Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Infect Immun ; 92(5): e0000624, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38629806

RESUMEN

Enterococci are common commensal bacteria that colonize the gastrointestinal tracts of most mammals, including humans. Importantly, these bacteria are one of the leading causes of nosocomial infections. This study examined the role of colonic macrophages in facilitating Enterococcus faecalis infections in mice. We determined that depletion of colonic phagocytes resulted in the reduction of E. faecalis dissemination to the gut-draining mesenteric lymph nodes. Furthermore, we established that trafficking of monocyte-derived CX3CR1-expressing macrophages contributed to E. faecalis dissemination in a manner that was not reliant on CCR7, the conventional receptor involved in lymphatic migration. Finally, we showed that E. faecalis mutants with impaired intracellular survival exhibited reduced dissemination, suggesting that E. faecalis can exploit host immune cell migration to disseminate systemically and cause disease. Our findings indicate that modulation of macrophage trafficking in the context of antibiotic therapy could serve as a novel approach for preventing or treating opportunistic infections by disseminating enteric pathobionts like E. faecalis.


Asunto(s)
Receptor 1 de Quimiocinas CX3C , Colon , Enterococcus faecalis , Macrófagos , Receptores CCR2 , Receptores de Quimiocina , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Macrófagos/microbiología , Macrófagos/inmunología , Ratones , Colon/microbiología , Colon/inmunología , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Ratones Endogámicos C57BL , Ganglios Linfáticos/microbiología , Ganglios Linfáticos/inmunología , Receptores CCR7/metabolismo , Receptores CCR7/genética
2.
J Cell Biochem ; 125(1): 127-145, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38112285

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases employing abnormal levels of insulin. Enhancing the insulin production is greatly aided by the regulatory mechanisms of the Fractalkine receptor (CX3CR1) system in islet ß-cell function. However, elements including a high-fat diet, obesity, and ageing negatively impact the expression of CX3CR1 in islets. CX3CL1/CX3CR1 receptor-ligand complex is now recognized as a novel therapeutic target. It suggests that T2DM-related ß-cell dysfunction may result from lower amount of these proteins. We analyzed the differential expression of CX3CR1 gene samples taken from persons with T2DM using data obtained from the Gene Expression Omnibus database. Homology modeling enabled us to generate the three-dimensional structure of CX3CR1 and a possible binding pocket. The optimized CX3CR1 structure was subjected to rigorous screening against a massive library of 693 million drug-like molecules from the ZINC15 database. This screening process led to the identification of three compounds with strong binding affinity at the identified binding pocket of CX3CR1. To further evaluate the potential of these compounds, molecular dynamics simulations were conducted over a 50 ns time scale to assess the stability of the protein-ligand complexes. These simulations revealed that ZINC000032506419 emerged as the most promising drug-like compound among the three potent molecules. The discovery of ZINC000032506419 holds exciting promise as a potential therapeutic agent for T2D and other related metabolic disorders. These findings pave the way for the development of effective medications to address the complexities of T2DM and its associated metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Descubrimiento de Drogas , Insulina , Ligandos
3.
Clin Immunol ; 259: 109880, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142902

RESUMEN

Monocyte aberrations have been increasingly recognized as contributors to renal damage in systemic lupus erythematosus (SLE), however, recognition of the underlying mechanisms and modulating strategies is at an early stage. Our studies have demonstrated that brain-derived neurotrophic factor precursor (proBDNF) drives the progress of SLE by perturbing antibody-secreting B cells, and proBDNF facilitates pro-inflammatory responses in monocytes. By utilizing peripheral blood from patients with SLE, GEO database and spontaneous MRL/lpr lupus mice, we demonstrated in the present study that CX3CR1+ patrolling monocytes (PMo) numbers were decreased in SLE. ProBDNF was specifically expressed in CX3CR1+ PMo and was closely correlated with disease activity and the degree of renal injury in SLE patients. In MRL/lpr mice, elevated proBDNF was found in circulating PMo and the kidney, and blockade of proBDNF restored the balance of circulating and kidney-infiltrating PMo. This blockade also led to the reversal of pro-inflammatory responses in monocytes and a noticeable improvement in renal damage in lupus mice. Overall, the results indicate that the upregulation of proBDNF in PMo plays a crucial role in their infiltration into the kidney, thereby contributing to nephritis in SLE. Targeting of proBDNF offers a potential therapeutic role in modulating monocyte-driven renal damage in SLE.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Animales , Humanos , Ratones , Riñón , Ratones Endogámicos MRL lpr , Monocitos , Regulación hacia Arriba , Precursores de Proteínas
4.
J Neuroinflammation ; 21(1): 168, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961498

RESUMEN

BACKGROUND: The eye is a highly specialized sensory organ which encompasses the retina as a part of the central nervous system, but also non-neural compartments such as the transparent vitreous body ensuring stability of the eye globe and a clear optical axis. Hyalocytes are the tissue-resident macrophages of the vitreous body and are considered to play pivotal roles in health and diseases of the vitreoretinal interface, such as proliferative vitreoretinopathy or diabetic retinopathy. However, in contrast to other ocular macrophages, their embryonic origin as well as the extent to which these myeloid cells might be replenished by circulating monocytes remains elusive. RESULTS: In this study, we combine transgenic reporter mice, embryonic and adult fate mapping approaches as well as parabiosis experiments with multicolor immunofluorescence labeling and confocal laser-scanning microscopy to comprehensively characterize the murine hyalocyte population throughout development and in adulthood. We found that murine hyalocytes express numerous well-known myeloid cell markers, but concomitantly display a distinct immunophenotype that sets them apart from retinal microglia. Embryonic pulse labeling revealed a yolk sac-derived origin of murine hyalocytes, whose precursors seed the developing eye prenatally. Finally, postnatal labeling and parabiosis established the longevity of hyalocytes which rely on Colony Stimulating Factor 1 Receptor (CSF1R) signaling for their maintenance, independent of blood-derived monocytes. CONCLUSION: Our study identifies hyalocytes as long-living progeny of the yolk sac hematopoiesis and highlights their role as integral members of the innate immune system of the eye. As a consequence of their longevity, immunosenescence processes may culminate in hyalocyte dysfunction, thereby contributing to the development of vitreoretinal diseases. Therefore, myeloid cell-targeted therapies that convey their effects through the modification of hyalocyte properties may represent an interesting approach to alleviate the burden imposed by diseases of the vitreoretinal interface.


Asunto(s)
Macrófagos , Ratones Transgénicos , Cuerpo Vítreo , Saco Vitelino , Animales , Ratones , Cuerpo Vítreo/citología , Saco Vitelino/citología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Animales Recién Nacidos
5.
Cytokine ; 181: 156684, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936205

RESUMEN

As a versatile element for maintaining homeostasis, the chemokine system has been reported to be implicated in the pathogenesis of immune thrombocytopenia (ITP). However, research pertaining to chemokine receptors and related ligands in adult ITP is still limited. The states of several typical chemokine receptors and cognate ligands in the circulation were comparatively assessed through various methodologies. Multiple variable analyses of correlation matrixes were conducted to characterize the correlation signatures of various chemokine receptors or candidate ligands with platelet counts. Our data illustrated a significant decrease in relative CXCR3 expression and elevated plasma levels of CXCL4, 9-11, 13, and CCL3 chemokines in ITP patients with varied platelet counts. Flow cytometry assays revealed eminently diminished CXCR3 levels on T and B lymphocytes and increased CXCR5 on cytotoxic T cell (Tc) subsets in ITP patients with certain platelet counts. Meanwhile, circulating CX3CR1 levels were markedly higher on T cells with a concomitant increase in plasma CX3CL1 level in ITP patients, highlighting the importance of aberrant alterations of the CX3CR1-CX3CL1 axis in ITP pathogenesis. Spearman's correlation analyses revealed a strong positive association of peripheral CXCL4 mRNA level, and negative correlations of plasma CXCL4 concentration and certain chemokine receptors with platelet counts, which might serve as a potential biomarker of platelet destruction in ITP development. Overall, these results indicate that the differential expression patterns and distinct activation states of peripheral chemokine network, and the subsequent expansion of circulating CXCR5+ Tc cells and CX3CR1+ T cells, may be a hallmark during ITP progression, which ultimately contributes to thrombocytopenia in ITP patients.


Asunto(s)
Receptor 1 de Quimiocinas CX3C , Púrpura Trombocitopénica Idiopática , Receptores CXCR3 , Receptores CXCR5 , Humanos , Receptores CXCR3/metabolismo , Púrpura Trombocitopénica Idiopática/sangre , Púrpura Trombocitopénica Idiopática/inmunología , Receptor 1 de Quimiocinas CX3C/metabolismo , Masculino , Receptores CXCR5/metabolismo , Femenino , Adulto , Persona de Mediana Edad , Recuento de Plaquetas , Factor Plaquetario 4/sangre , Factor Plaquetario 4/metabolismo , Anciano , Linfocitos B/inmunología , Linfocitos B/metabolismo
6.
Ann Hematol ; 103(7): 2445-2454, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38605231

RESUMEN

BACKGROUND: Real-world data on outcomes of upfront allogeneic hematopoietic stem cell transplantation (allo-HCT) for adult T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) patients in first complete remission (CR1) is still lacking. METHODS: A single center retrospective study was conducted from 94 consecutive patients received their first allo-HCT between 2010 and 2021, which include 76 patients received upfront allo-HCT and 18 patients received allo-HCT in non-upfront settings. RESULTS: There were no significant differences in most variables. In the upfront allo-HCT group, 52 (68%) patients achieved CR1 with one cycle of induction regimen. 24 (32%) patients achieved CR1 with more than one cycle. In the non-upfront group, there were 14 patients with active disease and 4 patients in second CR before transplant. The majority of patients received antithymocyte globulin-based graft-versus-host disease prophylaxis. Median follow-up time was 51 months for both groups. 5-year overall survival (OS) was 54% in the upfront allo-HCT group. While, in the non-upfront group, 5-year OS were 19% (P = 0.013). 5-year progression free survival in the upfront group was higher than that in the non-upfront group (50% versus 20%, P = 0.02). 5-year cumulative incidence relapse rate was significantly higher in non-upfront group (64% vs. 32%, P = 0.006). While, there was no difference in the 5-year non-relapse mortality (NRM) rate (19% versus 16%, P = 0.56). The most common cause of death was disease progression. In multivariable analysis, non-upfront allo-HCT (hazard ratios (HR) 2.14, P = 0.03) and HCT-CI (≥ 2) (HR 6.07, P = 0.002) were identified to be associated with worse OS. Non-upfront allo-HCT and HCT-CI (≥ 2) were also found to be independent risk factors for higher relapse rate. While, haploidentical-HCT was found to be associated with increased NRM. CONCLUSIONS: Our study indicated that allo-HCT remains an important curative treatment for adult patients with T-ALL, especially when it was performed in the upfront setting.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Inducción de Remisión , Humanos , Adulto , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidad , Adulto Joven , Trasplante Homólogo , Tasa de Supervivencia , Anciano , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Adolescente , Aloinjertos , Leucemia-Linfoma de Células T del Adulto/terapia , Leucemia-Linfoma de Células T del Adulto/mortalidad , Estudios de Seguimiento , Supervivencia sin Enfermedad
7.
Pharmacol Res ; 208: 107348, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134186

RESUMEN

Fibrosis refers to the progressive tissue lesion process characterized by excessive secretion and deposition of extracellular matrix (ECM). Abnormal fibrous tissue deposition distorts tissue architecture and leads to the progressive loss of organ function. Notably, fibrosis is one of the primary pathological appearances of many end stage illnesses, and is considered as a lethal threat to human health, especially in the elderly with ageing-related diseases. CX3C ligand 1 (CX3CL1) is the only member of chemokine CX3C and binds specifically to CX3C receptor 1 (CX3CR1). Different from other chemokines, CX3CL1 possesses both chemotactic and adhesive activity. CX3CL1/CX3CR1 axis involves in various physiological and pathological processes, and exerts a critical role in cells from the immune system, vascular system, and nervous system etc. Notably, increasing evidence has demonstrated that CX3CL1/CX3CR1 signaling pathway is closely related to the pathological process of fibrosis in multiple tissue and organs. We reviewed the crucial role of CX3CL1/CX3CR1 axis in fibrosis and ageing and systematically summarized the underlying mechanism, which offers prospective strategies of targeting CX3C for the therapy of fibrosis and ageing-related diseases.

8.
World J Surg Oncol ; 22(1): 74, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433196

RESUMEN

BACKGROUND: Gastric cancer is primarily treated by surgery; however, little is known about the changes in the intraperitoneal immune environment and the prognostic impact of surgery. Surgical stress and cancer-associated inflammation cause immune cells to mobilize into the abdominal cavity via numerous cytokines. One such cytokine, CX3CR1, has various immune-related functions that remain to be fully explained. We characterized the intraperitoneal immune environment by investigating CX3CR1+ cells in intraperitoneal lavage fluid during gastric cancer surgery. METHODS: Lavage fluid samples were obtained from a total of 41 patients who underwent gastrectomy. The relative expression of various genes was analyzed using quantitative real-time PCR. The association of each gene expression with clinicopathological features and surgical outcomes was examined. The fraction of CX3CR1+ cells was analyzed by flow cytometry. Cytokine profiles in lavage fluid samples were investigated using a cytometric beads array. RESULTS: CX3CR1high patients exhibited higher levels of perioperative inflammation in blood tests and more recurrences than CX3CR1low patients. CX3CR1high patients tended to exhibit higher pathological T and N stage than CX3CR1low patients. CX3CR1 was primarily expressed on myeloid-derived suppressor cells and tumor-associated macrophages. In particular, polymorphonuclear myeloid-derived suppressor cells were associated with perioperative inflammation, pathological N, and recurrences. These immunosuppressive cells were associated with a trend toward unfavorable prognosis. Moreover, CX3CR1 expression was correlated with programmed death-1 expression. CONCLUSIONS: Our results suggest that CX3CR1+ cells are associated with an acute inflammatory response, tumor-promotion, and recurrence. CX3CR1 expression could be taken advantage of as a beneficial therapeutic target for improving immunosuppressive state in the future. In addition, analysis of intra-abdominal CX3CR1+ cells could be useful for characterizing the immune environment after gastric cancer surgery.


Asunto(s)
Cavidad Abdominal , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/cirugía , Gastrectomía , Citocinas , Inmunosupresores , Inflamación , Receptor 1 de Quimiocinas CX3C
9.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674036

RESUMEN

CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.


Asunto(s)
Quimiocina CX3CL1 , Virosis , Quimiocina CX3CL1/metabolismo , Humanos , Virosis/metabolismo , Virosis/inmunología , Virosis/virología , Animales , COVID-19/virología , COVID-19/metabolismo , COVID-19/inmunología , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Microglía/metabolismo , Microglía/virología , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética
10.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731899

RESUMEN

The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.


Asunto(s)
Receptor 1 de Quimiocinas CX3C , Carcinogénesis , Quimiocina CX3CL1 , Inflamación , Neovascularización Patológica , Transducción de Señal , Humanos , Quimiocina CX3CL1/metabolismo , Neovascularización Patológica/metabolismo , Inflamación/metabolismo , Inflamación/patología , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/etiología , Microambiente Tumoral , Angiogénesis
11.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062768

RESUMEN

Diabetes mellitus (DM) is the most common metabolic disease in humans, and its prevalence is increasing worldwide in parallel with the obesity pandemic. A lack of insulin or insulin resistance, and consequently hyperglycemia, leads to many systemic disorders, among which diabetic encephalopathy (DE) is a long-term complication of the central nervous system (CNS), characterized by cognitive impairment and motor dysfunctions. The role of oxidative stress and neuroinflammation in the pathomechanism of DE has been proven. Fractalkine (CX3CL1) has unique properties as an adhesion molecule and chemoattractant, and by acting on its only receptor, CX3CR1, it regulates the activity of microglia in physiological states and neuroinflammation. Depending on the clinical context, CX3CL1-CX3CR1 signaling may have neuroprotective effects by inhibiting the inflammatory process in microglia or, conversely, maintaining/intensifying inflammation and neurotoxicity. This review discusses the evidence supporting that the CX3CL1-CX3CR1 pair is neuroprotective and other evidence that it is neurotoxic. Therefore, interrupting the vicious cycle within neuron-microglia interactions by promoting neuroprotective effects or inhibiting the neurotoxic effects of the CX3CL1-CX3CR1 signaling axis may be a therapeutic goal in DE by limiting the inflammatory response. However, the optimal approach to prevent DE is simply tight glycemic control, because the elimination of dysglycemic states in the CNS abolishes the fundamental mechanisms that induce this vicious cycle.


Asunto(s)
Quimiocina CX3CL1 , Microglía , Transducción de Señal , Humanos , Quimiocina CX3CL1/metabolismo , Animales , Microglía/metabolismo , Microglía/patología , Receptor 1 de Quimiocinas CX3C/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5822-5829, 2023 Nov.
Artículo en Zh | MEDLINE | ID: mdl-38114178

RESUMEN

Based on the CX3C chemokine ligand 1(CX3CL1)-CX3C chemokine receptor 1(CX3CR1) axis, this study explored the potential mechanism by which Zuogui Jiangtang Jieyu Formula(ZGJTJY) improved neuroinflammation and enhanced neuroprotective effect in a rat model of diabetes mellitus complicated with depression(DD). The DD rat model was established by feeding a high-fat diet combined with streptozotocin(STZ) intraperitoneal injection for four weeks and chronic unpredictable mild stress(CUMS) combined with isolated cage rearing for five weeks. The rats were divided into a control group, a model group, a positive control group, an inhibitor group, and a ZGJTJY group. The open field test and forced swimming test were used to assess the depression-like behaviors of the rats. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the expression levels of the pro-inflammatory cytokines interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in plasma. Immunofluorescence staining was used to detect the expression of ionized calcium-binding adapter molecule 1(Iba1), postsynaptic density protein-95(PSD95), and synapsin-1(SYN1) in the hippocampus. Hematoxylin-eosin(HE) staining, Nissl staining, and TdT-mediated dUTP nick end labeling(TUNEL) fluorescence staining were performed to assess hippocampal neuronal damage. Western blot was used to measure the expression levels of CX3CL1, CX3CR1, A2A adenosine receptor(A2AR), glutamate receptor 2A(NR2A), glutamate receptor 2B(NR2B), and brain-derived neurotrophic factor(BDNF) in the hippocampus. Compared with the model group, the ZGJTJY group showed improved depression-like behaviors in DD rats, enhanced neuroprotective effect, increased expression of PSD95, SYN1, and BDNF(P<0.01), and decreased expression of Iba1, IL-1ß, and TNF-α(P<0.01), as well as the expression of CX3CL1, CX3CR1, A2AR, NR2A, and NR2B(P<0.01). These results suggest that ZGJTJY may exert its neuroprotective effect by inhibiting the CX3CL1-CX3CR1 axis and activation of hippocampal microglia, thereby improving neuroinflammation and abnormal activation of N-methyl-D-aspartate receptor(NMDAR) subunits, and ultimately enhancing the expression of synaptic-related proteins PSD95, SYN1, and BDNF in the hippocampus.


Asunto(s)
Diabetes Mellitus , Fármacos Neuroprotectores , Ratas , Animales , Depresión/tratamiento farmacológico , Factor Neurotrófico Derivado del Encéfalo , Factor de Necrosis Tumoral alfa/metabolismo , Enfermedades Neuroinflamatorias , Receptores de Glutamato , Receptor 1 de Quimiocinas CX3C/genética
13.
Clin Neurophysiol ; 162: 141-150, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631074

RESUMEN

OBJECTIVE: The laryngeal adductor reflex (LAR) is vital for airway protection and can be electrophysiologically obtained under intravenous general anesthesia (IGA). This makes the electrophysiologic LAR (eLAR) an important tool for monitoring of the vagus nerves and relevant brainstem circuitry during high-risk surgeries. We investigated the intra-class variability of normal and expected abnormal eLAR. METHODS: Repeated measures of contralateral R1 (cR1) were performed under IGA in 58 patients. Data on presence/absence of cR2 and potential confounders were also collected. Review of neuroimaging, pathology and clinical exam, allowed classification into normal and expected abnormal eLAR groups. Using univariate and multivariate analysis we studied the variability of cR1 parameters and their differences between the two groups. RESULTS: In both groups, cR1 latencies had coefficients of variation of <2%. In the abnormal group, cR1 had longer latencies, required higher activation currents and was more frequently desynchronized and unsustained; cR2 was more frequently absent. CONCLUSIONS: cR1 latencies show high analytical precision for measurements. Delayed onset, difficult to elicit, desynchronized and unsustained cR1, and absence of cR2 signal an abnormal eLAR. SIGNIFICANCE: Understanding the variability and behavior of normal and abnormal eLAR under IGA can aid in the interpretation of its changes during monitoring.


Asunto(s)
Reflejo , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Reflejo/fisiología , Adulto , Músculos Laríngeos/fisiopatología , Músculos Laríngeos/fisiología , Electromiografía/métodos
14.
Biomedicines ; 12(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38540259

RESUMEN

Therapeutic recombinant proteins are powerful tools used for the treatment of many detrimental diseases such as diabetes, cancer, multiple sclerosis, rheumatoid arthritis, hepatitis, and many more. Their importance in disease therapy is growing over small molecule drugs because of their advantages like specificity and reduced side effects. However, the large-scale production of certain recombinant proteins is still challenging despite impressive advancements in biomanufacturing. The complement cascade is considered a rich source of drug targets and natural regulator proteins with great therapeutic potential. However, the versatility of such proteins has been hampered by low production rates. The recent discoveries highlighted here may bring definite improvement in the large-scale recombinant production of complement inhibitor proteins or other difficult-to-express proteins in mammalian cell lines.

15.
Membranes (Basel) ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38668112

RESUMEN

The human Respiratory Syncytial Virus (hRSV) stands as one of the most common causes of acute respiratory diseases. The infectivity of this virus is intricately linked to its membrane proteins, notably the attachment glycoprotein (G protein). The latter plays a key role in facilitating the attachment of hRSV to respiratory tract epithelial cells, thereby initiating the infection process. The present study aimed to characterize the interaction of the conserved cysteine-noose domain of hRSV G protein (cndG) with the transmembrane CX3C motif chemokine receptor 1 (CX3CR1) isoforms using computational tools of molecular modeling, docking, molecular dynamics simulations, and binding free energy calculations. From MD simulations of the molecular system embedded in the POPC lipid bilayer, we showed a stable interaction of cndG with the canonical fractalkine binding site in the N-terminal cavity of the CX3CR1 isoforms and identified that residues in the extracellular loop 2 (ECL2) region and Glu279 of this receptor are pivotal for the stabilization of CX3CR1/cndG binding, corroborating what was reported for the interaction of the chemokine fractalkine with CX3CR1 and its structure homolog US28. Therefore, the results presented here contribute by revealing key structural points for the CX3CR1/G interaction, allowing us to better understand the biology of hRSV from its attachment process and to develop new strategies to combat it.

16.
Brain Res Bull ; 211: 110939, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574865

RESUMEN

PURPOSE: To evaluate the potential efficacy of Triptolide (TP) on cerebral ischemia/reperfusion injury (CIRI) and to uncover the underlying mechanism through which TP regulates CIRI. METHODS: We constructed a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to simulate CIRI, and established a lipopolysaccharide (LPS)-stimulated BV-2 cell model to mimic the inflammatory state during CIRI. The neurological deficits score (NS) of mice were measured for assessment of neurologic functions. Both the severity of cerebral infarction and the apoptosis level in mouse brain tissues or cells were respectively evaluated using corresponding techniques. The expression levels of Ionized calcium binding adapter molecule 1 (IBA-1), Inductible Nitric Oxide Synthase (iNOS), Arginase 1 (Arg-1), Tumor necrosis factor-α (TNF-α), Interleukin 1ß (IL-1ß), Cysteine histoproteinase S (CTSS), Fractalkine, chemokine C-X3-C motif receptor 1 (CX3CR1), BCL-2-associated X protein (BAX), and antiapoptotic proteins (Bcl-2) were detected using immunofluorescence, qRT-PCR as well as Western blot, respectively. RESULTS: Relative to the Sham group, treatment with TP attenuated the increased NS, infarct area and apoptosis levels observed in MCAO/R mice. Upregulated expression levels of IBA-1, iNOS, Arg-1, TNF-α and IL-1ß were found in MCAO/R mice, while TP suppressed iNOS, TNF-α and IL-1ß expression, and enhanced Arg-1 expression in both MCAO/R mice and LPS-stimulated BV-2 cells. Besides, TP inhibited the CTSS/Fractalkine/CX3CR1 pathway activation in both MCAO/R mice and LPS-induced BV-2 cells, while overexpression of CTSS reversed such effect. Co-culturing HT-22 cells with TP+LPS-treated BV-2 cells led to enhanced cell viability and decreased apoptosis levels. However, overexpression of CTSS further aggravated HT-22 cell injury. CONCLUSION: TP inhibits not only microglia polarization towards the M1 phenotype by suppressing the CTSS/Fractalkine/CX3CR1 pathway activation, but also HT-22 apoptosis by crosstalk with BV-2 cells, thereby ameliorating CIRI. These findings reveal a novel mechanism of TP in improving CIRI, and offer potential implications for addressing the preventive and therapeutic strategies of CIRI.


Asunto(s)
Isquemia Encefálica , Diterpenos , Compuestos Epoxi , Infarto de la Arteria Cerebral Media , Fenantrenos , Daño por Reperfusión , Transducción de Señal , Animales , Masculino , Ratones , Apoptosis/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Quimiocina CX3CL1/efectos de los fármacos , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocinas CX3C/efectos de los fármacos , Receptor 1 de Quimiocinas CX3C/metabolismo , Modelos Animales de Enfermedad , Diterpenos/farmacología , Compuestos Epoxi/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Fenantrenos/farmacología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
17.
J Leukoc Biol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833584

RESUMEN

As one molecule related to cytotoxicity, surface expression of C-X3-C motif receptor 1 (CX3CR1) was highly correlated with intracellular granzyme B (GZMB) in NK and cytolytic T cells. However, the expression of CX3CR1 and GZMB in B cells has not been clarified, and their clinical significance in systemic lupus erythematosus (SLE) remains unclear. This study aimed to clarify the changes and clinical significance of peripheral blood B cells expressing GZMB and/or CX3CR1 in SLE. Peripheral blood was collected from 39 SLE patients and 48 healthy controls. We found that GZMB and CX3CR1 expression varied in different B-cell subsets, with plasmablasts possessing the highest positive percentages, consistent with bioinformatics prediction. GZMB+ and CX3CR1+ percentages in circulating B cells and plasmablasts were increased in SLE patients. CX3CR1 was upregulated on B cells after in vitro stimulation. Notch intracellular domain (NICD) expression was significantly decreased in plasmablasts of SLE patients and CX3CR1 in plasmablasts was downregulated with the addition of JAG1. In conclusion, GZMB and CX3CR1 were increased in B cells and in plasmablasts of SLE patients and CX3CR1 was negatively regulated by Notch signal in plasmablasts, which may be involved in SLE pathogenesis.

18.
Mult Scler Relat Disord ; 87: 105634, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677127

RESUMEN

BACKGROUND: Exercise may have beneficial effects in MS, remaining controversial its possible disease-modifying effects and which mechanisms might be involved. We evaluated whether exercise-induced lymphocyte redistribution differ in MS patients as compared to controls. METHODS: Exercise was assessed in 12 relapsing-remitting MS patients and 11 controls in a cycle ergometer, obtaining blood samples before exercise, at maximal exercise capacity (T1), and after resting (T2). Peripheral lymphocytes were evaluated by flow cytometry, assessing chemokine receptor expression to study cell trafficking properties. RESULTS: Lymphocyte subsets in all cases increased after exercise and decreased at resting. However, total natural killer (NK) cells in patients as compared to controls had a lower exercise-induced redeployment at T1 (696 ± 581 cells/µL vs.1502 ± 641 cells/µL, p < 0.01). Evaluating NK cell subsets, CD56bright NK cells numbers decreased in peripheral blood in MS patients after resting (T2), contrasting with values remaining above baseline in healthy controls. NK cells mobilized after exercise at T1 in controls, as compared to patients, had a higher CX3CR1 expression (1402 ± 564/µL vs. 615 ± 548 cell//µL, p < 0.01). CONCLUSION: Exercise-induced redeployment of NK cells may be reduced in MS patients, as well as their migration capabilities, pointing to potential immunological mechanisms to be enhanced by exercise training programs.


Asunto(s)
Ejercicio Físico , Células Asesinas Naturales , Esclerosis Múltiple Recurrente-Remitente , Humanos , Células Asesinas Naturales/inmunología , Femenino , Masculino , Adulto , Esclerosis Múltiple Recurrente-Remitente/inmunología , Esclerosis Múltiple Recurrente-Remitente/sangre , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Ejercicio Físico/fisiología , Persona de Mediana Edad , Prueba de Esfuerzo , Receptor 1 de Quimiocinas CX3C/metabolismo
19.
Cell Rep ; 43(7): 114385, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38935500

RESUMEN

Oligodendrocyte death is common in aging and neurodegenerative disease. In these conditions, dying oligodendrocytes must be efficiently removed to allow remyelination and to prevent a feedforward degenerative cascade. Removal of this cellular debris is thought to primarily be carried out by resident microglia. To investigate the cellular dynamics underlying how microglia do this, we use a single-cell cortical demyelination model combined with longitudinal intravital imaging of dual-labeled transgenic mice. Following phagocytosis, single microglia clear the targeted oligodendrocyte and its myelin sheaths in one day via a precise, rapid, and stereotyped sequence. Deletion of the fractalkine receptor, CX3CR1, delays the microglial phagocytosis of the cell soma but has no effect on clearance of myelin sheaths. Unexpectedly, deletion of the phosphatidylserine receptor, MERTK, has no effect on oligodendrocyte or myelin sheath clearance. Thus, separate molecular signals are used to detect, engage, and clear distinct sub-compartments of dying oligodendrocytes to maintain tissue homeostasis.


Asunto(s)
Receptor 1 de Quimiocinas CX3C , Microglía , Oligodendroglía , Fagocitosis , Tirosina Quinasa c-Mer , Animales , Oligodendroglía/metabolismo , Microglía/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa c-Mer/genética , Ratones , Vaina de Mielina/metabolismo , Ratones Transgénicos , Ratones Endogámicos C57BL , Muerte Celular
20.
Theranostics ; 14(5): 2210-2231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505603

RESUMEN

CX3CR1+ cells play a crucial role in liver fibrosis progression. However, changes in the migratory behavior and spatial distribution of spleen-derived and hepatic CX3CR1+ cells in the fibrotic liver as well as their influence on the liver fibrosis remain unclear. METHODS: The CX3CR1GFP/+ transgenic mice and CX3CR1-KikGR transgenic mice were used to establish the CCl4-induced liver fibrosis model. Splenectomy, adoptive transfusion of splenocytes, in vivo photoconversion of splenic CX3CR1+ cells and intravital imaging were performed to study the spatial distribution, migration and movement behavior, and regulatory function of CX3CR1+ cells in liver fibrosis. RESULTS: Intravital imaging revealed that the CX3CR1GFP cells accumulated into the fibrotic liver and tended to accumulate towards the central vein (CV) in the hepatic lobules. Two subtypes of hepatic CX3CR1+ cells existed in the fibrotic liver. The first subtype was the interacting CX3CR1GFP cells, most of which were observed to distribute in the liver parenchyma and had a higher process velocity; the second subtype was mobile CX3CR1GFP cells, most of which were present in the hepatic vessels with a faster moving speed. Splenectomy ameliorated liver fibrosis and decreased the number of CX3CR1+ cells in the fibrotic liver. Moreover, splenectomy rearranged CX3CR1GFP cells to the boundary of the hepatic lobule, reduced the process velocity of interacting CX3CR1GFP cells and decreased the number and mobility of mobile CX3CR1GFP cells in the fibrotic liver. Transfusion of spleen-derived classical monocytes increased the process velocity and mobility of hepatic endogenous CX3CR1GFP cells and facilitated liver fibrosis progression via the production of proinflammatory and profibrotic cytokines. The photoconverted splenic CX3CR1+ KikRed+ cells were observed to leave the spleen, accumulate into the fibrotic liver and contact with hepatic CX3CR1+ KikGreen+ cells during hepatic fibrosis. CONCLUSION: The splenic CX3CR1+ monocytes with classical phenotype migrated from the spleen to the fibrotic liver, modifying the migratory behavior of hepatic endogenous CX3CR1GFP cells and exacerbating liver fibrosis via the secretion of cytokines. This study reveals that splenic CX3CR1+ classical monocytes are a key driver of liver fibrosis via the spleen-liver axis and may be potential candidate targets for the treatment of chronic liver fibrosis.


Asunto(s)
Monocitos , Bazo , Ratones , Animales , Monocitos/patología , Bazo/patología , Hígado/patología , Cirrosis Hepática/patología , Ratones Transgénicos , Citocinas , Microscopía Intravital , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA