RESUMEN
The most important reason for death from ovarian cancer is the late diagnosis of this disease. The standard treatment of ovarian cancer includes surgery and chemotherapy based on platinum, which is associated with side effects for the body. Due to the nonspecific nature of clinical symptoms, developing a platform for early detection of this disease is needed. In recent decades, the advancements of microfluidic devices and systems have provided several advantages for diagnosing ovarian cancer. Designing and manufacturing new platforms using specialized technologies can be a big step toward improving the prevention, diagnosis, and treatment of this group of diseases. Organ-on-a-chip microfluidic devices are increasingly used as a promising platform in cancer research, with a focus on specific biological aspects of the disease. This review focusing on ovarian cancer and microfluidic application technologies in its diagnosis. Additionally, it discusses microfluidic platforms and their potential future perspectives in advancing ovarian cancer diagnosis.
RESUMEN
Cryopreservation of adherent cells is crucial for commercial cell therapy technology, including effective distribution and storage. Fast thawing has been shown to increase cell recovery in vitrified samples. Previously, radiofrequency (RF) has been investigated as a heating source on large samples, either with or without magnetic particles. Also, laser heating with the aid of dye or nanoparticles has been utilized on sub-millimeter samples successfully. For slow freezing cryopreservation methods, the influence of rate of thawing on viability is less clear. Cryopreservation of surface adhered cells result in many cases in detachment from the surface. We illustrate how intense infrared radiation from a focused halogen illuminator accelerates thawing. We show that two epithelial cell lines, retinal pigment epithelium cells and heterogeneous human epithelial colorectal adenocarcinoma cells, can be effectively cryopreserved and recovered using a combination of slow freezing and fast thawing under infrared illumination. We were able to successfully thaw samples, of 2-4 mm thick, including the media, on the order of a second, providing a heating rate of thousands of Kelvin per minute. Under optimal conditions, we observed higher post-thawing cell viability rates and higher cell adhesion with infrared thawing than with water bath thawing. We suggest that bulk warming with infrared radiation has an advantage over surface warming of surface-attached cells, as it alleviates cell stress during the process of thawing. These findings will pave the way for novel approaches to treating substrate-adhered cells and 3D scaffolds with cells and organoids. This technology may serve as a crucial component in lab-on-chip systems for medical testing and therapeutic use.
Asunto(s)
Criopreservación , Adhesión Celular , Supervivencia Celular , Criopreservación/métodos , Congelación , HumanosRESUMEN
Miniaturized laboratories on chip platforms play an important role in handling life sciences studies. The platforms may contain static or dynamic biological cells. Examples are a fixed medium of an organ-on-a-chip and individual cells moving in a microfluidic channel, respectively. Due to feasibility of control or investigation and ethical implications of live targets, both static and dynamic cell-on-chip platforms promise various applications in biology. To extract necessary information from the experiments, the demand for direct monitoring is rapidly increasing. Among different microscopy methods, optical imaging is a straightforward choice. Considering light interaction with biological agents, imaging signals may be generated as a result of scattering or emission effects from a sample. Thus, optical imaging techniques could be categorized into scattering-based and emission-based techniques. In this review, various optical imaging approaches used in monitoring static and dynamic platforms are introduced along with their optical systems, advantages, challenges, and applications. This review may help biologists to find a suitable imaging technique for different cell-on-chip studies and might also be useful for the people who are going to develop optical imaging systems in life sciences studies.
Asunto(s)
Dispositivos Laboratorio en un Chip , Imagen Óptica , Holografía , Humanos , Microscopía , Análisis EspectralRESUMEN
Various types of pollutants widely present in environmental media, including synthetic and natural chemicals, physical pollutants such as radioactive substances, ultraviolet rays, and noise, as well as biological organisms, pose a huge threat to public health. Therefore, it is crucial to accurately and effectively explore the human physiological responses and toxicity mechanisms of pollutants to prevent diseases caused by pollutants. The emerging toxicological testing method biomimetic microfluidic chips (BMCs) exhibit great potential in environmental pollutant toxicity assessment due to their superior biomimetic properties. The BMCs are divided into cell-on-chips and organ-on-chips based on the distinctions in bionic simulation levels. Herein, we first summarize the characteristics, emergence and development history, composition and structure, and application fields of BMCs. Then, with a focus on the toxicity mechanisms of pollutants, we review the applications and advances of the BMCs in the toxicity assessment of physical, chemical, and biological pollutants, respectively, highlighting its potential and development prospects in environmental toxicology testing. Finally, the opportunities and challenges for further use of BMCs are discussed.
Asunto(s)
Contaminantes Ambientales , Humanos , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Biomimética , Microfluídica , Salud Pública , EcotoxicologíaRESUMEN
Oncoimmunology represents a biomedical research discipline coined to study the roles of immune system in cancer progression with the aim of discovering novel strategies to arm it against the malignancy. Infiltration of immune cells within the tumor microenvironment is an early event that results in the establishment of a dynamic cross-talk. Here, immune cells sense antigenic cues to mount a specific anti-tumor response while cancer cells emanate inhibitory signals to dampen it. Animals models have led to giant steps in this research context, and several tools to investigate the effect of immune infiltration in the tumor microenvironment are currently available. However, the use of animals represents a challenge due to ethical issues and long duration of experiments. Organs-on-chip are innovative tools not only to study how cells derived from different organs interact with each other, but also to investigate on the crosstalk between immune cells and different types of cancer cells. In this review, we describe the state-of-the-art of microfluidics and the impact of OOC in the field of oncoimmunology underlining the importance of this system in the advancements on the complexity of tumor microenvironment.