Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.856
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(49): e2311014120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38039273

RESUMEN

For quantum computing (QC) to emerge as a practically indispensable computational tool, there is a need for quantum protocols with end-to-end practical applications-in this instance, fluid dynamics. We debut here a high-performance quantum simulator which we term QFlowS (Quantum Flow Simulator), designed for fluid flow simulations using QC. Solving nonlinear flows by QC generally proceeds by solving an equivalent infinite dimensional linear system as a result of linear embedding. Thus, we first choose to simulate two well-known flows using QFlowS and demonstrate a previously unseen, full gate-level implementation of a hybrid and high precision Quantum Linear Systems Algorithms (QLSA) for simulating such flows at low Reynolds numbers. The utility of this simulator is demonstrated by extracting error estimates and power law scaling that relates [Formula: see text] (a parameter crucial to Hamiltonian simulations) to the condition number [Formula: see text] of the simulation matrix and allows the prediction of an optimal scaling parameter for accurate eigenvalue estimation. Further, we include two speedup preserving algorithms for a) the functional form or sparse quantum state preparation and b) in situ quantum postprocessing tool for computing nonlinear functions of the velocity field. We choose the viscous dissipation rate as an example, for which the end-to-end complexity is shown to be [Formula: see text], where [Formula: see text] is the size of the linear system of equations, [Formula: see text] is the solution error, and [Formula: see text] is the error in postprocessing. This work suggests a path toward quantum simulation of fluid flows and highlights the special considerations needed at the gate-level implementation of QC.

2.
Biotechnol Bioeng ; 121(2): 655-669, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38031493

RESUMEN

A physics-based model for predicting cell culture fluid properties inside a stirred tank bioreactor with embedded PID controller logic is presented. The model evokes a time-accurate solution to the fluid velocity field and overall volumetric mass transfer coefficient, as well as the ongoing effects of interfacial mass transfer, species mixing, and aqueous chemical reactions. The modeled system also includes a direct coupling between process variables and system control variables via embedded controller logic. Satisfactory agreement is realized between the model prediction and measured bioreactor data in terms of the steady-state operating conditions and the response to setpoint changes. Simulation runtimes are suitable for industrial research and design timescales.


Asunto(s)
Reactores Biológicos , Oxígeno , Oxígeno/química , Técnicas de Cultivo de Célula , Simulación por Computador , Concentración de Iones de Hidrógeno
3.
Biotechnol Bioeng ; 121(6): 1927-1936, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38501733

RESUMEN

Understanding the reaction mechanisms involved in the enzymatic hydrolysis of cellulose is important because it is kinetically the most limiting step of the bioethanol production process. The present work focuses on the enzymatic deactivation at the air-liquid interface, which is one of the aspects contributing to this global deactivation. This phenomenon has already been experimentally proven, but this is the first time that a model has been proposed to describe it. Experiments were performed by incubating Celluclast cocktail solutions on an orbital stirring system at different enzyme concentrations and different surface-to-volume ratios. A 5-day follow-up was carried out by measuring the global FPase activity of cellulases for each condition tested. The activity loss was proven to depend on both the air-liquid surface area and the enzyme concentration. Both observations suggest that the loss of activity takes place at the air-liquid surface, the total amount of enzymes varying with volume or enzyme concentration. Furthermore, tests performed using five individual enzymes purified from a Trichoderma reesei cocktail showed that the only cellulase that is deactivated at the air-liquid interface is cellobiohydrolase II. From the experimental data collected by varying the initial enzyme concentration and the ratio surface to volume, it was possible to develop, for the first time, a model that describes the loss of activity at the air-liquid interface for this configuration.


Asunto(s)
Celulasas , Celulasas/metabolismo , Celulasas/química , Hypocreales/enzimología , Activación Enzimática , Celulosa/metabolismo , Celulosa/química , Hidrólisis , Aire
4.
Mol Pharm ; 21(5): 2406-2414, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38639477

RESUMEN

The dissolution testing method described in the United States Pharmacopeia (USP) Chapter ⟨711⟩ is widely used for assessing the release of active pharmaceutical ingredients from solid dosage forms. However, extensive use over the years has revealed certain issues, including high experimental intervariability observed in specific formulations and the settling of particles in the dead zone of the vessel. To address these concerns and gain a comprehensive understanding of the hydrodynamic conditions within the USP 2 apparatus, computational fluid dynamic simulations have been employed in this study. The base design employed in this study is the 900 mL USP 2 vessel along with a paddle stirrer at a 50 rpm rotational speed. Additionally, alternative stirrer designs, including the hydrofoil, pitched blade, and Rushton impeller, are investigated. A comparison is also made between a flat-bottom tank and the USP round-bottom vessel of the same volume and diameter. Furthermore, this work examines the impact of various parameters, such as clearance distance (distance between the bottom of the impeller and bottom of the vessel), number of impeller blades, impeller diameter, and impeller attachment angle. The volume-average shear rate (Stv), fluid velocity (Utv), and energy dissipation rates (ϵtv) represent the key properties evaluated in this study. Comparing the USP2 design and systems with the same stirrer but flat-bottom vessel reveals more homogeneous mixing compared to the USP2 design. Analyzing fluid flow streamlines in different designs demonstrates that hydrofoil stirrers generate more suspension or upward movement of fluid compared to paddle stirrers. Therefore, when impellers are of a similar size, hydrofoil designs generate higher fluid velocities in the coning area. Furthermore, the angle of blade attachment to the hub influences the fluid velocity in the coning area in a way that the 60° angle design generates more suspension than the 45° angle design. The findings indicate that the paddle stirrer design leads to a heterogeneous shear rate and velocity distributions within the vessel compared with the other designs, suggesting suboptimal performance. These insights provide valuable guidance for the development of improved in vitro dissolution testing devices, emphasizing the importance of optimized design considerations to minimize hydrodynamic variability, enhance dissolution characterization, and reduce variability in dissolution test results. Ultimately, such advancements hold potential for improving in vitro-in vivo correlations in drug development.


Asunto(s)
Hidrodinámica , Solubilidad , Liberación de Fármacos , Química Farmacéutica/métodos , Farmacopeas como Asunto , Simulación por Computador , Diseño de Equipo , Composición de Medicamentos/métodos , Estados Unidos
5.
J Theor Biol ; 588: 111821, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38649020

RESUMEN

Fish schooling has the improvement in hydrodynamic propulsive efficiency through the interaction of flow field induced by fish bodies and tail beat. Such energy-saving behaviors due to flow interactions also occur with changes in the flow field caused by structures. We examined the differences between a live fish swimming around a streamlined hydrofoil model prepared to represent fish body and swimming alone in a flow tank. We observed that the fish can remain in the same place without tail beating. It called "drafting" behavior. The analysis of fish drafting showed that fish obtained thrust using a local pressure drop caused by the high velocity flow even in the vicinity of the hydrofoil model at an angle of attack α of 10° to 20°without flow separation, and fish balanced forces by using an α of fish body. This tendency was confirmed in the model experiment using a two-axis load cell, and the forces acting on the fish body was the smallest value when the fish model was placed in the same conditions as a live fish experiment. We also confirmed by simulation and found that the α of fish body generated lift force and counteract the suction force. Above results indicate that a fish can balance the anterior-posterior and lateral direction forces by using a local pressure drop around a hydrofoil model as suction force, and using angle of attack on its body, thereby realizing drafting.


Asunto(s)
Modelos Biológicos , Presión , Natación , Animales , Natación/fisiología , Fenómenos Biomecánicos , Peces/fisiología , Hidrodinámica , Conducta Animal/fisiología
6.
Environ Res ; 243: 117838, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38056609

RESUMEN

The utilization of municipal sludge as a seed sludge for initiating the autotrophic nitrogen removal (ANR) process presents a challenge due to the negligible abundance of anaerobic ammonia-oxidizing bacteria (AnAOB). Here, a computational fluid dynamics model was used to simulate sludge volume fraction and sludge particle velocity. A high-height-to-diameter-ratio airlift inner-circulation partition bioreactor (HHAIPBR) was operated for 175 d to enrich AnAOB from municipal sludge, and the performance of the ANR process was investigated. The start-up period of HHAIPBR inoculated with municipal sludge required approximately 69 d. A high nitrogen removal performance, with a mean total nitrogen removal efficiency of 82.1%, was obtained for 1 month. The simulation results validated the presence of sludge circulation and revealed the distribution characteristics of dissolved oxygen inside the reactor, further supporting the promotion of sludge granulation via the high height-to-diameter ratio. Nitrosomonas (3.31%) of Proteobacteria and Candidatus Brocadia (6.56%) of Planctomycetota were dominant in the HHAIPBR. This study presents a viable approach for the industrial cultivation of anammox sludge and the rapid start-up of the partial nitritation-anammox system.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Reactores Biológicos/microbiología , Nitrógeno , Oxidación-Reducción
7.
Artif Organs ; 48(2): 130-140, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37860931

RESUMEN

BACKGROUND: Although extracorporeal membrane oxygenation (ECMO) has been used to provide temporary support for pediatric patients suffering severe respiratory or cardiac failure since 1970, ECMO systems specifically designed for pediatric patients, particularly for long-term use, remain an unmet clinical need. We sought to develop a new pediatric ECMO system, that is, pediatric pump-lung (PPL), consisting of a unique cylinder oxygenator with an outside-in radial flow path and a centrifugal pump. METHODS: Computational fluid dynamics was used to analyze the blood fluid field for optimized biocompatible and gas exchange performances in terms of flow characteristics, hemolysis, and gas transfer efficiency. Ovine blood was used for in vitro hemolysis and gas transfer testing. RESULTS: Both the computational and experimental data showed that the pressure drop through the PPL's oxygenator is significantly low, even at a flow rate of more than 3.5 L/min. The PPL showed better hemolysis performance than a commercial ECMO circuit consisting of the Quadrox-iD pediatric oxygenator and the Rotaflow pump at a 3.5 L/min flow rate and 250 mm Hg afterload pressure. The oxygen transfer rate of the PPL can reach over 200 mL/min at a flow rate of 3.5 L/min. CONCLUSIONS: The PPL has the potential to provide adequate blood pumping and excellent respiratory support with minimal risk of hemolysis for a wide range of pediatric patients.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Hemólisis , Humanos , Niño , Animales , Ovinos , Hidrodinámica , Oxigenación por Membrana Extracorpórea/efectos adversos , Pulmón , Oxigenadores , Diseño de Equipo
8.
J Aerosol Sci ; 175: 106262, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38164243

RESUMEN

Pharmaceutical aerosol systems present a significant challenge to computational fluid dynamics (CFD) modeling based on the need to capture multiple levels of turbulence, frequent transition between laminar and turbulent flows, anisotropic turbulent particle dispersion, and near-wall particle transport phenomena often within geometrically complex systems over multiple time scales. Two-equation turbulence models, such as the k-ω family of approximations, offer a computationally efficient solution approach, but are known to require the use of near-wall (NW) corrections and eddy interaction model (EIM) modifications for accurate predictions of aerosol deposition. The objective of this study was to develop an efficient and effective two-equation turbulence modeling approach that enables accurate predictions of pharmaceutical aerosol deposition across a range of turbulence levels. Key systems considered were the traditional aerosol deposition benchmark cases of a 90-degree bend (Re=6,000) and a vertical straight section of pipe (Re=10,000), as well as a highly complex case of direct-to-infant (D2I) nose-to-lung pharmaceutical aerosol delivery from an air-jet dry powder inhaler (DPI) including a patient interface and infant nasal geometry through mid-trachea (500

9.
Inhal Toxicol ; 36(1): 44-56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38343121

RESUMEN

Objective: The nasal cavity effectively captures the particles present in inhaled air, thereby preventing harmful and toxic pollutants from reaching the lungs. This filtering ability of the nasal cavity can be effectively utilized for targeted nasal drug delivery applications. This study aims to understand the particle deposition patterns in three age groups: neonate, infant, and adult.Materials and methods: The CT scans are built using MIMICS 21.0, followed by CATIA V6 to generate a patient-specific airway model. Fluid flow is simulated using ANSYS FLUENT 2021 R2. Spherical monodisperse microparticles ranging from 2 to 60 µm and a density of 1100 kg/m3 are simulated at steady-state and sedentary inspiration conditions.Results: The highest nasal valve depositions for the neonate are 25% for 20 µm, for infants, 10% for 50 µm, 15% for adults, and 15% for 15 µm. At mid nasal region, deposition of 15% for 20 µm is observed for infant and 8% for neonate and adult nasal cavities at a particle size of 10 and 20 µm, respectively. The highest particle deposition at the olfactory region is about 2.7% for the adult nasal cavity for 20 µm, and it is <1% for neonate and infant nasal cavities.Discussion and conclusions: The study of preferred nasal depositions during natural sedentary breathing conditions is utilized to determine the size that allows medication particles to be targeted to specific nose regions.


Asunto(s)
Cavidad Nasal , Nariz , Adulto , Lactante , Recién Nacido , Humanos , Cavidad Nasal/diagnóstico por imagen , Nariz/diagnóstico por imagen , Tamaño de la Partícula
10.
J Biomech Eng ; 146(4)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38183225

RESUMEN

This paper presents an innovative approach to the design optimization of valved holding chambers (VHCs), crucial devices for aerosol drug delivery. We present the design of an optimal cylindrical VHC body and introduce a novel valve based on particle impaction theory. The research combines computational simulations and physical experiments to assess the performance of various VHCs, with a special focus on the deposition patterns of medication particles within these devices. The methodology incorporates both experimental and simulation approaches to validate the reliability of the simulation. Emphasis is placed on the deposition patterns observed on the VHC walls and the classification of fine and large particles for salbutamol sulfate particles. The study reveals the superior efficacy of our valve design in separating particles compared to commercially available VHCs. In standard conditions, our valve design allows over 95% of particles under 7 µm to pass through while effectively filtering those larger than 8 µm. The optimized body design accomplishes a 60% particle mass flow fraction at the outlet and an average particle size reduction of 58.5%. When compared numerically in terms of size reduction, the optimal design outperforms the two commercially available VHCs selected. This study provides valuable insights into the optimization of VHC design, offering significant potential for improved aerosol drug delivery. Our findings demonstrate a new path forward for future studies, aiming to further optimize the design and performance of VHCs for enhanced pulmonary drug delivery.


Asunto(s)
Espaciadores de Inhalación , Inhaladores de Dosis Medida , Reproducibilidad de los Resultados , Diseño de Equipo , Aerosoles , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula
11.
Eur Arch Otorhinolaryngol ; 281(5): 2463-2475, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38189971

RESUMEN

OBJECTIVE: To explore the effects of Draf1-3 on frontal sinus airflow and frontal sinus irrigation in people with different frontal sinus development METHODS: The development of the frontal sinus and the distribution of the frontal recess cells were evaluated by CT scan in 150 adults (300 sides). The airflow changes into the frontal sinus and frontal recess after Draf were analyzed by Fluent software under a steady state and quiet inspiratory state. Nasal irrigation after Draf in adults with well-developed frontal sinus was simulated using 120 mL saline at a rate of 12 mL/s in a position at 45° to observe the changes in transient flow distribution. RESULTS: The moderately developed type of the frontal sinus was the most common. The airflow patterns in the frontal sinus and frontal recess in the moderate development group were laminar, while several large vortexes were formed between the frontal sinus and frontal recess in the well-development group. The Draf exerted more significant effects on the patterns, pressure, and velocity of the airflow in the frontal sinus and frontal recess in the well development group than in the moderate development group. The volume fraction of saline in the frontal sinus increased significantly from Draf1 to Draf3, and the time required for a complete infiltration of saline in the frontal sinus mucosa was significantly reduced. CONCLUSIONS: Draf1-3 has different effects on the airflow field of the frontal sinus with different developmental types; and Draf1-3 can significantly improve the postoperative flushing of the frontal sinus.


Asunto(s)
Seno Frontal , Adulto , Humanos , Seno Frontal/diagnóstico por imagen , Seno Frontal/cirugía , Hidrodinámica , Simulación por Computador , Tomografía Computarizada por Rayos X , Lavado Nasal (Proceso) , Endoscopía
12.
Clin Oral Investig ; 28(1): 120, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280059

RESUMEN

OBJECTIVES: In this study, we investigated the dispersion patterns of aerosols and droplets in dental clinics and developed a suction device to evaluate its effectiveness in reducing aerosols during dental procedures. MATERIALS AND METHODS: Firstly, the continuous images of oral aerosols and droplets were photographed with a high-speed camera, and the trajectories of these particles were recognized and processed by Image J to determine key parameters affecting particle dispersion: diffusion velocity, distance, and angle. Secondly, based on the parameter data, the flow field of aerosol particles around the oral cavity was simulated using computational fluid dynamics (CFD), and the flow field under adsorption conditions was simulated to demonstrate the aerodynamic characteristics and capture efficiencies of the single-channel and three-channel adsorption ports at different pressures. Finally, according to the simulated data, a three-channel suction device was developed, and the capture efficiency of the device was tested by the fluorescein tracer method. RESULTS: The dispersion experimental data showed that aerosol particles' maximum diffusion velocity, distance, and angle were 6.2 m/s, 0.55 m, and 130°, respectively. The simulated aerosol flow-field distribution was consistent with the aerosol dispersion patterns. The adsorption simulation results showed that the outlet flow rate of single-channel adsorption was 184.5 L/s at - 350 Pa, and the aerosol capture efficiency could reach 79.4%. At - 350 Pa and - 150 Pa, the outlet flow rate of three-channel adsorption was 228.9 L/s, and the capture efficiency was 99.23%. The adsorption experimental data showed that the capture efficiency of three-channel suction device was 97.71%. CONCLUSIONS: A three-channel suction device was designed by simulations and experiments, which can capture most aerosols in the dental clinic and prevent them from spreading. CLINICAL RELEVANCE: Using three-channel suction devices during oral treatment effectively reduces the spread of oral aerosols, which is essential to prevent the spread of epidemics and ensure the health and safety of patients and dental staff.


Asunto(s)
Aerosoles , Humanos , Simulación por Computador
13.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400252

RESUMEN

The paper introduces a numerical simulation method for Synthetic Aperture Radar (SAR) imaging of submerged body wakes by integrating hydrodynamics, electromagnetic scattering, and SAR imaging simulation. This work is helpful for better understanding SAR images of submerged body wakes. Among these, the hydrodynamic model consists of two sets of ocean dynamics closely related to SAR imaging, namely the wake of the submerged body and wind waves. For the wake, we simulated it using computational fluid dynamics (CFD) numerical methods. Furthermore, we compared and computed the electromagnetic scattering characteristics of wakes under various navigation parameters and sea surface conditions. Following that, based on the operational principles and imaging theory of synthetic aperture radar (SAR), we established the SAR raw echo signal of the wake. Employing a Range-Doppler (RD) algorithm, we generated simulated SAR images of the wake. The results indicate that utilizing Computational Fluid Dynamics (CFD) numerical methods enables the simulation of wake characteristics generated by the motion of a submerged body with different velocities. The backscattering features of wakes are closely associated with the relative orientation between the wake and the radar line of sight. Under specific wind speeds, the wake gets masked within the sea surface background, resulting in less discernible characteristics of the wake in SAR images. This suggests that at lower speeds of submerged body or under specific wind conditions, the detectability of the wake in SAR images significantly diminishes.

14.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38610377

RESUMEN

This paper describes the methodology of combining experimental measurements with mathematical-physics analyses in the investigation of flow in the aperture and nozzle. The aperture and nozzle separate the differentially pumped chamber from the specimen chamber in an environmental scanning electron microscope (ESEM). Experimental measurements are provided by temperature and pressure sensors that meet the demanding conditions of cryogenic temperature zones and low pressures. This aperture maintains the required pressure difference between the chambers. Since it separates the large pressure gradient, critical flow occurs on it and supersonic gas flow with the characteristic properties of critical flow in the state variables occurs behind it. As a primary electron beam passes through the differential pumped chamber and the given aperture, the aperture is equipped with a nozzle. The shape of the nozzle strongly influences the character of the supersonic flow. The course of state variables is also strongly influenced by this shape; thus, it affects the number of collisions the primary beam's electrons have with gas molecules, and so the resulting image. This paper describes experimental measurements made using sensors under laboratory conditions in a specially created experimental chamber. Then, validation using mathematical-physical analysis in the Ansys Fluent system is described.

15.
Sensors (Basel) ; 24(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38794096

RESUMEN

A combination of experimental measurement preparations using pressure and temperature sensors in conjunction with the theory of one-dimensional isentropic flow and mathematical physics analyses is presented as a tool for analysis in this paper. Furthermore, the subsequent development of a nozzle for use in environmental electron microscopy between the specimen chamber and the differentially pumped chamber is described. Based on experimental measurements, an analysis of the impact of the nozzle shaping located behind the aperture on the character of the supersonic flow and the resulting dispersion of the electron beam passing through the differential pumped chamber is carried out on the determined pressure ratio using a combination of theory and mathematical physics analyses. The results show that nozzle shapes causing under-expanded gas outflow from the aperture to the nozzle have a worse impact on the dispersion of the primary electron beam. This is due to the flow velocity control. The controlled reduction in the static pressure curve on the primary electron beam path thus causes a significantly higher course of electron dispersion values than variants with shapes causing over-expanded gas outflow.

16.
Sensors (Basel) ; 24(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38894227

RESUMEN

The paper presents a methodology that combines experimental measurements and mathematical-physics analyses to investigate the flow behavior in a nozzle-equipped aperture associated with the solution of its impact on electron beam dispersion in an environmental scanning electron microscope (ESEM). The shape of the nozzle significantly influences the character of the supersonic flow beyond the aperture, especially the shape and type of shock waves, which are highly dense compared to the surrounding gas. These significantly affect the electron scattering, which influences the resulting image. This paper analyzes the effect of aperture and nozzle shaping under specific low-pressure conditions and its impact on the electron dispersion of the primary electron beam.

17.
J Therm Biol ; 122: 103882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38861861

RESUMEN

Honey bees preferentially occupy thick walled tall narrow tree cavities and attach their combs directly to the nest wall, leaving periodic gaps. However, academic research and beekeeping are conducted in squat, thin walled man made hives, with a continuous gap between the combs and the walls and roof. Utilising a computational fluid dynamics (CFD) model of thermoregulating bees in complete nests in trees and thin walled man made hives, with the average size of tree comb gaps determined from honey bee occupied synthetic tree nests, this research compared the metabolic energy impacts of comb gaps and vertical movement of the thermoregulated brood area. This shows their heat transfer regimes are disparate, including: bee space above combs increases heat loss by up to ∼70%; hives, compared to tree nests, require at least 150% the density of honey bees to arrest convection across the brood area. Tree cavities have a larger vertical freedom, a greater thermal resistance and can make dense clustering redundant. With the thermal environment being critical to honey bees, the magnitude and scope of these differences suggest that some hive based behavioural research needs extra validation to be considered non-anthropogenic, and some bee keeping practices are sub-optimal.


Asunto(s)
Regulación de la Temperatura Corporal , Comportamiento de Nidificación , Abejas/fisiología , Animales , Modelos Biológicos , Hidrodinámica , Temperatura
18.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731865

RESUMEN

This study explored the feasibility of fluoride removal from simulated semiconductor industry wastewater and its recovery as calcium fluoride using fluidized bed crystallization. The continuous reactor showed the best performance (>90% fluoride removal and >95% crystallization efficiency) at a calcium-to-fluoride ratio of 0.6 within the first 40 days of continuous operation. The resulting particle size increased by more than double during this time, along with a 36% increase in the seed bed height, indicating the deposition of CaF2 onto the silica seed. The SEM-EDX analysis showed the size and shape of the crystals formed, along with the presence of a high amount of Ca-F ions. The purity of the CaF2 crystals was determined to be 91.1% though ICP-OES analysis. Following the continuous experiment, different process improvement strategies were explored. The addition of an excess amount of calcium resulted in the removal of an additional 6% of the fluoride; however, compared to this single-stage process, a two-stage approach was found to be a better strategy to achieve a low effluent concentration of fluoride. The fluoride removal reached 94% with this two-stage approach under the optimum conditions of 4 + 1 h HRT combinations and a [Ca2+]/[F-] ratio of 0.55 and 0.7 for the two reactors, respectively. CFD simulation showed the impact of the inlet diameter, bottom-angle shape, and width-to-height ratio of the reactor on the mixing inside the reactor and the possibility of further improvement in the reactor performance by optimizing the FBR configuration.


Asunto(s)
Fluoruro de Calcio , Fluoruros , Aguas Residuales , Fluoruro de Calcio/química , Fluoruros/química , Fluoruros/aislamiento & purificación , Aguas Residuales/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Cristalización
19.
J Environ Manage ; 351: 119776, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086121

RESUMEN

Baffled constructed wetlands (CWs) offer a promising solution to address low hydraulic efficiency in traditional CWs. However, there is a research gap in the field regarding the optimal length and quantity of baffles, and their comprehensive effects on hydraulic efficiency. This study is the first CFD-based assessment to comprehensively investigate the combined influence of baffle length and the number of baffles on the hydraulic efficiency of CWs. Using OpenFOAM simulations at a laboratory scale, various baffle configurations were examined with lengths ranging from 0.4 m to 0.58 m and baffle numbers varying from 0 to 11. Experimental tracer tests were conducted to validate the simulations. The high correlation coefficient (R2) between the tracer test results and simulations (ranging between 0.84 and 0.93) further underscores the reliability of the findings. Residence time distributions (RTDs) were derived from the temporal evolution of the outlet concentration of a tracer. The results indicate that augmenting the number of baffles under a fixed baffle length has a greater impact on the RTD curves, causing a backward displacement of the peak time. However, when the number of baffles is three or fewer, extending the baffle length does not significantly affect the RTD. When the baffle length is held constant at 0.58 m, there is a 58% enhancement in hydraulic efficiency as the number of baffles increases from 0 to 5. However, when maintaining a constant number of 11 baffles, increasing the baffle length from 0.4 to 0.5 m results in only a 5.5% improvement in hydraulic efficiency. Moreover, a generalized predictive equation for hydraulic efficiency was derived based on the CFD results and dimensional analysis. The study enhances the optimization of constructed wetland design by providing greater understanding of hydrodynamic behavior, leading to improved performance and applicability in practical environmental engineering.


Asunto(s)
Eliminación de Residuos Líquidos , Humedales , Eliminación de Residuos Líquidos/métodos , Hidrodinámica , Reproducibilidad de los Resultados , Ingeniería
20.
Pharm Dev Technol ; 29(4): 281-290, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501605

RESUMEN

For a solid understanding of drug characteristics, in vitro measurement of the intrinsic dissolution rate is important. Hydrodynamics are often emphasized as the decisive parameter influencing the dissolution. In this study, experiments and computational fluid dynamic (CFD) simulations showed that the mixing behavior in the rotating disc apparatus causes an inhomogeneous flow field and a systematic error in the calculation of the intrinsic dissolution rate. This error is affected by both the experimental time and the velocity. Due to the rotational movement around the tablet center, commonly utilized in pharmacopeia methods, a broad variance is present with regard to the impact of fluid velocity on individual particles of the specimen surface. As this is significantly reduced in the case of uniform overflow, the flow channel is recommended for investigating the dissolution behavior. It is shown that rotating disc measurements can be compared with flow channel measurements after adjusting the measured data for the rotating disc based on a proposed, representative Reynolds number and a suggested apparatus-dependent correction factor. Additionally, modeling the apparatus-independent intrinsic dissolution rate for different temperatures in the rotating disc apparatus is possible using the adapted Levich's equation.


Asunto(s)
Hidrodinámica , Solubilidad , Comprimidos/química , Liberación de Fármacos , Farmacopeas como Asunto , Simulación por Computador , Química Farmacéutica/métodos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA