diagnosis and a higher mitotic rate. An older age at diagnosis also had a negative impact on MSS. CONCLUSION: Traditional histopathologic factors and specific tumor mutations displayed a significant correlation with disease recurrence and survival for patients with high-risk stage II melanoma. This study supported the use of genomic testing of high-risk stage II melanomas for prognostic prediction and risk stratification.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Femenino , Masculino , Anciano , Melanoma/genética , Melanoma/cirugía , Melanoma/patología , Estudios Retrospectivos , Estadificación de Neoplasias , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/cirugía , Recurrencia Local de Neoplasia/epidemiología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/cirugía , Neoplasias Cutáneas/patología , Pronóstico , Tasa de SupervivenciaRESUMEN
Categorizing breast neoplasia as ductal or lobular is a daily exercise that relies on a combination of histologic and immunohistochemical tools. The historically robust link between loss of the E-cadherin molecule and lobular neoplasia has rendered staining for E-cadherin by immunohistochemistry a staple of this diagnostic process. Unfortunately, discordances between E-cadherin expression and histomorphology, and variations in E-cadherin staining patterns and intensities abound in clinical practice, but are often neglected in favour of a binary interpretation of the E-cadherin result. In this article, we highlight the complexities of E-cadherin expression through a review of the E-cadherin protein and its associated gene (CDH1), the mechanisms leading to aberrant/absent E-cadherin expression, and the implications of these factors on the reliability of the E-cadherin immunohistochemical stain in the classification of ductal versus lobular mammary neoplasia.
RESUMEN
INTRODUCTION: The objective of this study was to reclassify published germline CDH1 variants identified in gastric cancer (GC) in accordance with the latest ClinVar definition and to correlate their pathogenicity with the established international clinical criteria for genetic testing. METHODS: The relevant literature dating from 1998 to 2019 was systematically searched for data on CDH1 germline mutations in accord with PRISMA guidelines. The collected variants were classified according to the latest ClinVar definition into the following classes: benign (B), likely benign (LB), pathogenic (P), likely pathogenic (LP), and variant of unknown significance (VUS). The McNemar test was used to compare the adequacy of current versus previous International GC Linkage Consortium (IGCLC) criteria. RESULTS: We reclassified a total of 247 CDH1 variants, and we identified that about 70% of B/LB variant carriers were not fulfilling the defined clinical criteria. Instead, all P/LP variants (100%) were associated with the hereditary diffuse gastric cancer (HDGC) phenotype fulfilling the 2020 ILGCC criteria, with a significant improvement (p = 0.025) compared to previous version. CONCLUSIONS: We conclude that germline CDH1 genetic testing is indicated only in families meeting the clinical criteria for the HDGC syndrome. This observation suggests that clinical phenotypes that do not clearly fulfill these criteria should not be considered for CDH1 genetic testing.
Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Predisposición Genética a la Enfermedad , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Linaje , Pruebas Genéticas , Mutación de Línea Germinal , Cadherinas/genética , Antígenos CD/genéticaRESUMEN
BACKGROUND: Clear cell carcinoma of the kidney is a common urological malignancy characterized by poor patient prognosis and treatment outcomes. Modulation of vasculogenic mimicry in tumor cells alters the tumor microenvironment and the influx of tumor-infiltrating lymphocytes, and the combination of its inducers and immune checkpoint inhibitors plays a synergistic role in enhancing antitumor effects. METHODS: We downloaded the data from renal clear cell carcinoma samples and vasculogenic mimicry-related genes to establish a new vasculogenic mimicry-related index (VMRI) using a machine learning approach. Based on VMRI, patients with renal clear cell carcinoma were divided into high VMRI and low VMRI groups, and patients' prognosis, clinical features, tumor immune microenvironment, chemotherapeutic response, and immunotherapeutic response were systematically analyzed. Finally, the function of CDH5 was explored in renal clear cell carcinoma cells. RESULTS: VMRI can be used for prognostic and immunotherapy efficacy prediction in a variety of cancers, which consists of four vasculogenic mimicry-related genes (CDH5, MMP9, MAPK1, and MMP13), is a reliable predictor of survival and grade in patients with clear cell carcinoma of the kidney and has been validated in multiple external datasets. We found that the high VMRI group presented higher levels of immune cell infiltration, which was validated by pathological sections. We performed molecular docking prediction of vasculogenic mimicry core target proteins and identified natural small molecule drugs with the highest affinity for the target protein. Knockdown of CDH5 inhibited the proliferation and migration of renal clear cell carcinoma. CONCLUSIONS: The VMRI identified in this study allows for accurate prognosis assessment of patients with renal clear cell carcinoma and identification of patient populations that will benefit from immunotherapy, providing valuable insights for future precision treatment of patients with renal clear cell carcinoma.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Simulación del Acoplamiento Molecular , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Pronóstico , Neoplasias Renales/genética , Neoplasias Renales/terapia , Neoplasias Renales/patología , Inmunoterapia , Microambiente Tumoral/genéticaRESUMEN
This study aimed to investigate the underlying pathophysiology of high myopia by analyzing the proteome of human corneal stromal lenticule samples obtained through small incision lenticule extraction (SMILE). A total of thirty-two patients who underwent SMILE were included in the study. Label-free quantitative proteomic analysis was performed on corneal stromal lenticule samples, equally representing high myopia (n = 10) and low myopia (n = 10) groups. The identified and profiled lenticule proteomes were analyzed using in silico tools to explore biological characteristics of differentially expressed proteins (DEPs). Additionally, LASSO regression and random forest model were employed to identify key proteins associated with the pathophysiology of high myopia. The DEPs were found to be closely linked to immune activation, extracellular matrix, and cell adhesion-related pathways according to gene ontology analysis. Specifically, decreased expression of COL1A1 and increased expression of CDH11 were associated with the pathogenesis of high myopia and validated by western blotting (n = 6) and quantitative real time polymerase chain reaction (n = 6). Overall, this study provides evidence that COL1A1 and CDH11 may contribute to the pathophysiology of high myopia based on comparative proteomic profiling of human corneal stromal lenticules obtained through SMILE.
Asunto(s)
Cirugía Laser de Córnea , Miopía , Humanos , Proteómica , Sustancia Propia/metabolismo , Miopía/metabolismo , Láseres de ExcímerosRESUMEN
Germline pathogenic variants (PVs) in CDH1 cause hereditary diffuse gastric cancer. The management of CDH1 cases with a positive family history includes total prophylactic gastrectomy or intensive surveillance. In this study, we report a 16-year-old boy with intramucosal gastric signet ring cells in the setting of a germline CDH1 PV and a family history of early-onset gastric cancer. The approach to managing both the proband and their 9-year-old sister, who also had the CDH1 PV, presented a challenge to both clinicians and the family. Herein, we present the complexities of managing gastric cancer risk when a CDH1 PV is identified in childhood in the setting of a family history of early-onset gastric cancer.
RESUMEN
Mediator complex subunit 12 (MED12) is required for the assembly of the kinase module of Mediator, a regulatory complex that controls the formation of the RNA polymerase II-mediated preinitiation complex. MED12-related disorders display unique gender-specific genotype-phenotype associations and include X-linked recessive Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, and nonspecific intellectual disability in males predominantly carrying missense variants, and X-linked dominant Hardikar syndrome and nonspecific intellectual disability in females known to predominantly carry de novo nonsense/frameshift and nonsense/missense variants, respectively. MED12 was previously identified as a low-penetrance candidate gene for non-isolated congenital diaphragmatic hernia (CDH+). At the time, however, there was insufficient evidence to confirm this association. In a clinical database search, we identified 18 individuals who were molecularly diagnosed with MED12-related disorders by exome or genome sequencing, including eight missense, four frameshift, two nonsense, and one splice variant. Nine of these variants have not been previously reported. Two females with nonspecific intellectual disability were found to carry a de novo frameshift variant, indicating that potentially truncating variants causing nonspecific intellectual disability are not limited to nonsense variants. Notably, CDH was reported in three out of seven females with Hardikar syndrome or nonspecific intellectual disability but was not reported in males with MED12-related disorders. These results suggest that pathogenic MED12 variants are a cause of CDH+ in females with Hardikar syndrome and nonspecific intellectual disability.