Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 893
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Pharmacol Toxicol ; 64: 115-134, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37788492

RESUMEN

Anthracycline-induced cardiotoxicity (AIC) is a serious and common side effect of anthracycline therapy. Identification of genes and genetic variants associated with AIC risk has clinical potential as a cardiotoxicity predictive tool and to allow the development of personalized therapies. In this review, we provide an overview of the function of known AIC genes identified by association studies and categorize them based on their mechanistic implication in AIC. We also discuss the importance of functional validation of AIC-associated variants in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to advance the implementation of genetic predictive biomarkers. Finally, we review how patient-specific hiPSC-CMs can be used to identify novel patient-relevant functional targets and for the discovery of cardioprotectant drugs to prevent AIC. Implementation of functional validation and use of hiPSC-CMs for drug discovery will identify the next generation of highly effective and personalized cardioprotectants and accelerate the inclusion of approved AIC biomarkers into clinical practice.


Asunto(s)
Antraciclinas , Células Madre Pluripotentes Inducidas , Humanos , Antraciclinas/efectos adversos , Cardiotoxicidad/etiología , Miocitos Cardíacos , Biomarcadores
2.
Brain ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696726

RESUMEN

Congenital myasthenic syndromes (CMS) are clinically and genetically heterogeneous diseases caused by mutations affecting neuromuscular transmission. Even if the first symptoms mainly occur during childhood, adult neurologists must confront this challenging diagnosis and manage these patients throughout their adulthood. However, long-term follow-up data from large cohorts of CMS patients are lacking and the long-term prognosis of these patients is largely unknown. We report the clinical features, diagnostic difficulties, and long-term prognosis of a French nationwide cohort of 235 adult patients with genetically confirmed CMS followed in 23 specialized neuromuscular centres. Data were retrospectively analysed. Of the 235 patients, 123 were female (52.3%). The diagnosis was made in adulthood in 139 patients, 110 of whom presented their first symptoms before the age of 18. Mean follow-up time between first symptoms and last visit was 34 years (SD = 15.1). Pathogenic variants were found in 19 disease-related genes. CHRNE-low expressor variants were the most common (23.8%), followed by variants in DOK7 (18.7%) and RAPSN (14%). Genotypes were clustered into four groups according to the initial presentation: ocular group (CHRNE-LE, CHRND, FCCMS), distal group (SCCMS), limb-girdle group (RAPSN, COLQ, DOK7, GMPPB, GFPT1), and a variable-phenotype group (MUSK, AGRN). The phenotypical features of CMS did not change throughout life. Only four genotypes had a proportion of patients requiring intensive care unit (ICU) admission that exceeded 20%: RAPSN (54.8%), MUSK (50%), DOK7 (38.6%) and AGRN (25.0%). In RAPSN and MUSK patients most ICU admissions occurred before age 18 years and in DOK7 and AGRN patients at or after 18 years of age. Different patterns of disease course (stability, improvement and progressive worsening) may succeed one another in the same patient throughout life, particularly in AGRN, DOK7 and COLQ. At the last visit, 55% of SCCMS and 36.3% of DOK7 patients required ventilation; 36.3% of DOK7 patients, 25% of GMPPB patients and 20% of GFPT1 patients were wheelchair-bound; most of the patients who were both wheelchair-bound and ventilated were DOK7 patients. Six patients died in this cohort. The positive impact of therapy was striking, even in severely affected patients. In conclusion, even if motor and/or respiratory deterioration could occur in patients with initially moderate disease, particularly in DOK7, SCCMS and GFPT1 patients, the long-term prognosis for most CMS patients was favourable, with neither ventilation nor wheelchair needed at last visit. CHRNE patients did not worsen during adulthood and RAPSN patients, often severely affected in early childhood, subsequently improved.

3.
J Mol Cell Cardiol ; 189: 52-65, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346641

RESUMEN

Adipocytes normally accumulate in the epicardial and pericardial layers around the human heart, but their infiltration into the myocardium can be proarrhythmic. METHODS AND RESULTS: Human adipose derived stem/stromal cells and human induced pluripotent stem cells (hiPSC) were differentiated, respectively into predominantly white fat-like adipocytes (hAdip) and ventricular cardiomyocytes (CMs). Adipocytes cultured in CM maintenance medium (CM medium) maintained their morphology, continued to express adipogenic markers, and retained clusters of intracellular lipid droplets. In contrast, hiPSC-CMs cultivated in adipogenic growth medium displayed abnormal cell morphologies and more clustering across the monolayer. Pre-plated hiPSC-CMs co-cultured in direct contact with hAdips in CM medium displayed prolonged action potential durations, increased triangulation, slowed conduction velocity, increased conduction velocity heterogeneity, and prolonged calcium transients. When hAdip-conditioned medium was added to monolayer cultures of hiPSC-CMs, results similar to those recorded with direct co-cultures were observed. Both co-culture and conditioned medium experiments resulted in increases in transcript abundance of SCN10A, CACNA1C, SLC8A1, and RYR2, with a decrease in KCNJ2. Human adipokine immunoblots revealed the presence of cytokines that were elevated in adipocyte-conditioned medium, including MCP-1, IL-6, IL-8 and CFD that could induce electrophysiological changes in cultured hiPSC-CMs. CONCLUSIONS: Co-culture of hiPSC-CMs with hAdips reveals a potentially pathogenic role of infiltrating human adipocytes on myocardial tissue. In the absence of structural changes, hAdip paracrine release alone is sufficient to cause CM electrophysiological dysfunction mirroring the co-culture conditions. These effects, mediated largely by paracrine mechanisms, could promote arrhythmias in the heart.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Diferenciación Celular/fisiología , Adipocitos , Potenciales de Acción
4.
J Biol Chem ; 299(2): 102778, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36496073

RESUMEN

The voltage-gated channel, hERG1, conducts the rapid delayed rectifier potassium current (IKr) and is critical for human cardiac repolarization. Reduced IKr causes long QT syndrome and increases the risk for cardiac arrhythmia and sudden death. At least two subunits form functional hERG1 channels, hERG1a and hERG1b. Changes in hERG1a/1b abundance modulate IKr kinetics, magnitude, and drug sensitivity. Studies from native cardiac tissue suggest that hERG1 subunit abundance is dynamically regulated, but the impact of altered subunit abundance on IKr and its response to external stressors is not well understood. Here, we used a substrate-driven human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) maturation model to investigate how changes in relative hERG1a/1b subunit abundance impact the response of native IKr to extracellular acidosis, a known component of ischemic heart disease and sudden infant death syndrome. IKr recorded from immatured hiPSC-CMs displays a 2-fold greater inhibition by extracellular acidosis (pH 6.3) compared with matured hiPSC-CMs. Quantitative RT-PCR and immunocytochemistry demonstrated that hERG1a subunit mRNA and protein were upregulated and hERG1b subunit mRNA and protein were downregulated in matured hiPSC-CMs compared with immatured hiPSC-CMs. The shift in subunit abundance in matured hiPSC-CMs was accompanied by increased IKr. Silencing hERG1b's impact on native IKr kinetics by overexpressing a polypeptide identical to the hERG1a N-terminal Per-Arnt-Sim domain reduced the magnitude of IKr proton inhibition in immatured hiPSC-CMs to levels comparable to those observed in matured hiPSC-CMs. These data demonstrate that hERG1 subunit abundance is dynamically regulated and determines IKr proton sensitivity in hiPSC-CMs.


Asunto(s)
Canal de Potasio ERG1 , Conductividad Eléctrica , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Potasio , Subunidades de Proteína , Protones , Humanos , Acidosis/metabolismo , Canal de Potasio ERG1/química , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/metabolismo , Potasio/metabolismo , ARN Mensajero/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Regulación hacia Abajo , Espacio Extracelular
5.
J Cell Physiol ; 239(1): 212-226, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38149479

RESUMEN

Our study was conducted to investigate whether cadherin-5 (CDH5), a vascular endothelial cell adhesion glycoprotein, could facilitate the differentiation of human induced pluripotent stem cells (hiPSCs) into sinoatrial node-like pacemaker cells (SANLPCs), following previous findings of silk-fibroin hydrogel-induced direct conversion of quiescent cardiomyocytes into pacemaker cells in rats through the activation of CDH5. In this study, the differentiating hiPSCs were treated with CDH5 (40 ng/mL) between Day 5 and 7 during cardiomyocytes differentiation. The findings in the present study demonstrated that CDH5 stimulated the expression of pacemaker-specific markers while suppressing markers associated with working cardiomyocytes, resulting in an increased proportion of SANLPCs among hiPSCs-derived cardiomyocytes (hiPSC-CMs) population. Moreover, CDH5 induced typical electrophysiological characteristics resembling cardiac pacemaker cells in hiPSC-CMs. Further mechanistic investigations revealed that the enriched differentiation of hiPSCs into SANLPCs induced by CDH5 was partially reversed by iCRT14, an inhibitor of ß-catenin. Therefore, based on the aforementioned findings, it could be inferred that the regulation of ß-catenin by CDH5 played a crucial role in promoting the enriched differentiation of hiPSCs into SANLPCs, which presents a novel avenue for the construction of biological pacemakers in forthcoming research.


Asunto(s)
Cadherinas , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , beta Catenina , Animales , Humanos , Ratas , Antígenos CD , beta Catenina/metabolismo , Cadherinas/farmacología , Diferenciación Celular , Miocitos Cardíacos/metabolismo , Nodo Sinoatrial
6.
BMC Genomics ; 25(1): 271, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475718

RESUMEN

BACKGROUND: Acute cardiac injury caused by coronavirus disease 2019 (COVID-19) increases mortality. Acute cardiac injury caused by COVID-19 requires understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly infects cardiomyocytes. This study provides a solid foundation for related studies by using a model of SARS-CoV-2 infection in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) at the transcriptome level, highlighting the relevance of this study to related studies. SARS-CoV-2 infection in hiPSC-CMs has previously been studied by bioinformatics without presenting the full molecular biological process. We present a unique bioinformatics view of the complete molecular biological process of SARS-CoV-2 infection in hiPSC-CMs. METHODS: To validate the RNA-seq datasets, we used GSE184715 and GSE150392 for the analytical studies, GSE193722 for validation at the cellular level, and GSE169241 for validation in heart tissue samples. GeneCards and MsigDB databases were used to find genes associated with the phenotype. In addition to differential expression analysis and principal component analysis (PCA), we also performed protein-protein interaction (PPI) analysis, functional enrichment analysis, hub gene analysis, upstream transcription factor prediction, and drug prediction. RESULTS: Differentially expressed genes (DEGs) were classified into four categories: cardiomyocyte cytoskeletal protein inhibition, proto-oncogene activation and inflammation, mitochondrial dysfunction, and intracellular cytoplasmic physiological function. Each of the hub genes showed good diagnostic prediction, which was well validated in other datasets. Inhibited biological functions included cardiomyocyte cytoskeletal proteins, adenosine triphosphate (ATP) synthesis and electron transport chain (ETC), glucose metabolism, amino acid metabolism, fatty acid metabolism, pyruvate metabolism, citric acid cycle, nucleic acid metabolism, replication, transcription, translation, ubiquitination, autophagy, and cellular transport. Proto-oncogenes, inflammation, nuclear factor-kappaB (NF-κB) pathways, and interferon signaling were activated, as well as inflammatory factors. Viral infection activates multiple pathways, including the interferon pathway, proto-oncogenes and mitochondrial oxidative stress, while inhibiting cardiomyocyte backbone proteins and energy metabolism. Infection limits intracellular synthesis and metabolism, as well as the raw materials for mitochondrial energy synthesis. Mitochondrial dysfunction and energy abnormalities are ultimately caused by proto-oncogene activation and SARS-CoV-2 infection. Activation of the interferon pathway, proto-oncogene up-regulation, and mitochondrial oxidative stress cause the inflammatory response and lead to diminished cardiomyocyte contraction. Replication, transcription, translation, ubiquitination, autophagy, and cellular transport are among the functions that decline physiologically. CONCLUSION: SARS-CoV-2 infection in hiPSC-CMs is fundamentally mediated via mitochondrial dysfunction. Therapeutic interventions targeting mitochondrial dysfunction may alleviate the cardiovascular complications associated with SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Enfermedades Mitocondriales , Humanos , SARS-CoV-2 , Miocitos Cardíacos/metabolismo , Interferones/metabolismo , Inflamación/metabolismo
7.
Rep Prog Phys ; 87(7)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899361

RESUMEN

Ultrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we determine the speed of sound in an extended volume of quark-gluon plasma using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb-1. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of0.241±0.002(stat)±0.016(syst)in natural units. The effective medium temperature, estimated using the mean transverse momentum, is219±8(syst)MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions.

8.
Rep Prog Phys ; 87(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957892

RESUMEN

A test of lepton flavor universality inB±â†’K±µ+µ-andB±â†’K±e+e-decays, as well as a measurement of differential and integrated branching fractions of a nonresonantB±â†’K±µ+µ-decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions ats=13TeVrecorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractionsB(B±â†’K±µ+µ-)toB(B±â†’K±e+e-)is determined from the measured double ratioR(K)of these decays to the respective branching fractions of theB±â†’J/ψK±withJ/ψ→µ+µ-ande+e-decays, which allow for significant cancellation of systematic uncertainties. The ratioR(K)is measured in the range1.1

9.
Am J Physiol Heart Circ Physiol ; 327(1): H12-H27, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727253

RESUMEN

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the comprehensive in vitro proarrhythmia assay (CiPA). Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. We investigated the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology. iCell cardiomyocytes2 were cultured and biosignals were acquired using a microelectrode array (MEA) system (2-14 days). Continuous recordings revealed a 22.6% increase in the beating rate and 7.7% decrease in the field potential duration (FPD) during a 20-min equilibration period. Location-specific differences across a multiwell plate were also observed, with iCell cardiomyocytes2 in the outer rows beating 8.8 beats/min faster than the inner rows. Cardiac endpoints were also impacted by cell culture duration; from 2 to 14 days, the beating rate decreased (-12.7 beats/min), FPD lengthened (+257 ms), and spike amplitude increased (+3.3 mV). Cell culture duration (4-10 days) also impacted cardiomyocyte drug responsiveness (E-4031, nifedipine, isoproterenol). qRT-PCR results suggest that daily variations in cardiac metrics may be linked to the continued maturation of hiPSC-CMs in culture (2-30 days). Daily experiments were also repeated using a second cell line (Cor.4U). Collectively, our study highlights multiple sources of variability to consider and address when performing hiPSC-CM MEA studies. To improve reproducibility and data interpretation, MEA-based studies should establish a standardized protocol and report key experimental conditions (e.g., cell line, culture time, equilibration time, electrical stimulation settings, and raw data values).NEW & NOTEWORTHY We demonstrate that iCell cardiomyocytes2 electrophysiology measurements are impacted by deviations in experimental techniques including electrical stimulation protocols, equilibration time, well-to-well variability, and length of hiPSC-CM culture. Furthermore, our results indicate that hiPSC-CM drug responsiveness changes within the first 2 wk following defrost.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Reproducibilidad de los Resultados , Factores de Tiempo , Potenciales de Acción/efectos de los fármacos , Células Cultivadas , Isoproterenol/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Microelectrodos , Línea Celular , Cardiotoxicidad
10.
Am J Physiol Heart Circ Physiol ; 326(5): H1146-H1154, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488520

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are a promising tool to study arrhythmia-related factors, but the variability of action potential (AP) recordings from these cells limits their use as an in vitro model. In this study, we use recently published brief (10 s), dynamic voltage-clamp (VC) data to provide mechanistic insights into the ionic currents contributing to AP heterogeneity; we call this approach rapid ionic current phenotyping (RICP). Features of this VC data were correlated to AP recordings from the same cells, and we used computational models to generate mechanistic insights into cellular heterogeneity. This analysis uncovered several interesting links between AP morphology and ionic current density: both L-type calcium and sodium currents contribute to upstroke velocity, rapid delayed rectifier K+ current is the main determinant of the maximal diastolic potential, and an outward current in the activation range of slow delayed rectifier K+ is the main determinant of AP duration. Our analysis also identified an outward current in several cells at 6 mV that is not reproduced by iPSC-CM mathematical models but contributes to determining AP duration. RICP can be used to explain how cell-to-cell variability in ionic currents gives rise to AP heterogeneity. Because of its brief duration (10 s) and ease of data interpretation, we recommend the use of RICP for single-cell patch-clamp experiments that include the acquisition of APs.NEW & NOTEWORTHY We present rapid ionic current phenotyping (RICP), a current quantification approach based on an optimized voltage-clamp protocol. The method captures a rich snapshot of the ionic current dynamics, providing quantitative information about multiple currents (e.g., ICa,L, IKr) in the same cell. The protocol helped to identify key ionic determinants of cellular action potential heterogeneity in iPSC-CMs. This included unexpected results, such as the critical role of IKr in establishing the maximum diastolic potential.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Potenciales de Acción/fisiología , Arritmias Cardíacas/metabolismo , Transporte Iónico
11.
BMC Plant Biol ; 24(1): 535, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862889

RESUMEN

BACKGROUND: Cytoplasmic male sterility (CMS) has greatly improved the utilization of heterosis in crops due to the absence of functional male gametophyte. The newly developed sporophytic D1 type CMS (CMS-D1) rice exhibits unique characteristics compared to the well-known sporophytic CMS-WA line, making it a valuable resource for rice breeding. RESULTS: In this research, a novel CMS-D1 line named Xingye A (XYA) was established, characterized by small, transparent, and shriveled anthers. Histological and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays conducted on anthers from XYA and its maintainer line XYB revealed that male sterility in XYA is a result of delayed degradation of tapetal cells and abnormal programmed cell death (PCD) of microspores. Transcriptome analysis of young panicles revealed that differentially expressed genes (DEGs) in XYA, compared to XYB, were significantly enriched in processes related to chromatin structure and nucleosomes during the microspore mother cell (MMC) stage. Conversely, processes associated with sporopollenin biosynthesis, pollen exine formation, chitinase activity, and pollen wall assembly were enriched during the meiosis stage. Metabolome analysis identified 176 specific differentially accumulated metabolites (DAMs) during the meiosis stage, enriched in pathways such as α-linoleic acid metabolism, flavone and flavonol biosynthesis, and linolenic acid metabolism. Integration of transcriptomic and metabolomic data underscored the jasmonic acid (JA) biosynthesis pathway was significant enriched in XYA during the meiosis stage compared to XYB. Furthermore, levels of JA, MeJA, OPC4, OPDA, and JA-Ile were all higher in XYA than in XYB at the meiosis stage. CONCLUSIONS: These findings emphasize the involvement of the JA biosynthetic pathway in pollen development in the CMS-D1 line, providing a foundation for further exploration of the molecular mechanisms involved in CMS-D1 sterility.


Asunto(s)
Oryza , Infertilidad Vegetal , Polen , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Infertilidad Vegetal/genética , Transcriptoma , Perfilación de la Expresión Génica , Metabolómica , Metaboloma , Regulación de la Expresión Génica de las Plantas , Meiosis
12.
BMC Plant Biol ; 24(1): 32, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183049

RESUMEN

BACKGROUND: As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress. RESULTS: In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rf1rf1)] and SH [S(Rf1rf1)] with obvious differences in fertility stability under HT stress at two environments. A total of 967 circRNAs were identified, with 250 differentially expressed under HT stress. We confirmed the back-splicing sites of eight selected circRNAs using divergent primers and Sanger sequencing. Tissue-specific expression patterns of five differentially expressed circRNAs (DECs) were also verified by RT-PCR and qRT-PCR. Functional enrichment and metabolic pathway analysis revealed that the parental genes of DECs were significantly enriched in fertility-related biological processes such as pollen tube guidance and cell wall organization, as well as the Pentose and glucuronate interconversions, Steroid biosynthesis, and N-Glycan biosynthesis pathways. Moreover, we also constructed a putative circRNA-mediated competing endogenous RNA (ceRNA) network consisting of 21 DECs, eight predicted circRNA-binding miRNAs, and their corresponding 22 mRNA targets, especially the two ceRNA modules circRNA346-miR159a-MYB33 and circRNA484-miR319e-MYB33, which might play important biological roles in regulating pollen fertility stability of cotton CMS-D2 restorer line under HT stress. CONCLUSIONS: Through systematic analysis of the abundance, characteristics and expression patterns of circRNAs, as well as the potential functions of their parent genes, our findings suggested that circRNAs and their mediated ceRNA networks acted vital biological roles in cotton pollen development, and might be also essential regulators for fertility stability of CMS-D2 restorer line under heat stress. This study will open a new door for further unlocking complex regulatory mechanisms underpinning the fertility restoration stability for CMS-D2 in cotton.


Asunto(s)
Gossypium , ARN Circular , Gossypium/genética , ARN Circular/genética , Citoplasma , Fertilidad/genética , ARN , Respuesta al Choque Térmico/genética
13.
Anal Biochem ; 694: 115604, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986795

RESUMEN

The extraction of high-quality RNA from cotton (Gossypium spp.) is challenging because of the presence of high polyphenolics, polysaccharides, quinones, and other secondary metabolites. A high-throughput RNA extraction protocol is a prerequisite. This Triton-X-100-based RNA extraction method utilizes Polyvinyl pyrrolidone polymer (PVPP) treatment which efficiently removes phenolics, and the application of Lithium chloride (LiCl) has been found that successfully precipitated the high-quality RNA from cotton tissue. Cytoplasmic male sterility (CMS) is a maternally inherited trait associated with specific mitochondrial genome rearrangements or mutations. The suitability of RNA extracted from Cotton CMS lines was assessed. cDNA was synthesized from RNA and assayed for mitochondrial genes (cox3, nad3, nad9) associated with male sterility. This paper discuss the advantages and limitation of this protocol over existing protocol for RNA extraction for polyphenolics-rich plant tissue.

14.
Mol Cell Biochem ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381273

RESUMEN

Diabetic cardiomyopathy (DbCM) is one of the most common vascular complications of diabetes, and can cause heart failure and threaten the life of patients. The pathogenesis is complex, and key genes have not fully identified. In this study, bioinformatics analysis was used to predict DbCM-related gene targets. Published datasets from the NCBI Gene Expression Omnibus with accession numbers GSE62203 and GSE197850 were selected for analysis. Differentially expressed genes (DEGs) were identified by the online tool GEO2R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID online database. Protein-protein interaction network construction and hub gene identification were performed using STRING and Cytoscape. We used 30 mM and 1 µM hydrocortisone-stimulated AC16 cells as an in vitro model of diabetic cardiomyopathy. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression levels of hub genes. A total of 73 common DEGs were identified in both datasets, including 47 upregulated and 26 downregulated genes. GO and KEGG pathway enrichment analyses revealed that the DEGs were significantly enriched in metabolism, hypoxia response, apoptosis, cell proliferation regulation, and cytoplasmic and HIF signalling pathways. The top 10 hub genes were LDHA, PGK1, SLC2A1, ENO1, PFKFB3, EGLN1, MYC, PDK1, EGLN3 and BNIP3. In our in vitro study, we found that PGK1, SLC2A1, PFKFB3, EGLN1, MYC, EGLN3 and BNIP3 were upregulated, ENO1 was downregulated, and LDHA was unchanged. Except for PGK1 and ENO1, these hub genes have been previously reported to be involved in DbCM. In summary, we identified DEGs and hub genes and first reported PGK1 and ENO1 in DbCM, which may serve as potential candidate genes for DbCM targeted therapy.

15.
J Am Acad Dermatol ; 90(4): 681-689, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37343833

RESUMEN

As medicine is moving toward performance and outcome-based payment and is transitioning away from productivity-based systems, value is now being appraised in healthcare through "performance measures." Over the past few decades, assessment of clinical performance in health care has been essential in ensuring safe and cost-effective patient care. The Centers for Medicare & Medicaid Services is further driving this change with measurable, outcomes-based national payer incentive payment systems. With the continually evolving requirements in health care reform focused on value-based care, there is a growing concern that clinicians, particularly dermatologists, may not understand the scientific rationale of health care quality measurement. As such, in order to help dermatologists understand the health care measurement science landscape to empower them to engage in the performance measure development and implementation process, the first article in this 2-part continuing medical education series reviews the value equation, historic and evolving policy issues, and the American Academy of Dermatology's approach to performance measurement development to provide the required foundational knowledge for performance measure developers.


Asunto(s)
Medicare , Calidad de la Atención de Salud , Anciano , Humanos , Estados Unidos , Atención a la Salud , Reforma de la Atención de Salud , Instituciones de Salud
16.
Mol Ther ; 31(1): 211-229, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35982619

RESUMEN

Cell-based therapies offer an exciting and novel treatment for heart repair following myocardial infarction (MI). However, these therapies often suffer from poor cell viability and engraftment rates, which involve many factors, including the hypoxic conditions of the infarct environment. Meanwhile, vascular endothelial growth factor (VEGF) has previously been employed as a therapeutic agent to limit myocardial damage and simultaneously induce neovascularization. This study took an approach to transiently overexpress VEGF protein, in a controlled manner, by transfecting human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with VEGF mRNA prior to transplantation. The conditioning of iPSC-CMs with VEGF mRNA ultimately led to greater survival rates of the transplanted cells, which promoted a stable vascular network in the grafted region. Furthermore, bulk RNA transcriptomics data and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) and AGE-RAGE signaling pathways were significantly upregulated in the VEGF-treated iPSC-CMs group. The over-expression of VEGF from iPSC-CMs stimulated cell proliferation and partially attenuated the hypoxic environment in the infarcted area, resulting in reduced ventricular remodeling. This study provides a valuable solution for the survival of transplanted cells in tissue-engineered heart regeneration and may further promote the application of modified mRNA (modRNA) in the field of tissue engineering.


Asunto(s)
Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Trasplante de Células Madre , Factor A de Crecimiento Endotelial Vascular , Animales , Humanos , Ratas , Modelos Animales de Enfermedad , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Infarto del Miocardio/cirugía , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Cell Mol Life Sci ; 80(7): 186, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344704

RESUMEN

Mammalian cardiomyocytes (CMs) undergo maturation during postnatal heart development to meet the increased demands of growth. Here, we found that omentin-1, an adipokine, facilitates CM cell cycle arrest and metabolic maturation. Deletion of omentin-1 causes mouse heart enlargement and dysfunction in adulthood and CM maturation retardation in juveniles, including delayed cell cycle arrest and reduced fatty acid oxidation. Through RNA sequencing, molecular docking analysis, and proximity ligation assays, we found that omentin-1 regulates CM maturation by interacting directly with bone morphogenetic protein 7 (BMP7). Omentin-1 prevents BMP7 from binding to activin type II receptor B (ActRIIB), subsequently decreasing the downstream pathways mothers against DPP homolog 1 (SMAD1)/Yes-associated protein (YAP) and p38 mitogen-activated protein kinase (p38 MAPK). In addition, omentin-1 is required and sufficient for the maturation of human embryonic stem cell-derived CMs. Together, our findings reveal that omentin-1 is a pro-maturation factor for CMs that is essential for postnatal heart development and cardiac function maintenance.


Asunto(s)
Proteína Morfogenética Ósea 7 , Miocitos Cardíacos , Animales , Humanos , Ratones , Proteína Morfogenética Ósea 7/metabolismo , Puntos de Control del Ciclo Celular , Diferenciación Celular , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
J Clin Densitom ; 27(1): 101456, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38128449

RESUMEN

INTRODUCTION: Bone density measured using dual-energy X-ray absorptiometry (DXA) volume, performance site and interpreters have changed in the US since 2005. The purpose of this report is to provide updated trends in DXA counts, rates, place of service and interpreter specialty for the Medicare fee-for-service population. METHODS: The 100 % Medicare Physician/Supplier Procedure Summary Limited Data Set between 2005-2019 was used. DXA counts and annual rates per 10,000 Medicare beneficiaries were calculated. Annual distributions of scan performance location, provider type and interpreter specialty were described. Place of service trends (significance assigned at p < 0.05) of the mean annual share of DXA utilization were identified using linear regression. RESULTS: Annual DXA use per 10,000 beneficiaries peaked in 2008 at 832, declined to 656 in 2015 then increased (p < 0.001) by 38 per year to 807 in 2019. From 2005 to 2019 DXA performance in office settings declined from 70.7 % to 47.2 %. Concurrently, outpatient hospital (OH) DXA increased from 28.6 % to 51.7 %. In 2005, 43.5 % of DXAs were interpreted by radiologists. This increased (p < 0.001) in the office and OH, averaging 0.3 and 2.0 percentage points per year respectively, reaching 73.5 % in 2019. Interpretation by most non-radiologist specialties declined (p < 0.001). CONCLUSIONS: From 2005-2019, total DXA use among Medicare beneficiaries declined reaching a nadir in 2015 then returned to 2005 levels by 2019. Office DXA declined since 2005 with 51.7 % of all scans now occurring in an OH setting. The proportion of DXAs interpreted by radiologists increased over time, reaching 73.5 % in 2019.


Asunto(s)
Medicare , Médicos , Anciano , Humanos , Estados Unidos/epidemiología , Absorciometría de Fotón , Densidad Ósea , Radiólogos
19.
Childs Nerv Syst ; 40(1): 87-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37682305

RESUMEN

PURPOSE: Posterior fossa tumour surgery in children entails a high risk for severe speech and language impairments, but few studies have investigated the effect of the tumour on language prior to surgery. The current crosslinguistic study addresses this gap. We investigated the prevalence of preoperative word-finding difficulties, examined associations with medical and demographic characteristics, and analysed lexical errors. METHODS: We included 148 children aged 5-17 years with a posterior fossa tumour. Word-finding ability was assessed by means of a picture-naming test, Wordrace, and difficulties in accuracy and speed were identified by cut-off values. A norm-based subanalysis evaluated performance in a Swedish subsample. We compared the demographic and medical characteristics of children with slow, inaccurate, or combined slow and inaccurate word finding to the characteristics of children without word-finding difficulties and conducted a lexical error analysis. RESULTS: Thirty-seven percent (n = 55) presented with slow word finding, 24% (n = 35) with inaccurate word finding, and 16% (n = 23) with both slow and inaccurate word finding. Children with posterior fossa tumours were twice as slow as children in the norming sample. Right-hemisphere and brainstem location posed a higher risk for preoperative word-finding difficulties, relative to left-hemisphere location, and difficulties were more prevalent in boys than in girls. The most frequent errors were lack of response and semantically related sideordinated words. CONCLUSION: Word-finding difficulties are frequent in children with posterior fossa tumours, especially in boys and in children with right-hemisphere and brainstem tumours. Errors resemble those observed in typical development and children with word-finding difficulties.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Infratentoriales , Niño , Masculino , Femenino , Humanos , Estudios Transversales , Neoplasias Infratentoriales/cirugía , Neoplasias Infratentoriales/complicaciones , Lenguaje , Neoplasias Encefálicas/complicaciones
20.
BMC Health Serv Res ; 24(1): 204, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355492

RESUMEN

BACKGROUND: We identified that Stanford Health Care had a significant number of patients who after discharge are found by the utilization review committee not to meet Center for Mediare and Medicaid Services (CMS) 2-midnight benchmark for inpatient status. Some of the charges incurred during the care of these patients are written-off and known as Medicare 1-day write-offs. This study which aims to evaluate the use of a Best Practice Alert (BPA) feature on the electronic medical record, EPIC, to ensure appropriate designation of a patient's hospitalization status as either inpatient or outpatient in accordance with Center for Medicare and Medicaid services (CMS) 2 midnight length of stay benchmark thereby reducing the number of associated write-offs. METHOD: We incorporated a best practice alert (BPA) into the Epic Electronic Medical Record (EMR) that would prompt the discharging provider and the case manager to review the patients' inpatient designation prior to discharge and change the patient's designation to observation when deemed appropriate. Patients who met the inclusion criteria (Patients must have Medicare fee-for-service insurance, inpatient length of stay (LOS) less than 2 midnights, inpatient designation as hospitalization status at time of discharge, was hospitalized to an acute level of care and belonged to one of 37 listed hospital services at the time of signing of the discharge order) were randomized to have the BPA either silent or active over a three-month period from July 18, 2019, to October 18, 2019. RESULT: A total of 88 patients were included in this study: 40 in the control arm and 48 in the intervention arm. In the intervention arm, 8 (8/48, 16.7%) had an inpatient status designation despite potentially meeting Medicare guidelines for an observation stay, comparing to 23 patients (23/40, 57.5%) patients in the control group (p = 0.001). The estimated number of write-offs in the control arm was 17 (73.9%, out of 23 inpatient patients) while in the intervention arm was 1 (12.5%, out of 8 inpatient patient) after accounting for patients who may have met inpatient criteria for other reasons based on case manager note review. CONCLUSION: This is the first time to our knowledge that a BPA has been used in this manner to reduce the number of Medicare 1-day write-offs.


Asunto(s)
Medicare , Mejoramiento de la Calidad , Anciano , Humanos , Estados Unidos , Hospitalización , Tiempo de Internación , Alta del Paciente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA