Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(16): e112812, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37403793

RESUMEN

Intracellular organelle organization is conserved in eukaryotic cells and is primarily achieved through active transport by motor proteins along the microtubule cytoskeleton. Microtubule post-translational modifications (PTMs) can contribute to microtubule diversity and differentially regulate motor-mediated transport. Here, we show that centrosome amplification, commonly observed in cancer and shown to promote aneuploidy and invasion, induces a global change in organelle positioning towards the cell periphery and facilitates nuclear migration through confined spaces. This reorganization requires kinesin-1 and is analogous to the loss of dynein. Cells with amplified centrosomes display increased levels of acetylated tubulin, a PTM that could enhance kinesin-1-mediated transport. Depletion of α-tubulin acetyltransferase 1 (αTAT1) to block tubulin acetylation rescues the displacement of centrosomes, mitochondria, and vimentin but not Golgi or endosomes. Analyses of the distribution of total and acetylated microtubules indicate that the polarized distribution of modified microtubules, rather than levels alone, plays an important role in the positioning of specific organelles, such as the centrosome. We propose that increased tubulin acetylation differentially impacts kinesin-1-mediated organelle displacement to regulate intracellular organization.


Asunto(s)
Cinesinas , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Acetilación , Microtúbulos/metabolismo , Centrosoma/metabolismo , Dineínas/metabolismo , Procesamiento Proteico-Postraduccional
2.
J Cell Sci ; 136(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37772773

RESUMEN

Centrosome amplification (CA) is a prominent feature of human cancers linked to tumorigenesis in vivo. Here, we report mechanistic contributions of CA induction alone to tumour architecture and extracellular matrix (ECM) remodelling. CA induction in non-tumorigenic breast cells MCF10A causes cell migration and invasion, with underlying disruption of epithelial cell-cell junction integrity and dysregulation of expression and subcellular localisation of cell junction proteins. CA also elevates expression of integrin ß-3, its binding partner fibronectin-1 and matrix metalloproteinase enzymes, promoting cell-ECM attachment, ECM degradation, and a migratory and invasive cell phenotype. Using a chicken embryo xenograft model for in vivo validation, we show that CA-induced (+CA) MCF10A cells invade into the chick mesodermal layer, with inflammatory cell infiltration and marked focal reactions between chorioallantoic membrane and cell graft. We also demonstrate a key role of small GTPase Rap-1 signalling through inhibition using GGTI-298, which blocked various CA-induced effects. These insights reveal that in normal cells, CA induction alone (without additional oncogenic alterations) is sufficient to confer early pro-tumorigenic changes within days, acting through Rap-1-dependent signalling to alter cell-cell contacts and ECM disruption.


Asunto(s)
Neoplasias de la Mama , Neoplasias , Embrión de Pollo , Humanos , Animales , Femenino , Pollos , Neoplasias/metabolismo , Transducción de Señal , Movimiento Celular , Centrosoma/metabolismo , Línea Celular Tumoral , Neoplasias de la Mama/genética
3.
Med Res Rev ; 43(2): 293-318, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36104980

RESUMEN

The centrosome in animal cells is instrumental in spindle pole formation, nucleation, proper alignment of microtubules during cell division, and distribution of chromosomes in each daughter cell. Centrosome amplification involving structural and numerical abnormalities in the centrosome can cause chromosomal instability and dysregulation of the cell cycle, leading to cancer development and metastasis. However, disturbances caused by centrosome amplification can also limit cancer cell survival by activating mitotic checkpoints and promoting mitotic catastrophe. As a smart escape, cancer cells cluster their surplus of centrosomes into pseudo-bipolar spindles and progress through the cell cycle. This phenomenon, known as centrosome clustering (CC), involves many proteins and has garnered considerable attention as a specific cancer cell-targeting weapon. The kinesin-14 motor protein KIFC1 is a minus end-directed motor protein that is involved in CC. Because KIFC1 is upregulated in various cancers and modulates oncogenic signaling cascades, it has emerged as a potential chemotherapeutic target. Many molecules have been identified as KIFC1 inhibitors because of their centrosome declustering activity in cancer cells. Despite the ever-increasing literature in this field, there have been few efforts to review the progress. The current review aims to collate and present an in-depth analysis of known KIFC1 inhibitors and their biological activities. Additionally, we present computational docking data of putative KIFC1 inhibitors with their binding sites and binding affinities. This first-of-kind comparative analysis involving experimental biology, chemistry, and computational docking of different KIFC1 inhibitors may help guide decision-making in the selection and design of potent inhibitors.


Asunto(s)
Benchmarking , Neoplasias , Animales , Neoplasias/patología , Centrosoma/metabolismo , Sitios de Unión , Microtúbulos
4.
Biochem Biophys Res Commun ; 681: 232-241, 2023 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-37788590

RESUMEN

Inflammation is implicated in the development of diabetic complications including vascular pathology. Centrosome is known to play a role in cell secretion. We have reported that diabetes can trigger centrosome amplification (CA). Thus, in the present study, we investigated the relationship between CA and the release of proinflammatory cytokines interleukin-1ß, tumor necrosis factor-α and interleukin-6 in hCMEC/D3 human endothelial cells treated with advanced glycation end products (AGEs). We found that AGEs induced CA via PLK4 and increased the biosynthesis of the three cytokines via NF-κB. Importantly, treatment of the cells with AGEs also increased the release of the three cytokines. Inhibiting CA by knockdown of polo like kinase 4 (PLK4) attenuated the cytokine release but not their biosynthesis. Knockdown of the cytokines inhibited the CA, while addition of the cytokines individually to the cell culture increased the protein level of PLK4 and CA to a moderate level. Addition of the three cytokines together into the cell culture markedly enhanced the CA, to a level higher than that in the AGEs-treated group. In conclusion, our results provide the direct evidence that the cytokines can induce CA, and suggest that there is a mutual promoting cycle between CA and cytokine release in the treated samples. It is proposed that the cycle of CA-cytokine release is a candidate biological link between diabetes and its complications such as vascular pathologies.


Asunto(s)
Citocinas , Diabetes Mellitus , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Células Endoteliales/metabolismo , FN-kappa B/metabolismo , Centrosoma/metabolismo , Proteínas Serina-Treonina Quinasas
5.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203427

RESUMEN

Hexavalent chromium [Cr(VI)] is a known human lung carcinogen with widespread exposure in environmental and occupational settings. Despite well-known cancer risks, the molecular mechanisms of Cr(VI)-induced carcinogenesis are not well understood, but a major driver of Cr(VI) carcinogenesis is chromosome instability. Previously, we reported Cr(VI) induced numerical chromosome instability, premature centriole disengagement, centrosome amplification, premature centromere division, and spindle assembly checkpoint bypass. A key regulator of these events is securin, which acts by regulating the cleavage ability of separase. Thus, in this study we investigated securin disruption by Cr(VI) exposure. We exposed human lung cells to a particulate Cr(VI) compound, zinc chromate, for acute (24 h) and prolonged (120 h) time points. We found prolonged Cr(VI) exposure caused marked decrease in securin levels and function. After prolonged exposure at the highest concentration, securin protein levels were decreased to 15.3% of control cells, while securin mRNA quantification was 7.9% relative to control cells. Additionally, loss of securin function led to increased separase activity manifested as enhanced cleavage of separase substrates; separase, kendrin, and SCC1. These data show securin is targeted by prolonged Cr(VI) exposure in human lung cells. Thus, a new mechanistic model for Cr(VI)-induced carcinogenesis emerges with centrosome and centromere disruption as key components of numerical chromosome instability, a key driver in Cr(VI) carcinogenesis.


Asunto(s)
Carcinogénesis , Cromo , Inestabilidad Cromosómica , Humanos , Securina/genética , Separasa
6.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38203554

RESUMEN

The centrosome is involved in cytoplasmic microtubule organization during interphase and in mitotic spindle assembly during cell division. Centrosome amplification (abnormal proliferation of centrosome number) has been observed in several types of cancer and in precancerous conditions. Therefore, it is important to elucidate the mechanism of centrosome amplification in order to understand the early stage of carcinogenesis. Primary cells could be used to better understand the early stage of carcinogenesis rather than immortalized cells, which tend to have various genetic and epigenetic changes. Previously, we demonstrated that a poly(ADP-ribose) polymerase (PARP) inhibitor, 3-aminobenzamide (3AB), which is known to be nontoxic and nonmutagenic, could induce centrosome amplification and chromosomal aneuploidy in CHO-K1 cells. In this study, we compared primary mouse embryonic fibroblasts (MEF) and immortalized MEF using 3AB. Although centrosome amplification was induced with 3AB treatment in immortalized MEF, a more potent PARP inhibitor, AG14361, was required for primary MEF. However, after centrosome amplification, neither 3AB in immortalized MEF nor AG14361 in primary MEF caused chromosomal aneuploidy, suggesting that further genetic and/or epigenetic change(s) are required to exhibit aneuploidy. The DNA-damaging agents doxorubicin and γ-irradiation can cause cancer and centrosome amplification in experimental animals. Although doxorubicin and γ-irradiation induced centrosome amplification and led to decreased p27Kip protein levels in immortalized MEF and primary MEF, the phosphorylation ratio of nucleophosmin (Thr199) increased in immortalized MEF, whereas it decreased in primary MEF. These results suggest that there exists a yet unidentified pathway, different from the nucleophosmin phosphorylation pathway, which can cause centrosome amplification in primary MEF.


Asunto(s)
Benzodiazepinas , Fibroblastos , Nucleofosmina , Animales , Ratones , Cricetinae , Centrosoma , Células CHO , Aneuploidia , Carcinogénesis , Doxorrubicina/farmacología , Azulenos
7.
Cancer Metastasis Rev ; 40(1): 319-339, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33106971

RESUMEN

Numerical and/or structural centrosome amplification (CA) is a hallmark of cancers that is often associated with the aberrant tumor karyotypes and poor clinical outcomes. Mechanistically, CA compromises mitotic fidelity and leads to chromosome instability (CIN), which underlies tumor initiation and progression. Recent technological advances in microscopy and image analysis platforms have enabled better-than-ever detection and quantification of centrosomal aberrancies in cancer. Numerous studies have thenceforth correlated the presence and the degree of CA with indicators of poor prognosis such as higher tumor grade and ability to recur and metastasize. We have pioneered a novel semi-automated pipeline that integrates immunofluorescence confocal microscopy with digital image analysis to yield a quantitative centrosome amplification score (CAS), which is a summation of the severity and frequency of structural and numerical centrosome aberrations in tumor samples. Recent studies in breast cancer show that CA increases across the disease progression continuum, while normal breast tissue exhibited the lowest CA, followed by cancer-adjacent apparently normal, ductal carcinoma in situ and invasive tumors, which showed the highest CA. This finding strengthens the notion that CA could be evolutionarily favored and can promote tumor progression and metastasis. In this review, we discuss the prevalence, extent, and severity of CA in various solid cancer types, the utility of quantifying amplified centrosomes as an independent prognostic marker. We also highlight the clinical feasibility of a CA-based risk score for predicting recurrence, metastasis, and overall prognosis in patients with solid cancers.


Asunto(s)
Neoplasias de la Mama , Centrosoma , Neoplasias de la Mama/genética , Inestabilidad Cromosómica , Femenino , Humanos , Pronóstico
8.
J Cell Sci ; 133(14)2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32591487

RESUMEN

Microtubules (MTs) promote important cellular functions including migration, intracellular trafficking, and chromosome segregation. The centrosome, comprised of two centrioles surrounded by the pericentriolar material (PCM), is the cell's central MT-organizing center. Centrosomes in cancer cells are commonly numerically amplified. However, the question of how the amplification of centrosomes alters MT organization capacity is not well studied. We developed a quantitative image-processing and machine learning-aided approach for the semi-automated analysis of MT organization. We designed a convolutional neural network-based approach for detecting centrosomes, and an automated pipeline for analyzing MT organization around centrosomes, encapsulated in a semi-automatic graphical tool. Using this tool, we find that breast cancer cells with supernumerary centrosomes not only have more PCM protein per centrosome, which gradually increases with increasing centriole numbers, but also exhibit expansion in PCM size. Furthermore, cells with amplified centrosomes have more growing MT ends, higher MT density and altered spatial distribution of MTs around amplified centrosomes. Thus, the semi-automated approach developed here enables rapid and quantitative analyses revealing important facets of centrosomal aberrations.


Asunto(s)
Centriolos , Centrosoma , Segregación Cromosómica , Aprendizaje Automático , Microtúbulos
9.
Cell Biol Int ; 46(7): 1128-1136, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35293662

RESUMEN

Centrosome amplification (CA) refers to a numerical increase in centrosomes resulting in cells with more than two centrosomes. CA has been shown to initiate tumorigenesis and increase the invasive potential of cancer cells in genetically modified experimental models. Hexavalent chromium is a recognized carcinogen that causes CA and tumorigenesis as well as promotes cancer metastasis. Thus, CA appears to be a biological link between chromium and cancer. In the present study, we investigated how chromium triggers CA. Our results showed that a subtoxic concentration of chromium-induced CA in HCT116 colon cancer cells, resulted in the production of reactive oxygen species (ROS), activated ATF6 without causing endoplasmic reticulum stress, and upregulated the protein level of PLK4. Inhibition of ROS production, ATF6 activation, or PLK4 upregulation attenuated CA. Inhibition of ROS using N-acetyl-l-cysteine (NAC) inhibited chromium-induced activation of ATF6 and upregulation of PLK4. ATF6-specific siRNA knocked down the protein level and activation of ATF6, and upregulated PLK4, with no effect on ROS production. Knockdown of PLK4 protein had no effect on chromium-induced ROS production or activation of ATF6. In conclusion, our results suggest that hexavalent chromium induces CA via the ROS-ATF6-PLK4 pathway and provides molecular targets for inhibiting chromium-mediated CA, which may be useful for the assessment of CA in chromium-promoted tumorigenesis and cancer cell metastasis.


Asunto(s)
Neoplasias del Colon , Proteínas Serina-Treonina Quinasas , Factor de Transcripción Activador 6/metabolismo , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Centrosoma/metabolismo , Cromo/metabolismo , Cromo/toxicidad , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo
10.
Cell Biochem Funct ; 40(5): 516-525, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35678289

RESUMEN

Diabetes not only increases the risk for cancer but also promotes cancer metastasis. Centrosome amplification (CA) is sufficient to initiate tumorigenesis and can enhance the invasion potential of cancer cells. We have reported that diabetes can induce CA, with diabetic pathophysiological factors as the triggers, which involves the signaling of nucleophosmin (NPM). Thus, CA can serve as a candidate biological link between diabetes and cancer. In the present study, we attempted to identify the NPM binding partners and investigated whether the binding between NPM and its partner mediated the CA. We confirmed that high glucose, insulin, and palmitic acid cancer could elicit CA in the HCT16 colon cancer cells and found that the experimental treatment increased the binding between NPM and H2B, but not between p-NPM and H2B. The molecular docking analysis supported the fact that NPM and H2B could bind to each other through various amino acid residues. The treatment also increased the colocalization of NPM and H2B in the cytosol. Importantly, disruption of the NPM1-H2B complex by individual knockdown of the protein level of NPM or H2B led to the inhibition of the treatment-evoked CA. In conclusion, our results suggest that the binding between NPM and H2B proteins signals for the CA by high glucose, insulin, and palmitic acid.


Asunto(s)
Diabetes Mellitus , Histonas , Nucleofosmina , Ácido Palmítico , Centrosoma/metabolismo , Centrosoma/patología , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Células HCT116 , Histonas/metabolismo , Humanos , Insulina/metabolismo , Simulación del Acoplamiento Molecular , Nucleofosmina/metabolismo , Ácido Palmítico/metabolismo
11.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408845

RESUMEN

Cancer cells are known to have chromosomal number abnormalities (aneuploidy), a hallmark of malignant tumors. Cancer cells also have an increased number of centrosomes (centrosome amplification). Paradoxically, cancer therapies, including γ-irradiation and some anticancer drugs, are carcinogenic and can induce centrosome amplification and chromosomal aneuploidy. Thus, the processes of carcinogenesis and killing cancer cells might have some mechanisms in common. Previously, we found that the inhibitors of polyADP-ribosylation, a post-translational modification of proteins, caused centrosome amplification. However, the mechanism of action of the inhibitors of polyADP-ribosylation is not fully understood. In this study, we found that an inhibitor of polyADP-ribosylation, 3-aminobenzamide, caused centrosome amplification, as well as aneuploidy of chromosomes in CHO-K1 cells. Moreover, inhibitors of polyADP-ribosylation inhibited AKT phosphorylation, and inhibitors of AKT phosphorylation inhibited polyADP-ribosylation, suggesting the involvement of polyADP-ribosylation in the PI3K/Akt/mTOR signaling pathway for controlling cell proliferation. Our data suggest a possibility for developing drugs that induce centrosome amplification and aneuploidy for therapeutic applications to clinical cancer.


Asunto(s)
Antineoplásicos , Neoplasias , Aneuploidia , Animales , Antineoplásicos/metabolismo , Centrosoma/metabolismo , Inestabilidad Cromosómica , Cromosomas/metabolismo , Cricetinae , Cricetulus , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
12.
Cancer Sci ; 112(5): 1679-1687, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33606355

RESUMEN

Alterations in breast cancer gene 1 (BRCA1), a tumor suppressor gene, increase the risk of breast and ovarian cancers. BRCA1 forms a heterodimer with BRCA1-associated RING domain protein 1 (BARD1) and functions in multiple cellular processes, including DNA repair and centrosome regulation. BRCA1 acts as a tumor suppressor by promoting homologous recombination (HR) repair, and alterations in BRCA1 cause HR deficiency, not only in breast and ovarian tissues but also in other tissues. The molecular mechanisms underlying BRCA1 alteration-induced carcinogenesis remain unclear. Centrosomes are the major microtubule-organizing centers and function in bipolar spindle formation. The regulation of centrosome number is critical for chromosome segregation in mitosis, which maintains genomic stability. BRCA1/BARD1 function in centrosome regulation together with Obg-like ATPase (OLA1) and receptor for activating protein C kinase 1 (RACK1). Cancer-derived variants of BRCA1, BARD1, OLA1, and RACK1 do not interact, and aberrant expression of these proteins results in abnormal centrosome duplication in mammary-derived cells, and rarely in other cell types. RACK1 is involved in centriole duplication in the S phase by promoting polo-like kinase 1 activation by Aurora A, which is critical for centrosome duplication. Centriole number is higher in cells derived from mammary tissues compared with in those derived from other tissues, suggesting that tissue-specific centrosome characterization may shed light on the tissue specificity of BRCA1-associated carcinogenesis. Here, we explored the role of the BRCA1-containing complex in centrosome regulation and the effect of its deficiency on tissue-specific carcinogenesis.


Asunto(s)
Proteína BRCA1/deficiencia , Carcinogénesis/metabolismo , Centrosoma/fisiología , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Carcinogénesis/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Centrosoma/ultraestructura , Inestabilidad Cromosómica , Femenino , Proteínas de Unión al GTP/metabolismo , Genes BRCA1 , Humanos , Mitosis/genética , Proteínas de Neoplasias/metabolismo , Especificidad de Órganos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores de Cinasa C Activada/metabolismo , Reparación del ADN por Recombinación , Huso Acromático/genética , Proteínas Supresoras de Tumor/química , Ubiquitina-Proteína Ligasas/química , Quinasa Tipo Polo 1
13.
Med Res Rev ; 40(4): 1508-1513, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32039498

RESUMEN

The abysmal success rate of anticancer drugs in clinical trials, is in part, attributable to discordance between cultured cancer cells and patient tumors. While tumors in vivo, display a lower mitotic index, patient tumors portray much higher centrosomal aberrations, relative to in vitro cultured cells. The microenvironment too differs considerably between the in vitro and in vivo scenarios. Notably, another hallmark of cancer, hypoxia, is not recapitulated in cell lines cultured under normoxic conditions. These observations raise the possibility that hypoxia may be the missing link that explains the discordance between cell biological phenomena in vitro versus physiological conditions. Further, the interplay between hypoxia and centrosome amplification (CA) is relatively understudied. Recent research from our laboratory, geared toward examining the biological link between the two, has uncovered that hypoxia induces the expression of proteins (Plk4, Aurora A, Cyclin D) implicated in CA, in a hypoxia-inducible factor 1α (HIF-1α)-dependent context. Our studies evidence that hypoxia fuels CA that underlie intratumoral heterogeneity and metastatic potential of cancer cells. Given the advent of HIF-1α inhibitors, this research has ramifications in aiding patient risk stratification and designing new cancer drug therapies to facilitate clinical decision-making.


Asunto(s)
Centrosoma/metabolismo , Hipoxia/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Modelos Biológicos , Microambiente Tumoral
14.
Am J Physiol Cell Physiol ; 318(1): C48-C62, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31618077

RESUMEN

We recently published that type 2 diabetes promotes cell centrosome amplification via upregulation of Rho-associated protein kinase 1 (ROCK1) and 14-3-3 protein-σ (14-3-3σ). This study further investigates the molecular mechanisms underlying diabetes-associated centrosome amplification. We found that treatment of cells with high glucose, insulin, and palmitic acid levels increased the intracellular and extracellular protein levels of Wingless-type MMTV integration site family member 6 (Wnt6) as well as the cellular level of ß-catenin. The treatment also activated ß-catenin and promoted its nuclear translocation. Treatment of cells with siRNA species for Wnt6, Frizzled-4 (FZD4), or ß-catenin as well as introduction of antibodies against Wnt6 or FZD4 to the cell culture medium could all attenuate the treatment-triggered centrosome amplification. Moreover, we showed that secreted Wnt6-FZD4-ß-catenin was the signaling pathway that was upstream of ROCK1 and 14-3-3σ. We found that advanced glycation end products (AGEs) were also able to increase the cellular and extracellular levels of Wnt6, the cellular protein level of ß-catenin, and centrosome amplification. Treatment of the cells with siRNA species for Wnt6 or FZD4 as well as introduction of antibodies against Wnt6 or FZD4 to the cell culture could all inhibit the AGEs-elicited centrosome amplification. In colon tissues from a diabetic mouse model, the protein levels of Wnt6 and 14-3-3σ were increased. In conclusion, our results showed that the pathophysiological factors in type 2 diabetes, including AGEs, were able to induce centrosome amplification. It is suggested that secreted Wnt6 binds to FZD4 to activate the canonical Wnt6 signaling pathway, which is upstream of ROCK1 and 14-3-3σ, and that this is the cell signaling pathway underlying diabetes-associated centrosome amplification.


Asunto(s)
Centrosoma/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Receptores Frizzled/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Proteínas 14-3-3/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Glucemia/metabolismo , Centrosoma/patología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Exorribonucleasas/metabolismo , Femenino , Receptores Frizzled/genética , Productos Finales de Glicación Avanzada/farmacología , Células HCT116 , Humanos , Insulina/sangre , Ratones Endogámicos ICR , Ácido Palmítico/farmacología , Unión Proteica , Ratas , Proteínas Wnt/genética , Quinasas Asociadas a rho/metabolismo
15.
Brain ; 142(4): 867-884, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30879067

RESUMEN

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Adulto , Encéfalo/patología , Proteínas Portadoras/genética , Ciclo Celular/fisiología , Cilios/metabolismo , Femenino , Estudios de Asociación Genética/métodos , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lactante , Recién Nacido , Masculino , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/metabolismo , Microcefalia/genética , Mutación , Malformaciones del Sistema Nervioso/genética , Polimicrogiria/etiología , Polimicrogiria/patología
16.
Acta Biochim Biophys Sin (Shanghai) ; 52(1): 72-83, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31844893

RESUMEN

Type 2 diabetes increases the risk for cancer. Centrosome amplification can initiate tumorigenesis. We have described that type 2 diabetes increases the centrosome amplification of peripheral blood mononuclear cells, with high glucose, insulin, and palmitic acid as the triggers, which suggests that centrosome amplification is a candidate biological mechanism linking diabetes to cancer. In this study, we aimed to further investigate the signaling pathways of the diabetes-associated centrosome amplification and to examine whether and how resveratrol inhibits the centrosome amplification. The results showed that treatment with high glucose, insulin, and palmitic acid, alone or in combination, could increase the protein levels of phospho-protein kinase C alpha (p-PKCα), phospho-p38 mitogen-activated protein kinases (p-p38), c-myc, and c-jun, as well as the mRNA levels of c-myc and c-jun. PKCα inhibitor could inhibit the treatment-induced increase in the protein levels of p-p38, c-myc, and c-jun. Inhibitor or siRNA of p38 was also able to inhibit the treatment-induced increase in the levels of p-p38, c-myc, and c-jun. Meanwhile, knockdown of c-myc or c-jun did not alter the treatment-induced increase in the phosphorylation of PKCα or p38. Importantly, inhibition of the phosphorylation of PKCα or p38 and knockdown of c-myc or c-jun could attenuate the centrosome amplification. In diabetic mice, the levels of p-PKCα, p-p38, c-myc, and c-jun were all increased in the colon tissues. Interestingly, resveratrol, but not metformin, was able to attenuate the treatment-induced increase in the levels of p-PKCα, p-p38, c-myc, and c-jun, as well as the centrosome amplification. In conclusion, our results suggest that PKCα-p38 to c-myc/c-jun is the signaling pathway of the diabetes-associated centrosome amplification, and resveratrol attenuates the centrosome amplification by inhibiting this signaling pathway.


Asunto(s)
Centrosoma/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Proteína Quinasa C-alfa/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Resveratrol/farmacología , Resveratrol/uso terapéutico , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Centrosoma/metabolismo , Colon/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Técnicas de Silenciamiento del Gen , Glucosa/farmacología , Células HCT116 , Humanos , Insulina/farmacología , Ratones , Ácido Palmítico/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C-alfa/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Interferente Pequeño/genética , Estreptozocina/efectos adversos , Estreptozocina/farmacología , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/genética
17.
Int J Mol Sci ; 21(8)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316320

RESUMEN

Recent evidence indicates that activation of adenosine monophosphate-activated protein kinase (AMPK), a highly conserved sensor and modulator of cellular energy and redox, regulates cell mitosis. However, the underlying molecular mechanisms for AMPKα subunit regulation of chromosome segregation remain poorly understood. This study aimed to ascertain if AMPKα1 deletion contributes to chromosome missegregation by elevating Polo-like kinase 4 (PLK4) expression. Centrosome proteins and aneuploidy were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J) or AMPKα1 homozygous deficient (AMPKα1-/-) mice by Western blotting and metaphase chromosome spread. Deletion of AMPKα1, the predominant AMPKα isoform in immortalized MEFs, led to centrosome amplification and chromosome missegregation, as well as the consequent aneuploidy (34-66%) and micronucleus. Furthermore, AMPKα1 null cells exhibited a significant induction of PLK4. Knockdown of nuclear factor kappa B2/p52 ameliorated the PLK4 elevation in AMPKα1-deleted MEFs. Finally, PLK4 inhibition by Centrinone reversed centrosome amplification of AMPKα1-deleted MEFs. Taken together, our results suggest that AMPKα1 plays a fundamental role in the maintenance of chromosomal integrity through the control of p52-mediated transcription of PLK4, a trigger of centriole biogenesis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Centrosoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/genética , Animales , Células Cultivadas , Segregación Cromosómica , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subunidad p52 de NF-kappa B/antagonistas & inhibidores , Subunidad p52 de NF-kappa B/genética , Subunidad p52 de NF-kappa B/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba
18.
Int J Mol Sci ; 21(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429095

RESUMEN

Age-related changes in tissue-resident adult stem cells may be closely linked to tissue aging and age-related diseases, such as cancer. ß-Hydroxybutyrate is emerging as an important molecule for exhibiting the anti-aging effects of caloric restriction and fasting, which are generally considered to be beneficial for stem cell maintenance and tissue regeneration. The effects of ß-hydroxybutyrate on adult stem cells remain largely unknown. Therefore, this study was undertaken to investigate whether ß-hydroxybutyrate supplementation exerts beneficial effects on age-related changes in intestinal stem cells that were derived from the Drosophila midgut. Our results indicate that ß-hydroxybutyrate inhibits age- and oxidative stress-induced changes in midgut intestinal stem cells, including centrosome amplification (a hallmark of cancers), hyperproliferation, and DNA damage accumulation. Additionally, ß-hydroxybutyrate inhibits age- and oxidative stress-induced heterochromatin instability in enterocytes, an intestinal stem cells niche cells. Our results suggest that ß-hydroxybutyrate exerts both intrinsic as well as extrinsic influence in order to maintain stem cell homeostasis.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Envejecimiento/efectos de los fármacos , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Intestinos/citología , Cetonas/metabolismo , Metaboloma , Células Madre/citología , Animales , Centrosoma/metabolismo , Daño del ADN , Heterocromatina/metabolismo , Metaboloma/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Nicho de Células Madre/efectos de los fármacos , Células Madre/efectos de los fármacos
19.
Proteomics ; 19(7): e1800197, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30688006

RESUMEN

It has been reported recently that type 2 diabetes promotes centrosome amplification via 14-3-3σ/ROCK1 complex. In the present study, 14-3-3σ interacting proteins are characterized and their roles in the centrosome amplification by high glucose, insulin, and palmitic acid are investigated. Co-immunoprecipitation in combination with MS analysis identified 134 proteins that interact with 14-3-3σ, which include heat shock 70 kDa protein 4 (Hsp74). Gene ontology analyses reveal that many of them are enriched in binding activity. Kyoto Encyclopedia of Genes and Genomes analysis shows that the top three enriched pathways are ribosome, carbon metabolism, and biosynthesis of amino acids. Molecular and functional investigations show that the high glucose, insulin, and palmitic acid increase the expression and binding of 14-3-3σ and Hsp74 as well as centrosome amplification, all of which are inhibited by knockdown of 14-3-3σ or Hsp74. Moreover, molecular docking analysis shows that the interaction between the 14-3-3σ and the Hsp74 is mainly through hydrophobic contacts and a lesser degree ionic interactions and hydrogen bond by different amino acids residues. In conclusion, the results suggest that the experimental treatment triggers centrosome amplification via upregulations of expression and binding of 14-3-3σ and Hsp74.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas Portadoras/metabolismo , Centrosoma/metabolismo , Glucosa/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Insulina/farmacología , Ácido Palmítico/farmacología , Western Blotting , Centrosoma/efectos de los fármacos , Biología Computacional/métodos , Células HCT116 , Humanos , Espectrometría de Masas , Microscopía Confocal , Proteínas Mitocondriales , Simulación del Acoplamiento Molecular , Unión Proteica/efectos de los fármacos
20.
J Cell Physiol ; 234(10): 18230-18248, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30883760

RESUMEN

There is evidence that cadmium can initiate carcinogenesis. However, the underlying mechanisms remain unknown. There is also evidence that moderate centrosome amplification can initiate tumorigenesis. The present study investigated whether cadmium could trigger cell centrosome amplification, and examined the underlying molecular mechanisms. We found that cadmium was able to cause cell centrosome amplification at the subtoxic concentrations, in a dose-dependent manner. It could cause centrosome amplification via the signaling of reactive oxygen species (ROS). Proteomic analysis revealed that cadmium caused differential expressions of three proteins, which included HSPA1A which is associated with endoplasmic reticulum (ER) stress. Western blot analysis confirmed that cadmium upregulated HSPA1A. Further analyses showed that cadmium upregulated Bip and decreased the phosphorylation of ASK1 as well as increased the phosphorylation of MKK7 and c-Jun N-terminal kinases (JNK). Knockdown of JNK2 using small interfering RNA inhibited the cadmium-induced centrosome amplification but not the level of ROS. N-acetylcysteine did not inhibit the cadmium-activated ER stress pathway. In conclusion, our results suggest that cadmium can induce cell centrosome amplification via ROS as well as ER stress through the Bip-TRAF2-ASK1-MKK7-JNK signaling route, in parallel. More studies are required to clarify whether centrosome amplification underlies cadmium-induced carcinogenesis.


Asunto(s)
Cadmio/farmacología , Centrosoma/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Células HCT116 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteómica/métodos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA