Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 789-815, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33770448

RESUMEN

The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses.


Asunto(s)
Metagenómica/métodos , Microbiota/fisiología , Péptidos/metabolismo , Policétidos/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Humanos , Microbiota/genética , Fenotipo
2.
Cell ; 169(4): 587-596, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475891

RESUMEN

The phytobiome is composed of plants, their environment, and diverse interacting microscopic and macroscopic organisms, which together influence plant health and productivity. These organisms form complex networks that are established and regulated through nutrient cycling, competition, antagonism, and chemical communication mediated by a diverse array of signaling molecules. Integration of knowledge of signaling mechanisms with that of phytobiome members and their networks will lead to a new understanding of the fate and significance of these signals at the ecosystem level. Such an understanding could lead to new biological, chemical, and breeding strategies to improve crop health and productivity.


Asunto(s)
Ecosistema , Plantas/microbiología , Animales , Artrópodos/fisiología , Eucariontes/fisiología , Nematodos/fisiología , Fenómenos Fisiológicos de las Plantas , Transducción de Señal
3.
Proc Natl Acad Sci U S A ; 120(18): e2216668120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094139

RESUMEN

Regulated cellular aggregation is an essential process for development and healing in many animal tissues. In some animals and a few distantly related unicellular species, cellular aggregation is regulated by diffusible chemical cues. However, it is unclear whether regulated cellular aggregation was part of the life cycles of the first multicellular animals and/or their unicellular ancestors. To fill this gap, we investigated the triggers of cellular aggregation in one of animals' closest unicellular living relatives-the filasterean Capsaspora owczarzaki. We discovered that Capsaspora aggregation is induced by chemical cues, as observed in some of the earliest branching animals and other unicellular species. Specifically, we found that calcium ions and lipids present in lipoproteins function together to induce aggregation of viable Capsaspora cells. We also found that this multicellular stage is reversible as depletion of the cues triggers disaggregation, which can be overcome upon reinduction. Our finding demonstrates that chemically regulated aggregation is important across diverse members of the holozoan clade. Therefore, this phenotype was plausibly integral to the life cycles of the unicellular ancestors of animals.


Asunto(s)
Evolución Biológica , Eucariontes , Animales , Eucariontes/genética , Filogenia
4.
Proc Natl Acad Sci U S A ; 119(22): e2202842119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35613050

RESUMEN

The neurotransmitter dopamine (DA) controls multiple behaviors and is perturbed in several major brain diseases. DA is released from large populations of specialized structures called axon varicosities. Determining the DA release mechanisms at such varicosities is essential for a detailed understanding of DA biology and pathobiology but has been limited by the low spatial resolution of DA detection methods. We used a near-infrared fluorescent DA nanosensor paint, adsorbed nanosensors detecting release of dopamine (AndromeDA), to detect DA secretion from cultured murine dopaminergic neurons with high spatial and temporal resolution. We found that AndromeDA detects discrete DA release events and extracellular DA diffusion and observed that DA release varies across varicosities. To systematically detect DA release hotspots, we developed a machine learning­based analysis tool. AndromeDA permitted the simultaneous visualization of DA release for up to 100 dopaminergic varicosities, showing that DA release hotspots are heterogeneous and occur at only ∼17% of all varicosities, indicating that many varicosities are functionally silent. Using AndromeDA, we determined that DA release requires Munc13-type vesicle priming proteins, validating the utility of AndromeDA as a tool to study the molecular and cellular mechanism of DA secretion.


Asunto(s)
Axones , Dopamina , Neuronas Dopaminérgicas , Nanoestructuras , Neurotransmisores , Imagen Óptica , Animales , Axones/metabolismo , Encéfalo/metabolismo , Dopamina/análisis , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Colorantes Fluorescentes/química , Ratones , Neurotransmisores/análisis , Neurotransmisores/metabolismo , Imagen Óptica/métodos , Pintura , Espectroscopía Infrarroja Corta/métodos
5.
Mar Drugs ; 22(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786618

RESUMEN

Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host-virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host-virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.


Asunto(s)
Alelopatía , Diatomeas , Oxilipinas , Oxilipinas/metabolismo , Animales , Organismos Acuáticos , Zooplancton
6.
J Neurosci ; 42(5): 720-730, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34862187

RESUMEN

Chemical communication controls a wide range of behaviors via conserved signaling networks. Axon regeneration in response to injury is determined by the interaction between the extracellular environment and intrinsic growth potential. In this study, we investigated the role of chemical signaling in axon regeneration in Caenorhabditis elegans We find that the enzymes involved in ascaroside pheromone biosynthesis, ACOX-1.1, ACOX-1.2, and DAF-22, participate in axon regeneration by producing a dauer-inducing ascaroside, ascr#5. We demonstrate that the chemoreceptor genes, srg-36 and srg-37, which encode G-protein-coupled receptors for ascr#5, are required for adult-specific axon regeneration. Furthermore, the activating mutation in egl-30 encoding Gqα suppresses axon regeneration defective phenotype in acox-1.1 and srg-36 srg-37 mutants. Therefore, the ascaroside signaling system provides a unique example of a signaling molecule that regulates the regenerative pathway in the nervous system.SIGNIFICANCE STATEMENT In Caenorhabditis elegans, axon regeneration is positively regulated by the EGL-30 Gqα-JNK MAP kinase cascade. However, it remains unclear what signals activate the EGL-30 pathway in axon regeneration. Here, we show that SRG-36 and SRG-37 act as upstream G-protein-coupled receptors (GPCRs) that activate EGL-30. C. elegans secretes a family of small-molecule pheromones called ascarosides, which serve various functions in chemical signaling. SRG-36 and SRG-37 are GPCRs for the dauer-inducing ascaroside ascr#5. Consistent with this, we found that ascr#5 activates the axon regeneration pathway via SRG-36/SRG-37 and EGL-30. Thus, ascaroside signaling promotes axon regeneration by activating the GPCR-Gqα pathway.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Regeneración Nerviosa/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Receptores Acoplados a Proteínas G/genética
7.
Molecules ; 28(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36985819

RESUMEN

Two extracellular domains of the adhesive receptor DNAM-1 are involved in various cellular biological processes through binding to ligand CD155, usually under a mechano-microenvironment. The first extracellular domain (D1) plays a key role in recognition, but the function of the second extracellular domain (D2) and effects of force on the interaction of DNAM-1 with CD155 remain unclear. We herein studied the interaction of DNAM-1 with CD155 by performing steered molecular dynamics (MD) simulations, and observed the roles of tensile force and D2 on the affinity of DNAM-1 to CD155. The results showed that D2 improved DNAM-1 affinity to CD155; the DNAM-1/CD155 complex had a high mechanical strength and a better mechanical stability for its conformational conservation either at pulling with constant velocity or under constant tensile force (≤100 pN); the catch-slip bond transition governed CD155 dissociation from DNAM-1; and, together with the newly assigned key residues in the binding site, force-induced conformation changes should be responsible for the mechanical regulation of DNAM-1's affinity to CD155. This work provided a novel insight in understanding the mechanical regulation mechanism and D2 function in the interaction of DNAM-1 with CD155, as well as their molecular basis, relevant transmembrane signaling, and cellular immune responses under a mechano-microenvironment.


Asunto(s)
Inmunidad Celular , Simulación de Dinámica Molecular , Dominios Proteicos
8.
Phys Biol ; 19(2)2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-34942613

RESUMEN

In studies of the unicellular eukaryoteDictyostelium discoideum, many have anecdotally observed that cell dilution below a certain 'threshold density' causes cells to undergo a period of slow growth (lag). However, little is documented about the slow growth phase and the reason for different growth dynamics below and above this threshold density. In this paper, we extend and correct our earlier work to report an extensive set of experiments, including the use of new cell counting technology, that set this slow-to-fast growth transition on a much firmer biological basis. We show that dilution below a certain density (around 104cells ml-1) causes cells to grow slower on average and exhibit a large degree of variability: sometimes a sample does not lag at all, while sometimes it takes many moderate density cell cycle times to recover back to fast growth. We perform conditioned media experiments to demonstrate that a chemical signal mediates this endogenous phenomenon. Finally, we argue that while simple models involving fluid transport of signal molecules or cluster-based signaling explain typical behavior, they do not capture the high degree of variability between samples but nevertheless favor an intra-cluster mechanism.


Asunto(s)
Modelos Biológicos , Transducción de Señal , Ciclo Celular , Densidad de Población , Dinámica Poblacional
9.
J Chem Ecol ; 48(1): 16-26, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34762209

RESUMEN

Chemical cues are among the most important information-sharing mechanisms in insect societies, in which cuticular hydrocarbons play a central role, e.g., from nestmate recognition to queen signaling. The nestmate recognition mechanism usually prevents intruders from taking advantage of the resources stored in the nest. However, nestmate recognition is not unconditionally effective, and foreign individuals can sometimes infiltrate unrelated nests and take advantage of the colony resources. In this study, we investigated the role of overall colony odor profiles on the ability of conspecific workers to drift into unrelated colonies. We hypothesized that drifters would have higher chances of success by infiltrating colonies with the odor profiles most similar to their own nest, avoiding being detected as non-nestmates. By performing a drifting bioassay, we found that workers of the ant Formica fusca infiltrated unrelated conspecific colonies at a rate of 2.4%, significantly infiltrating colonies displaying CHC profiles most similar to their natal nests. Notably, methyl branched hydrocarbons seem to play a role as recognition cues in this species. In addition, we show that environmental rather than genetic factors are responsible for most contributions on the CHC phenotype, presenting ca. of 50% and 27.5% of explained variation respectively, and playing a major role in how worker ants detect and prevent the infiltration of non-nestmates in the colony. Hence, relying on cuticular hydrocarbons similarities could be a profitably evolutionary strategy by which workers can identify conspecific colonies, evade detection by guards, and avoid competition with genetic relatives.


Asunto(s)
Hormigas , Animales , Bioensayo , Señales (Psicología) , Humanos , Hidrocarburos , Odorantes , Conducta Social
10.
Proc Natl Acad Sci U S A ; 116(44): 22331-22340, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31604827

RESUMEN

It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA ß-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.


Asunto(s)
Agrobacterium tumefaciens/patogenicidad , Arabidopsis/microbiología , Interacciones Huésped-Patógeno , Factores de Virulencia/genética , Agrobacterium tumefaciens/genética , Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal , Sacarosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Chimia (Aarau) ; 76(11): 945-953, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069790

RESUMEN

Nematodes represent the most abundant group of metazoans on earth. They utilize diverse chemicals to interact with con-specific and hetero-specific organisms, and are also impacted by compounds produced by other interacting organisms. In the first part of this review we discuss how nematode-derived glycolipids modulate their behavior and development, as well as the interactions with other organisms. Furthermore, we provide a short overview about other secondary metabolites produced by nematodes that affect different life traits of free-living nematodes. In the second part of this review we discuss how different bacteria-, nematode-, and plant-derived chemicals such as volatile organic compounds, root exudates, and plant defenses regulate the interaction between entomopathogenic nematodes, their symbiotic bacteria, insect prey, predators, and plants.

12.
J Chem Ecol ; 46(7): 590-596, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32583093

RESUMEN

Female Harmonia axyridis (Coleoptera: Coccinellidae) produce a sex pheromone to attract males. In the present study, we tested two hypotheses: (i) production of sex pheromone in H. axyridis is conditioned by perception of prey in their vicinity, and (ii) virgin females invest in the production of the sex pheromone, while mated females reduce their pheromone emissions. To test the first hypothesis, newly hatched larvae were divided into three groups: those fed with Ephestia kuehniella eggs, those fed with pea aphids, and those exposed to aphid volatile cues but fed with Ephestia eggs. All females produced a pheromone blend of five-components in similar relative proportions, but with contrasting absolute quantities: Females fed with Ephestia eggs produced lower amounts of pheromone (0.5 ± 0.4 ng.female-1), compared to females fed with aphids (44.2 ± 24.4 ng.female-1). The females of the third group produced intermediate concentrations of pheromone (6.0 ± 3.2 ng.female-1). To test the second hypothesis, two groups of lady beetles were made: one group of females was placed in the presence of males, while females of the other group were not. Mated and virgin females produced statistically similar amounts of pheromone (144.1 ± 49.7 ng and 43.7 ± 24.1 ng.female-1, respectively). These results suggest that H. axyridis females initiate pheromone production upon exposure to volatile cues released by their aphids prey. Females continue to release sex pheromone after mating, probably to increase the chance of multiple mating which is known to improve egg fertility.


Asunto(s)
Áfidos , Escarabajos/fisiología , Conducta Predatoria , Atractivos Sexuales/metabolismo , Conducta Sexual Animal , Animales , Escarabajos/química
13.
Proc Natl Acad Sci U S A ; 114(8): 1789-1794, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28179565

RESUMEN

Intercellular communication via chemical signaling proceeds with both spatial and temporal components, but analytical tools, such as microfabricated electrodes, have been limited to just a few probes per cell. In this work, we use a nonphotobleaching fluorescent nanosensor array based on single-walled carbon nanotubes (SWCNTs) rendered selective to dopamine to study its release from PC12 neuroprogenitor cells at a resolution exceeding 20,000 sensors per cell. This allows the spatial and temporal dynamics of dopamine release, following K+ stimulation, to be measured at exceedingly high resolution. We observe localized, unlabeled release sites of dopamine spanning 100 ms to seconds that correlate with protrusions but not predominately the positive curvature associated with the tips of cellular protrusions as intuitively expected. The results illustrate how directionality of chemical signaling is shaped by membrane morphology, and highlight the advantages of nanosensor arrays that can provide high spatial and temporal resolution of chemical signaling.


Asunto(s)
Técnicas Biosensibles/métodos , Comunicación Celular/fisiología , Dopamina/metabolismo , Células-Madre Neurales/fisiología , Transducción de Señal/fisiología , Imagen Individual de Molécula/métodos , Animales , Técnicas Biosensibles/instrumentación , Membrana Celular/fisiología , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Fluorescencia , Microscopía , Modelos Neurológicos , Nanotubos de Carbono , Células PC12 , Ratas , Imagen Individual de Molécula/instrumentación , Análisis Espectral
14.
J Bacteriol ; 201(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31235511

RESUMEN

Enteroaggregative Escherichia coli (EAEC) from the O104:H4 specific serotype caused a large outbreak of bloody diarrhea with some complicated cases of hemolytic-uremic syndrome (HUS) in Europe in 2011. The outbreak strain consisted in an EAEC capable to produce the Shiga toxin (Stx) subtype 2a, a characteristic from enterohemorrhagic E. coli QseBC two-component system detects AI-3/Epi/NE and mediates the chemical signaling between pathogen and mammalian host. This system coordinates a cascade of virulence genes expression in important human enteropathogens. The blocking of QseC of EAEC C227-11 (Stx+) strain by N-phenyl-4-{[(phenylamino) thioxomethyl]amino}-benzenesulfonamide (also known as LED209) in vivo demonstrated a lower efficiency of colonization. The periplasmic protein VisP, which is related to survival mechanisms in a colitis model of infection, bacterial membrane maintenance, and stress resistance, here presented high levels of expression during the initial infection within the host. Under acid stress conditions, visP expression levels were differentiated in an Stx-dependent way. Together, these results emphasize the important role of VisP and the histidine kinase sensor QseC in the C227-11 (Stx+) outbreak strain for the establishment of the infectious niche process in the C57BL/6 mouse model and of LED209 as a promising antivirulence drug strategy against these enteric pathogens.IMPORTANCE EAEC is a remarkable etiologic agent of acute and persistent diarrhea worldwide. The isolates harbor specific subsets of virulence genes and their pathogenesis needs to be better understood. Chemical signaling via histidine kinase sensor QseC has been shown as a potential target to elucidate the orchestration of the regulatory cascade of virulence factors.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli O104/metabolismo , Proteínas de Escherichia coli/metabolismo , Animales , Adhesión Bacteriana , Comunicación Celular , Brotes de Enfermedades , Escherichia coli O104/genética , Proteínas de Escherichia coli/genética , Europa (Continente)/epidemiología , Fimbrias Bacterianas , Microbioma Gastrointestinal , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Mutación , Toxina Shiga/metabolismo , Transducción de Señal
15.
Artículo en Inglés | MEDLINE | ID: mdl-29063285

RESUMEN

Chemical signals can provide useful information to potential mates and rivals. The production mechanisms of these signals are poorly understood in birds, despite emerging evidence that volatile compounds from preen oil may serve as chemosignals. Steroid hormones, including testosterone (T), may influence the production of these signals, yet variation in circulating T only partly accounts for this variation. We hypothesized that odor is a T-mediated signal of an individual's phenotype, regulated in part by androgen sensitivity in the uropygial gland. We quantified natural variation in chemosignals, T, uropygial gland androgen sensitivity, and aggressive behavior in dark-eyed juncos (Junco hyemalis). The interaction between circulating T and androgen receptor transcript abundance significantly correlated with volatile concentrations in male, but not female, preen oil. In both sexes, odorant variables correlated with aggressive response to an intruder. Our results suggest that preen oil volatiles could function as signals of aggressive intent, and, at least in males, may be regulated by local androgen receptor signaling in the uropygial gland. Because these behavioral and chemical traits have been linked with reproductive success, local regulation of androgen sensitivity in the periphery has the potential to be a target of selection in the evolution of avian olfactory signaling.


Asunto(s)
Agresión/fisiología , Andrógenos/metabolismo , Odorantes , Pájaros Cantores/metabolismo , Comunicación Animal , Animales , Femenino , Masculino , Aceites/metabolismo , ARN Mensajero/metabolismo , Reproducción/fisiología , Caracteres Sexuales , Olfato/fisiología , Territorialidad , Compuestos Orgánicos Volátiles
16.
Infect Immun ; 85(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28947641

RESUMEN

Intestinal bacteria employ microbial metabolites from the microbiota and chemical signaling during cell-to-cell communication to regulate several cellular functions. Pathogenic bacteria are extremely efficient in orchestrating their response to these signals through complex signaling transduction systems. Precise coordination and interpretation of these multiple chemical cues is important within the gastrointestinal (GI) tract. Enteric foodborne pathogens, such as enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica serovar Typhimurium, or the surrogate murine infection model for EHEC, Citrobacter rodentium, are all examples of microorganisms that modulate the expression of their virulence repertoire in response to signals from the microbiota or the host, such as autoinducer-3 (AI-3), epinephrine (Epi), and norepinephrine (NE). The QseBC and QseEF two-component systems, shared by these pathogens, are involved in sensing these signals. We review how these signaling systems sense and relay these signals to drive bacterial gene expression; specifically, to modulate virulence. We also review how bacteria chat via chemical signals integrated with metabolite recognition and utilization to promote successful associations among enteric pathogens, the microbiota, and the host.


Asunto(s)
Citrobacter rodentium/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Salmonella typhimurium/efectos de los fármacos , Transducción de Señal , Factores de Virulencia/biosíntesis , Animales , Ratones
17.
Angew Chem Int Ed Engl ; 56(17): 4729-4733, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28371259

RESUMEN

The nematode Caenorhabditis elegans uses simple building blocks from primary metabolism and a strategy of modular assembly to build a great diversity of signaling molecules, the ascarosides, which function as a chemical language in this model organism. In the ascarosides, the dideoxysugar ascarylose serves as a scaffold to which diverse moieties from lipid, amino acid, neurotransmitter, and nucleoside metabolism are attached. However, the mechanisms that underlie the highly specific assembly of ascarosides are not understood. We show that the acyl-CoA synthetase ACS-7, which localizes to lysosome-related organelles, is specifically required for the attachment of different building blocks to the 4'-position of ascr#9. We further show that mutants lacking lysosome-related organelles are defective in the production of all 4'-modified ascarosides, thus identifying the waste disposal system of the cell as a hotspot for ascaroside biosynthesis.


Asunto(s)
Vías Biosintéticas , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Coenzima A Ligasas/metabolismo , Glucolípidos/metabolismo , Hexosas/metabolismo , Animales , Caenorhabditis elegans/química , Glucolípidos/química , Hexosas/química , Lisosomas/metabolismo
18.
Horm Behav ; 81: 1-11, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26944610

RESUMEN

Chemical communication is a critical component of social behavior as it facilitates social encounters, allows for evaluation of the social partner, defines territories and resources, and advertises information such as sex and physiological state of an animal. Odors provide a key source of information about the social environment to rodents; however, studies identifying chemical compounds have thus far focused primarily on few species, particularly the house mouse. Moreover, considerably less attention has been focused on how environmental factors, reproductive phenotype, and behavioral context alter these compounds outside of reproduction. We examined the effects of photoperiod, sex, and social context on chemical communication in the seasonally breeding Siberian hamster. We sampled ventral gland secretions in both male and female hamsters before and after an aggressive encounter and identified changes in a range of volatile compounds. Next, we investigated how photoperiod, reproductive phenotype, and aggression altered ventral gland volatile compound composition across the sexes. Males exhibited a more diverse chemical composition, more sex-specific volatiles, and showed higher levels of excretion compared to females. Individual volatiles were also differentially excreted across photoperiod and reproductive phenotype, as well as differentially altered in response to an aggressive encounter. Female volatile compound composition, in contrast, did not differ across photoperiods or in response to aggression. Collectively, these data contribute to a greater understanding of context-dependent changes in chemical communication in a seasonally breeding rodent.


Asunto(s)
Agresión/fisiología , Glándulas Exocrinas/metabolismo , Phodopus/fisiología , Fotoperiodo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Cricetinae , Glándulas Exocrinas/química , Femenino , Masculino , Reproducción/fisiología , Conducta Social , Compuestos Orgánicos Volátiles/análisis
19.
Int J Mol Sci ; 17(12)2016 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-27886144

RESUMEN

Even though insects and plants are distantly related organisms, they developed an integument which is functionally and structurally similar. Besides functioning as a physical barrier to cope with abiotic and biotic stress, this interface, called cuticle, is also a source of chemical signaling. Crucial compounds with this respect are surface lipids and especially cuticular hydrocarbons (CHCs). This review is focused on the role of CHCs in fostering multilevel relationships among ants, plants and Lepidoptera (primarily butterflies). Indeed, particular traits of ants as eusocial organisms allowed the evolution and the maintenance of a variety of associations with both plants and animals. Basic concepts of myrmecophilous interactions and chemical deception strategies together with chemical composition, biosynthetic pathways and functions of CHCs as molecular cues of multitrophic systems are provided. Finally, the need to adopt a multidisciplinary and comprehensive approach in the survey of complex models is discussed.


Asunto(s)
Hormigas/fisiología , Conducta Animal/fisiología , Mariposas Diurnas/fisiología , Hidrocarburos/metabolismo , Animales , Lípidos/fisiología
20.
Curr Biol ; 33(10): 2075-2080.e3, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37054713

RESUMEN

Perfume making in male orchid bees is a unique behavior that has given rise to an entire pollination syndrome in the neotropics.1,2 Male orchid bees concoct and store species-specific perfume mixtures in specialized hind-leg pockets3 using volatiles acquired from multiple environmental sources, including orchid flowers.4,5 However, the function and the ultimate causes of this behavior have remained elusive.2,6 Although previous observations suggested that male perfumes serve as chemical signals, the attractiveness for females has not be shown.7,8 Here, we demonstrate that the possession of perfume increases male mating success and paternity in Euglossa dilemma, a species of orchid bees recently naturalized in Florida. We supplemented males reared from trap-nests with perfume loads harvested from wild conspecifics. In dual-choice experiments, males supplemented with perfumes mated with more females, and sired more offspring, than untreated, equal-aged, control males. Although perfume supplementation had little effect on the intensity of male courtship display, it changed the dynamics of male-male interactions. Our results demonstrate that male-acquired perfumes are sexual signals that stimulate females for mating and suggest that sexual selection is key in shaping the evolution of perfume communication in orchid bees.


Asunto(s)
Perfumes , Femenino , Abejas , Masculino , Animales , Cortejo , Especificidad de la Especie , Florida , Flores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA