Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.037
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(4): 1017-1031.e14, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33548172

RESUMEN

Antibodies mediate natural and vaccine-induced immunity against viral and bacterial pathogens, whereas fungi represent a widespread kingdom of pathogenic species for which neither vaccine nor neutralizing antibody therapies are clinically available. Here, using a multi-kingdom antibody profiling (multiKAP) approach, we explore the human antibody repertoires against gut commensal fungi (mycobiota). We identify species preferentially targeted by systemic antibodies in humans, with Candida albicans being the major inducer of antifungal immunoglobulin G (IgG). Fungal colonization of the gut induces germinal center (GC)-dependent B cell expansion in extraintestinal lymphoid tissues and generates systemic antibodies that confer protection against disseminated C. albicans or C. auris infection. Antifungal IgG production depends on the innate immunity regulator CARD9 and CARD9+CX3CR1+ macrophages. In individuals with invasive candidiasis, loss-of-function mutations in CARD9 are associated with impaired antifungal IgG responses. These results reveal an important role of gut commensal fungi in shaping the human antibody repertoire through CARD9-dependent induction of host-protective antifungal IgG.


Asunto(s)
Anticuerpos Antifúngicos/inmunología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Inmunidad , Inmunoglobulina G/inmunología , Micobioma/inmunología , Animales , Linfocitos B/inmunología , Candida albicans/inmunología , Candidiasis/inmunología , Candidiasis/microbiología , Heces/microbiología , Centro Germinal/inmunología , Humanos , Ratones Endogámicos C57BL , Fagocitos/metabolismo , Polimorfismo de Nucleótido Simple/genética , Unión Proteica , Transducción de Señal
2.
Cell ; 176(6): 1340-1355.e15, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30799037

RESUMEN

Th17 cells provide protection at barrier tissues but may also contribute to immune pathology. The relevance and induction mechanisms of pathologic Th17 responses in humans are poorly understood. Here, we identify the mucocutaneous pathobiont Candida albicans as the major direct inducer of human anti-fungal Th17 cells. Th17 cells directed against other fungi are induced by cross-reactivity to C. albicans. Intestinal inflammation expands total C. albicans and cross-reactive Th17 cells. Strikingly, Th17 cells cross-reactive to the airborne fungus Aspergillus fumigatus are selectively activated and expanded in patients with airway inflammation, especially during acute allergic bronchopulmonary aspergillosis. This indicates a direct link between protective intestinal Th17 responses against C. albicans and lung inflammation caused by airborne fungi. We identify heterologous immunity to a single, ubiquitous member of the microbiota as a central mechanism for systemic induction of human anti-fungal Th17 responses and as a potential risk factor for pulmonary inflammatory diseases.


Asunto(s)
Candida albicans/inmunología , Células Th17/inmunología , Células Th17/metabolismo , Aspergillus fumigatus/inmunología , Aspergillus fumigatus/patogenicidad , Candida albicans/patogenicidad , Reacciones Cruzadas/inmunología , Fibrosis Quística/inmunología , Fibrosis Quística/microbiología , Humanos , Inmunidad , Inmunidad Heteróloga/inmunología , Células Th17/fisiología
3.
Immunity ; 50(2): 390-402.e10, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30709741

RESUMEN

Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.


Asunto(s)
Vasos Sanguíneos/inmunología , Ritmo Circadiano/inmunología , Neutrófilos/inmunología , Fagocitosis/inmunología , Animales , Vasos Sanguíneos/metabolismo , Candida albicans/inmunología , Candida albicans/fisiología , Células Cultivadas , Senescencia Celular/inmunología , Quimiocina CXCL2/inmunología , Quimiocina CXCL2/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Receptores CXCR4/inmunología , Receptores CXCR4/metabolismo , Factores de Tiempo
4.
Immunity ; 46(3): 421-432, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28314592

RESUMEN

How the number of immune cells recruited to sites of infection is determined and adjusted to differences in the cellular stoichiometry between host and pathogen is unknown. Here, we have uncovered a role for reactive oxygen species (ROS) as sensors of microbe size. By sensing the differential localization of ROS generated in response to microbes of different size, neutrophils tuned their interleukin (IL)-1ß expression via the selective oxidation of NF-κB, in order to implement distinct inflammatory programs. Small microbes triggered ROS intracellularly, suppressing IL-1ß expression to limit neutrophil recruitment as each phagocyte eliminated numerous pathogens. In contrast, large microbes triggered ROS extracellularly, amplifying IL-1ß expression to recruit numerous neutrophils forming cooperative clusters. Defects in ROS-mediated microbe size sensing resulted in large neutrophil infiltrates and clusters in response to small microbes that contribute to inflammatory disease. These findings highlight the impact of ROS localization on signal transduction.


Asunto(s)
Infecciones Bacterianas/inmunología , Inflamación/microbiología , Micosis/inmunología , Neutrófilos/inmunología , Especies Reactivas de Oxígeno/inmunología , Animales , Bacterias/inmunología , Bacterias/patogenicidad , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Hongos Mitospóricos/inmunología , Hongos Mitospóricos/patogenicidad , Infiltración Neutrófila/inmunología
5.
Proc Natl Acad Sci U S A ; 120(21): e2220568120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186823

RESUMEN

A fundamental question in biology is how a eukaryotic cell type can be stably maintained through many rounds of DNA replication and cell division. In this paper, we investigate this question in a fungal species, Candida albicans, where two different cells types (white and opaque) arise from the same genome. Once formed, each cell type is stable for thousands of generations. Here, we investigate the mechanisms underlying opaque cell "memory." Using an auxin-mediated degradation system, we rapidly removed Wor1, the primary transcription activator of the opaque state and, using a variety of methods, determined how long cells can maintain the opaque state. Within approximately 1 h of Wor1 destruction, opaque cells irreversibly lose their memory and switch to the white cell state. This observation rules out several competing models for cell memory and demonstrates that the continuous presence of Wor1 is needed to maintain the opaque cell state-even across a single cell division cycle. We also provide evidence for a threshold concentration of Wor1 in opaque cells, below which opaque cells irreversibly switch to white cells. Finally, we provide a detailed description of the gene expression changes that occur during this switch in cell types.


Asunto(s)
Eucariontes , Células Eucariotas , Eucariontes/metabolismo , Células Eucariotas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ciclo Celular , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/metabolismo , Fenotipo
6.
J Biol Chem ; 300(1): 105543, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072057

RESUMEN

Candida albicans is a commensal fungus, opportunistic pathogen, and the most common cause of fungal infection in humans. The biosynthesis of phosphatidylcholine (PC), a major eukaryotic glycerophospholipid, occurs through two primary pathways. In Saccharomyces cerevisiae and some plants, a third PC synthesis pathway, the PC deacylation/reacylation pathway (PC-DRP), has been characterized. PC-DRP begins with the acylation of the lipid turnover product, glycerophosphocholine (GPC), by the GPC acyltransferase, Gpc1, to form Lyso-PC. Lyso-PC is then acylated by lysolipid acyltransferase, Lpt1, to produce PC. Importantly, GPC, the substrate for Gpc1, is a ubiquitous metabolite available within the host. GPC is imported by C. albicans, and deletion of the major GPC transporter, Git3, leads to decreased virulence in a murine model. Here we report that GPC can be directly acylated in C. albicans by the protein product of orf19.988, a homolog of ScGpc1. Through lipidomic studies, we show loss of Gpc1 leads to a decrease in PC levels. This decrease occurs in the absence of exogenous GPC, indicating that the impact on PC levels may be greater in the human host where GPC is available. A gpc1Δ/Δ strain exhibits several sensitivities to antifungals that target lipid metabolism. Furthermore, loss of Gpc1 results in both a hyphal growth defect in embedded conditions and a decrease in long-term cell viability. These results demonstrate for the first time the importance of Gpc1 and this alternative PC biosynthesis route (PC-DRP) to the physiology of a pathogenic fungus.


Asunto(s)
Aciltransferasas , Animales , Humanos , Ratones , Aciltransferasas/genética , Aciltransferasas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Glicerilfosforilcolina/metabolismo , Fosfatidilcolinas/metabolismo
7.
Mol Microbiol ; 121(4): 727-741, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38183361

RESUMEN

Adhesion to mucosal surfaces is a critical step in many bacterial and fungal infections. Here, using a mouse model of oral infection by the human fungal pathobiont Candida albicans, we report the identification of a novel regulator of C. albicans adhesion to the oral mucosa. The regulator is a member of the regulatory factor X (RFX) family of transcription factors, which control cellular processes ranging from genome integrity in model yeasts to tissue differentiation in vertebrates. Mice infected with the C. albicans rfx1 deletion mutant displayed increased fungal burden in tongues compared to animals infected with the reference strain. High-resolution imaging revealed RFX1 transcripts being expressed by C. albicans cells during infection. Concomitant with the increase in fungal burden, the rfx1 mutant elicited an enhanced innate immune response. Transcriptome analyses uncovered HWP1, a gene encoding an adhesion protein that mediates covalent attachment to buccal cells, as a major RFX1-regulated locus. Consistent with this result, we establish that C. albicans adhesion to oral cells is modulated by RFX1 in an HWP1-dependent manner. Our findings expand the repertoire of biological processes controlled by the RFX family and illustrate a mechanism whereby C. albicans can adjust adhesion to the oral epithelium.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Factor Regulador X1 , Animales , Humanos , Candida albicans/genética , Epitelio/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mucosa Bucal/microbiología , Factor Regulador X1/genética , Factor Regulador X1/metabolismo
8.
Mol Microbiol ; 121(2): 275-290, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167837

RESUMEN

Candida albicans, an opportunistic fungal pathogen, is able to switch between two distinct cell types: white and opaque. While white-to-opaque switching is typically repressed by the a1/α2 heterodimer in MTLa/α cells, it was recently reported that switching can also occur in some natural MTLa/α strains under certain environmental conditions. However, the regulatory program governing white-opaque switching in MTLa/α cells is not fully understood. Here, we collected 90 clinical isolates of C. albicans, 16 of which possess the ability to form opaque colonies. Among the known regulators implicated in white-opaque switching, only OFI1 exhibited significantly higher expression in these 16 strains compared to the reference strain SC5314. Importantly, ectopic expression of OFI1 in both clinical isolates and laboratory strains promoted switching frequency even in the absence of N-acetylglucosamine and high CO2 , the optimal condition for white-to-opaque switching in MTLa/α strains. Deleting OFI1 resulted in a reduction in opaque-formation frequency and the stability of the opaque cell in MTLa/α cells. Ofi1 binds to the promoters of WOR1 and WOR3 to induce their expression, which facilitates white-to-opaque switching. Ofi1 is conserved across the CTG species. Altogether, our study reported the identification of a transcription factor Ofi1 as the critical regulator that promotes white-to-opaque switching in natural MTLa/α isolates of C. albicans.


Asunto(s)
Candida albicans , Factores de Transcripción , Candida albicans/genética , Candida albicans/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas/genética , Fenotipo
9.
Mol Microbiol ; 121(4): 696-716, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178569

RESUMEN

Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD+-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component. We show that alkalization is dependent on the SPS-sensor-regulated transcription factor STP2 and the proline-responsive activator Put3. These factors function in parallel to derepress GDH2 and the two proline catabolic enzymes PUT1 and PUT2. Consistently, a double mutant lacking STP2 and PUT3 exhibits a severe alkalization defect that nearly phenocopies that of a gdh2-/- strain. Alkalization is dependent on mitochondrial activity and in wild-type cells occurs as long as the conditions permit respiratory growth. Strikingly, Gdh2 levels decrease and cells transiently extrude glutamate as the environment becomes more alkaline. Together, these processes constitute a rudimentary regulatory system that counters and limits the negative effects associated with ammonia generation. These findings align with Gdh2 being dispensable for virulence, and based on a whole human blood virulence assay, the same is true for C. glabrata and C. auris. Using a transwell co-culture system, we observed that the growth and proliferation of Lactobacillus crispatus, a common component of the acidic vaginal microenvironment and a potent antagonist of C. albicans, is unaffected by fungal-induced alkalization. Consequently, although Candida spp. can alkalinize their growth environments, other fungal-associated processes are more critical in promoting dysbiosis and virulent fungal growth.


Asunto(s)
Aminoácidos , Candida albicans , Femenino , Humanos , Candida albicans/metabolismo , Aminoácidos/metabolismo , Amoníaco/metabolismo , Candida/metabolismo , Prolina/metabolismo , Candida glabrata/metabolismo
10.
EMBO J ; 40(11): e105320, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33591591

RESUMEN

Incorporation of microbiome data has recently become important for prevention, diagnosis, and treatment of colorectal cancer, and several species of bacteria were shown to be associated with carcinogenesis. However, the role of commensal fungi in colon cancer remains poorly understood. Here, we report that mice lacking the c-type lectin Dectin-3 (Dectin-3-/- ) show increased tumorigenesis and Candida albicans burden upon chemical induction. Elevated C. albicans load triggered glycolysis in macrophages and interleukin-7 (IL-7) secretion. IL-7 induced IL-22 production in RORγt+ (group 3) innate lymphoid cells (ILC3s) via aryl hydrocarbon receptor and STAT3. Consistently, IL-22 frequency in tumor tissues of colon cancer patients positively correlated with fungal burden, indicating the relevance of this regulatory axis in human disease. These results establish a C. albicans-driven crosstalk between macrophages and innate lymphoid cells in the intestine and expand our understanding on how commensal mycobiota regulate host immunity and promote tumorigenesis.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Glucólisis , Interleucinas/metabolismo , Linfocitos/metabolismo , Macrófagos/metabolismo , Micobioma , Animales , Candida albicans/patogenicidad , Células Cultivadas , Neoplasias Colorrectales/microbiología , Humanos , Interleucina-7/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ratones , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Factor de Transcripción STAT3/metabolismo , Interleucina-22
11.
Cell Mol Life Sci ; 81(1): 280, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918243

RESUMEN

Candida albicans is among the most prevalent invasive fungal pathogens for immunocompromised individuals and novel therapeutic approaches that involve immune response modulation are imperative. Absent in melanoma 2 (AIM2), a pattern recognition receptor for DNA sensing, is well recognized for its involvement in inflammasome formation and its crucial role in safeguarding the host against various pathogenic infections. However, the role of AIM2 in host defense against C. albicans infection remains uncertain. This study reveals that the gene expression of AIM2 is induced in human and mouse innate immune cells or tissues after C. albicans infection. Furthermore, compared to their wild-type (WT) counterparts, Aim2-/- mice surprisingly exhibit resistance to C. albicans infection, along with reduced inflammation in the kidneys post-infection. The resistance of Aim2-/- mice to C. albicans infection is not reliant on inflammasome or type I interferon production. Instead, Aim2-/- mice display lower levels of apoptosis in kidney tissues following infection than WT mice. The deficiency of AIM2 in macrophages, but not in dendritic cells, results in a phenocopy of the resistance observed in Aim2-/- mice against C. albican infection. The treatment of Clodronate Liposome, a reagent that depletes macrophages, also shows the critical role of macrophages in host defense against C. albican infection in Aim2-/- mice. Furthermore, the reduction in apoptosis is observed in Aim2-/- mouse macrophages following infection or treatment of DNA from C. albicans in comparison with controls. Additionally, higher levels of AKT activation are observed in Aim2-/- mice, and treatment with an AKT inhibitor reverses the host resistance to C. albicans infection. The findings collectively demonstrate that AIM2 exerts a negative regulatory effect on AKT activation and enhances macrophage apoptosis, ultimately compromising host defense against C. albicans infection. This suggests that AIM2 and AKT may represent promising therapeutic targets for the management of fungal infections.


Asunto(s)
Apoptosis , Candida albicans , Candidiasis , Proteínas de Unión al ADN , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Candidiasis/inmunología , Candidiasis/microbiología , Candidiasis/metabolismo , Candidiasis/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Inflamasomas/metabolismo , Inmunidad Innata , Riñón/patología , Riñón/metabolismo , Riñón/microbiología
12.
J Infect Dis ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446996

RESUMEN

The interaction between the Candida albicans cell wall and pattern recognition receptors is crucial for the initiation of host immune responses which, ultimately, contribute to the clearance of this pathogenic fungus. In the present study, we investigate the ability of C. albicans mannans to modulate immune response and induce innate immune memory (also termed trained immunity). Using mutants of C. albicans that are defective in, or lack mannosyl residues, we show that alterations in the mannosylation of the C. albicans cell wall affect the innate cytokine response and strongly reduce the secretion of T cell-derived cytokines. Subsequently, we demonstrate that the branching of N-linked mannan, but not O-linked mannan, is essential to potentiate the induction of trained immunity, a process mediated by Dectin-2. In conclusion, N-linked mannan is needed, in addition to ß-glucans, for an effective induction of trained immunity by C. albicans.

13.
J Cell Mol Med ; 28(9): e18354, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686557

RESUMEN

Infections caused by Candida species, especially Candida albicans, threaten the public health and create economic burden. Shortage of antifungals and emergence of drug resistance call for new antifungal therapies while natural products were attractive sources for developing new drugs. In our study, fangchinoline, a bis-benzylisoquinoline alkaloid from Chinese herb Stephania tetrandra S. Moore, exerted antifungal effects on planktonic growth of several Candida species including C. albicans, with MIC no more than 50 µg/mL. In addition, results from microscopic, MTT and XTT reduction assays showed that fangchinoline had inhibitory activities against the multiple virulence factors of C. albicans, such as adhesion, hyphal growth and biofilm formation. Furthermore, this compound could also suppress the metabolic activity of preformed C. albicans biofilms. PI staining, followed by confocal laser scanning microscope (CLSM) analysis showed that fangchinoline can elevate permeability of cell membrane. DCFH-DA staining suggested its anti-Candida mechanism also involved overproduction of intracellular ROS, which was further confirmed by N-acetyl-cysteine rescue tests. Moreover, fangchinoline showed synergy with three antifungal drugs (amphotericin B, fluconazole and caspofungin), further indicating its potential use in treating C. albicans infections. Therefore, these results indicated that fangchinoline could be a potential candidate for developing anti-Candida therapies.


Asunto(s)
Antifúngicos , Bencilisoquinolinas , Biopelículas , Candida albicans , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Antifúngicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Bencilisoquinolinas/farmacología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo
14.
J Biol Chem ; 299(2): 102829, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36581211

RESUMEN

Candida albicans is a deadly pathogen responsible for millions of mucosal and systemic infections per year. The pathobiology of C. albicans is largely dependent on the damaging and immunostimulatory properties of the peptide candidalysin (CL), a key virulence factor. When CL forms pores in the plasma membrane of epithelial cells, it activates a response network grounded in activation of the epidermal growth factor receptor. Prior reviews have characterized the resulting CL immune activation schemas but lacked insights into the molecular mechanism of CL membrane damage. We recently demonstrated that CL functions by undergoing a unique self-assembly process; CL forms polymers and loops in aqueous solution prior to inserting and forming pores in cell membranes. This mechanism, the first of its kind to be observed, informs new therapeutic avenues to treat Candida infections. Recently, variants of CL were identified in other Candida species, providing an opportunity to identify the residues that are key for CL to function. In this review, we connect the ability of CL to damage cell membranes to its immunostimulatory properties.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Factores de Virulencia , Candida albicans/química , Proteínas Fúngicas/química , Factores de Virulencia/química
15.
Infect Immun ; : e0051623, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647290

RESUMEN

The intestinal microbiome harbors fungi that pose a significant risk to human health as opportunistic pathogens and drivers of inflammation. Inflammatory and autoimmune diseases are associated with dysbiotic fungal communities and the expansion of potentially pathogenic fungi. The gut is also the main reservoir for disseminated fungal infections. Immune interactions are critical for preventing commensal fungi from becoming pathogenic. Significant strides have been made in defining innate and adaptive immune pathways that regulate intestinal fungi, and these discoveries have coincided with advancements in our understanding of the fungal molecular pathways and effectors involved in both commensal colonization and pathogenesis within the gut. In this review, we will discuss immune interactions important for regulating commensal fungi, with a focus on how specific cell types and effectors interact with fungi to limit their colonization or pathogenic potential. This will include how innate and adaptive immune pathways target fungi and orchestrate antifungal immune responses, in addition to how secreted immune effectors, such as mucus and antimicrobial peptides, regulate fungal colonization and inhibit pathogenic potential. These immune interactions will be framed around our current understanding of the fungal effectors and pathways regulating colonization and pathogenesis within this niche. Finally, we highlight important unexplored mechanisms by which the immune system regulates commensal fungi in the gut.

16.
Infect Immun ; 92(3): e0035023, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38289125

RESUMEN

Vulvovaginal candidiasis (VVC), caused by Candida albicans, is characterized by aberrant inflammation by polymorphonuclear neutrophils (PMNs) in the vaginal lumen. Data from the established murine model shows that despite potent antifungal properties, PMNs fail to clear C. albicans due to local heparan sulfate that inhibits the interaction between PMNs and C. albicans, resulting in chronic vaginal immunopathology. To understand the role of neutrophil extracellular traps (NETs) in defense against C. albicans at the vaginal mucosa, we investigated the NET-forming capacity of PMNs in chronic VVC-susceptible (CVVC-S/C3H) and -resistant (CVVC-R/CD-1) mouse strains. Immunofluorescence revealed the formation of NETs (release of DNA with PMN-derived antimicrobial proteins) in PMN-C. albicans cocultures using vaginal conditioned medium (VCM) generated from CVVC-R/CD-1 mice, similar to NET-inducing positive controls. Under these NETotic conditions, PMNs released high levels of double-stranded DNA bound with NET-associated proteins, concomitant with substantial C. albicans killing activity. In contrast, PMN-C. albicans cocultures in VCM from CVVC-S/C3H mice lacked NET formation together with reduced antifungal activity. Similar results were observed in vivo: active NET-C. albicans interaction followed by fungal clearance in inoculated CVVC-R/CD-1 mice, and sustained high vaginal fungal burden and no evidence of NETs in inoculated CVVC-S/C3H mice. Furthermore, the level of Ki67 expression, a putative NETotic PMN marker, was significantly reduced in vaginal lavage fluid from CVVC-S/C3H mice compared to CVVC-R/CD-1 mice. Finally, scanning electron microscopy revealed that PMNs in CVVC-R, but not CVVC-S, conditions exhibited NETs in direct contact with C. albicans hyphae in vitro and in vivo. These results suggest that VVC-associated immunopathology includes impaired NET-mediated antifungal activity.


Asunto(s)
Candidiasis Vulvovaginal , Trampas Extracelulares , Femenino , Humanos , Animales , Ratones , Candidiasis Vulvovaginal/microbiología , Antifúngicos/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C3H , Candida albicans/genética
17.
Infect Immun ; : e0007224, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899880

RESUMEN

Invasive fungal infections impose an enormous clinical, social, and economic burden on humankind. One of the most common species responsible for invasive fungal infections is Candida albicans. More than 30% of patients with disseminated candidiasis fail therapy with existing antifungal drugs, including the widely used azole class. We previously identified a collection of 13 medications that antagonize the activity of the azoles on C. albicans. Although gain-of-function mutations responsible for antifungal resistance are often associated with reduced fitness and virulence, it is currently unknown how exposure to azole antagonistic drugs impacts C. albicans physiology, fitness, or virulence. In this study, we examined how exposure to seven azole antagonists affects C. albicans phenotype and capacity to cause disease. Most of the azole antagonists appear to have little impact on fungal growth, morphology, stress tolerance, or gene transcription. However, aripiprazole had a modest impact on C. albicans hyphal growth and increased cell wall chitin content. It also aggravated the disseminated C. albicans infections in mice. This effect was abrogated in immunosuppressed mice, indicating that it is at least in part dependent upon host immune responses. Collectively, these data provide proof of principle that unanticipated drug-fungus interactions have the potential to influence the incidence and outcomes of invasive fungal disease.

18.
Mol Biol Evol ; 40(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36649220

RESUMEN

Invasive fungal infections are a leading global cause of human mortality. Only three major classes of antifungal drugs are widely used, and resistance to all three classes can arise rapidly. The most widely prescribed antifungal drug, fluconazole, disseminates rapidly and reaches a wide range of concentrations throughout the body. The impact of drug concentration on the spectrum and effect of mutations acquired during adaptation is not known for any fungal pathogen, and how the specific level of a given stress influences the distribution of beneficial mutations has been poorly explored in general. We evolved 144 lineages from three genetically distinct clinical isolates of Candida albicans to four concentrations of fluconazole (0, 1, 8, and 64 µg/ml) and performed comprehensive phenotypic and genomic comparisons of ancestral and evolved populations. Adaptation to different fluconazole concentrations resulted in distinct adaptive trajectories. In general, lineages evolved to drug concentrations close to their MIC50 (the level of drug that reduces growth by 50% in the ancestor) tended to rapidly evolve an increased MIC50 and acquired distinct segmental aneuploidies and copy number variations. By contrast, lineages evolved to drug concentrations above their ancestral MIC50 tended to acquire a different suite of mutational changes and increased in drug tolerance (the ability of a subpopulation of cells to grow slowly above their MIC50). This is the first evidence that different concentrations of drug can select for different genotypic and phenotypic outcomes in vitro and may explain observed in vivo drug response variation.


Asunto(s)
Antifúngicos , Candida albicans , Farmacorresistencia Fúngica , Antifúngicos/farmacología , Candida albicans/genética , Variaciones en el Número de Copia de ADN , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana , Mutación
19.
Curr Issues Mol Biol ; 46(3): 2480-2496, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38534773

RESUMEN

In the present work, we evaluated the antifungal activities of two novel ebselen analogs, N-allyl-benzisoselenazol-3(2H)-one (N-allyl-bs) and N-3-methylbutylbenzisoselenazol-3(2H)-one (N-3mb-bs). Colorimetric and turbidity assays were performed to determine the minimum inhibitory concentration (MIC) of these compounds in S1 (fluconazole-sensitive) and S2 (fluconazole-resistant) strains of C. albicans. N-3mb-bs was more active than the N-allyl-bs compound. It is noteworthy that the concentration of N-3mb-bs observed to inhibit fungal growth by 50% (18.2 µM) was similar to the concentration observed to inhibit the activity of the yeast plasma membrane H+-ATPase (Pma1p) by 50% (19.6 µM). We next implemented a mouse model of vulvovaginal candidiasis (VVC) using the S1 strain and examined the mouse and yeast proteins present in the vaginal lavage fluid using proteomics. The yeast proteins detected were predominately glycolytic enzymes or virulence factors associated with C. albicans while the mouse proteins present in the lavage fluid included eosinophil peroxidase, desmocollin-1, and gasdermin-A. We then utilized the N-3mb-bs compound (12.5 mg/kg) in the mouse VVC model and observed that it significantly reduced the vaginal fungal burden, histopathological changes in vagina tissue, and expression of myeloperoxidase (MPO). All in all, the present work has identified a potentially promising drug candidate for VVC treatment.

20.
Mol Microbiol ; 119(1): 112-125, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36545847

RESUMEN

Candida albicans is a normal resident of humans and also a prevalent fungal pathogen. Lactate, a nonfermentative carbon source available in numerous anatomical niches, can be used by C. albicans as a carbon source. However, the key regulator(s) involved in this process remain unknown. Here, through a genetic screen, we report the identification of a transcription factor Zcf24 that is specifically required for lactate utilization in C. albicans. Zcf24 is responsible for the induction of CYB2, a gene encoding lactate dehydrogenase that is essential for lactate catabolism, in response to lactate. Chromatin immunoprecipitation showed a significantly higher signal of Zcf24 on the CYB2 promoter in lactate-grown cells than that in glucose-grown cells. Genome-wide transcription profiling indicates that, in addition to CYB2, Zcf24 regulates genes involved in the ß-oxidation of fatty acids, iron transport, and drug transport. Surprisingly, deleting ZCF24 confers enhanced commensal fitness. This could be attributed to Crz1-activated ß-glucan masking in the zcf24 mutant. The orthologs of Zcf24 are distributed in species most closely to C. albicans and some filamentous fungal species. Altogether, Zcf24 is the first transcription factor identified to date that regulates lactate catabolism in C. albicans and it is also involved in the regulation of commensalism.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Ácido Láctico , Factores de Transcripción , Candida albicans/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Ácido Láctico/metabolismo , Simbiosis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA