Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Rev Med Virol ; 27(6)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29048711

RESUMEN

Rotaviruses (RVs) cause over 0.2 million deaths annually and are reported to be the foremost cause of gastroenteritis in infants and children worldwide. Vaccination against RVs is the most successful and unsurpassed strategy to combat infection to date. Although the 2 current vaccines, Rotarix and RotaTeq, have dramatically reduced the disease burden, still there is a need for new vaccines. In this context, RV virus-like particles (RV-VLPs) represent potential vaccine candidates as they are noninfectious and effective nonreplicating immunogens that may reduce the risk of side effects related to the conventional vaccines. VLPs being conformationally similar to the parent virus are highly immunogenic and hence provide enhanced protection and better serotype coverage. In this review, we have highlighted the various advantages and the implications of RV-VLPs, discussed the general strategies employed for their production, and talked about the recent developments made in this regard. Overall, the review emphasizes the probable utility of RV-VLPs in eradicating the highly widespread RVs.


Asunto(s)
Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/inmunología , Rotavirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Productos Biológicos/inmunología , Biotecnología , Humanos , Inmunidad Humoral , Evaluación de Resultado en la Atención de Salud , Rotavirus/clasificación , Rotavirus/genética , Rotavirus/ultraestructura , Infecciones por Rotavirus/inmunología , Vacunas contra Rotavirus/administración & dosificación , Vacunas contra Rotavirus/efectos adversos , Vacunación/métodos , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/efectos adversos
2.
Viruses ; 15(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37243195

RESUMEN

Virus-like particles (VLPs) have gained a lot of interest within the past two decades. The use of VLP-based vaccines to protect against three infectious agents-hepatitis B virus, human papillomavirus, and hepatitis E virus-has been approved; they are very efficacious and offer long-lasting immune responses. Besides these, VLPs from other viral infectious agents (that infect humans, animals, plants, and bacteria) are under development. These VLPs, especially those from human and animal viruses, serve as stand-alone vaccines to protect against viruses from which the VLPs were derived. Additionally, VLPs, including those derived from plant and bacterial viruses, serve as platforms upon which to display foreign peptide antigens from other infectious agents or metabolic diseases such as cancer, i.e., they can be used to develop chimeric VLPs. The goal of chimeric VLPs is to enhance the immunogenicity of foreign peptides displayed on VLPs and not necessarily the platforms. This review provides a summary of VLP vaccines for human and veterinary use that have been approved and those that are under development. Furthermore, this review summarizes chimeric VLP vaccines that have been developed and tested in pre-clinical studies. Finally, the review concludes with a snapshot of the advantages of VLP-based vaccines such as hybrid/mosaic VLPs over conventional vaccine approaches such as live-attenuated and inactivated vaccines.


Asunto(s)
Vacunas de Partículas Similares a Virus , Virus , Animales , Humanos , Virus de la Hepatitis B , Desarrollo de Vacunas
3.
Vaccines (Basel) ; 10(2)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35214688

RESUMEN

The rabbit hemorrhagic disease virus (RHDV) vaccine platform is a nanoparticle composed of 180 copies of the viral capsid protein, VP60, self-assembled into virus-like particles (VLPs). RHDV VLPs are able to accept the simultaneous incorporation of target epitopes at different insertion sites. The resulting chimeric RHDV VLPs displaying immunogenic foreign antigens have been shown to induce specific protective immune responses against inserted heterologous T-cytotoxic and B-cell epitopes in the mouse and pig models. In this study, we explored whether RHDV-based engineered VLPs can be developed as efficient multivalent vaccines co-delivering different foreign B-cell antigens. We generated bivalent chimeric RHDV VLPs displaying two model B-cell epitopes at different surface-exposed insertion sites, as well as the corresponding monovalent chimeric VLPs. The immunogenic potential of the bivalent chimeric VLPs versus the monovalent constructs was assessed in the mouse model. We found that the bivalent chimeric VLPs elicited a strong and balanced antibody response towards the two target epitopes tested, although slight reductions were observed in the levels of specific serum antibody titers induced by bivalent chimeric VLPs as compared with the corresponding monovalent constructs. These results suggest that RHDV VLPs could represent a promising platform for the development of efficient multivalent vaccines.

4.
Curr Top Med Chem ; 21(14): 1235-1250, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34145995

RESUMEN

BACKGROUND: Virus-like Particles (VLPs) are non-genetic multimeric nanoparticles synthesized through in vitro or in vivo self-assembly of one or more viral structural proteins. Immunogenicity and safety of VLPs make them ideal candidates for vaccine development and efficient nanocarriers for foreign antigens or adjuvants to activate the immune system. AIMS: The present study aimed to design and synthesize a chimeric VLP vaccine of the phage Qbeta (Qß) coat protein presenting the universal epitope of the coronavirus. METHODS: The RNA phage Qß coat protein was designed and synthesized, denoted as Qbeta. The CoV epitope, a universal epitope of coronavirus, was inserted into the C-terminal of Qbeta using genetic recombination, designated as Qbeta-CoV. The N-terminal of Qbeta-CoV was successively inserted into the TEV restriction site using mCherry red fluorescent label and modified affinity purified histidine label 6xHE, which was denoted as HE-Qbeta-CoV. Isopropyl ß-D-1-thiogalactopyranoside (IPTG) assessment revealed the expression of Qbeta, Qbeta-CoV, and HE-Qbeta-CoV in the BL21 (DE3) cells. The fusion protein was purified by salting out using ammonium sulfate and affinity chromatography. The morphology of particles was observed using electron microscopy. The female BALB/C mice were immunized intraperitoneally with the Qbeta-CoV and HE-Qbeta-- CoV chimeric VLPs vaccines and their sera were collected for the detection of antibody level and antibody titer using ELISA. The serum is used for the neutralization test of the three viruses of MHV, PEDV, and PDCoV. RESULTS: The results revealed that the fusion proteins Qbeta, Qbeta-CoV, and HE-Qbeta-CoV could all obtain successful expression. Particles with high purity were obtained after purification; the chimeric particles of Qbeta-CoV and HE-Qbeta-CoV were found to be similar to Qbeta particles in morphology and formed chimeric VLPs. In addition, two chimeric VLP vaccines induced specific antibody responses in mice and the antibodies showed certain neutralizing activity. CONCLUSION: The successful construction of the chimeric VLPs of the phage Qß coat protein presenting the universal epitope of coronavirus provides a vaccine form with potential clinical applications for the treatment of coronavirus disease.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Proteínas de la Cápside/inmunología , Coronavirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Ratones Endogámicos BALB C , Microscopía Electrónica de Rastreo , Filogenia , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Vacunas de Partículas Similares a Virus/genética , Proteínas Virales/genética
5.
Vaccines (Basel) ; 9(5)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066934

RESUMEN

Currently there is a clear trend towards the establishment of virus-like particles (VLPs) as a powerful tool for vaccine development. VLPs are tunable nanoparticles that can be engineered to be used as platforms for multimeric display of foreign antigens. We have previously reported that VLPs derived from rabbit hemorrhagic disease virus (RHDV) constitute an excellent vaccine vector, capable of inducing specific protective immune responses against inserted heterologous T-cytotoxic and B-cell epitopes. Here, we evaluate the ability of chimeric RHDV VLPs to elicit immune response and protection against Foot-and-Mouth disease virus (FMDV), one of the most devastating livestock diseases. For this purpose, we generated a set of chimeric VLPs containing two FMDV-derived epitopes: a neutralizing B-cell epitope (VP1 (140-158)) and a T-cell epitope [3A (21-35)]. The epitopes were inserted joined or individually at two different locations within the RHDV capsid protein. The immunogenicity and protection potential of the chimeric VLPs were analyzed in the mouse and pig models. Herein we show that the RHDV engineered VLPs displaying FMDV-derived epitopes elicit a robust neutralizing immune response in mice and pigs, affording partial clinical protection against an FMDV challenge in pigs.

6.
Vaccine ; 36(40): 5990-5998, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30172635

RESUMEN

We previously demonstrated that intramuscular immunization with virus-like particles (VLPs) composed of the haemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins of A/meerkat/Shanghai/SH-1/2012 (clade 2.3.2.1) protected mice from lethal challenge with viruses from other H5 HPAI clades. The inclusion of additional proteins that can serve as immunological adjuvants in VLPs may enhance adaptive immune responses following vaccination, and oral vaccines may represent the safest choice. Here, we report the generation of H5N1 VLPs composed of the viral HA, NA, and M1 proteins and membrane-anchored forms of the Escherichia coli heat-labile enterotoxin B subunit protein (LTB) or the Toll-like receptor 5 ligand flagellin (Flic). Mice intramuscularly or orally immunized with VLPs containing LTB or Flic generated greater humoural and cellular immune responses than those administered H5N1 VLPs without LTB or Flic. Intramuscular immunization with VLPs protected mice from lethal challenge with homologous or heterologous H5N1 viruses irrespective of whether the VLPs additionally included LTB or Flic. In contrast, oral immunization of mice with LTB- or Flic-VLPs conferred substantial protection against lethal challenge with both homologous and heterologous H5N1 influenza viruses, whereas mice immunized orally with VLPs lacking LTB and Flic universally succumbed to infection. Mice immunized orally with LTB- or Flic-VLPs showed 10-fold higher virus-specific IgG titres than mice immunized with H5N1-VLPs lacking LTB or Flic. Collectively, these results indicate that the inclusion of immunostimulatory proteins, such as LTB and Flic, in VLP-based vaccines may represent a promising new approach for the control of current H5N1 HPAI outbreaks by eliciting higher humoural and cellular immune responses and conferring improved cross-clade protection.


Asunto(s)
Toxinas Bacterianas/química , Enterotoxinas/química , Proteínas de Escherichia coli/química , Flagelina/química , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Administración Oral , Animales , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunogenicidad Vacunal , Subtipo H5N1 del Virus de la Influenza A , Inyecciones Intramusculares , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/inmunología , Proteínas de la Matriz Viral/inmunología
7.
Virology ; 489: 34-43, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26704627

RESUMEN

The capsid protein (CP) of Sesbania mosaic virus (SeMV, a T=3 plant virus) consists of a disordered N-terminal R-domain and an ordered S-domain. Removal of the R-domain results in the formation of T=1 particles. In the current study, the R-domain was replaced with unrelated polypeptides of similar lengths: the B-domain of Staphylococcus aureus SpA, and SeMV encoded polypeptides P8 and P10. The chimeric proteins contained T=3 or larger virus-like particles (VLPs) and could not be crystallized. The presence of metal ions during purification resulted in a large number of heterogeneous nucleoprotein complexes. N∆65-B (R domain replaced with B domain) could also be purified in a dimeric form. Its crystal structure revealed T=1 particles devoid of metal ions and the B-domain was disordered. However, the B-domain was functional in N∆65-B VLPs, suggesting possible biotechnological applications. These studies illustrate the importance of N-terminal residues, metal ions and robustness of the assembly process.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Virus ARN/metabolismo , Proteínas de la Cápside/genética , Cristalografía por Rayos X , Metales/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Virus ARN/química , Virus ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA