Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.888
Filtrar
Más filtros

Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 209(4): 390-401, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38029294

RESUMEN

Rationale: The prevalence and diagnostic utility of bronchodilator responsiveness (BDR) in a real-life setting is unclear. Objective: To explore this uncertainty in patients aged ⩾12 years with physician-assigned diagnoses of asthma, asthma and chronic obstructive pulmonary disease (COPD), or COPD in NOVELTY, a prospective cohort study in primary and secondary care in 18 countries. Methods: The proportion of patients with a positive BDR test in each diagnostic category was calculated using 2005 (ΔFEV1 or ΔFVC ⩾12% and ⩾200 ml) and 2021 (ΔFEV1 or ΔFVC >10% predicted) European Respiratory Society/American Thoracic Society criteria. Measurements and Main Results: We studied 3,519 patients with a physician-assigned diagnosis of asthma, 833 with a diagnosis of asthma + COPD, and 2,436 with a diagnosis of COPD. The prevalence of BDR was 19.7% (asthma), 29.6% (asthma + COPD), and 24.7% (COPD) using 2005 criteria and 18.1%, 23.3%, and 18.0%, respectively, using 2021 criteria. Using 2021 criteria in patients diagnosed with asthma, BDR was associated with higher fractional exhaled nitric oxide; lower lung function; higher symptom burden; more frequent hospital admissions; and greater use of triple therapy, oral corticosteroids, or biologics. In patients diagnosed with COPD, BDR (2021) was associated with lower lung function and higher symptom burden. Conclusions: BDR prevalence in patients with chronic airway diseases receiving treatment ranges from 18% to 30%, being modestly lower with the 2021 than with the 2005 European Respiratory Society/American Thoracic Society criteria, and it is associated with lower lung function and greater symptom burden. These observations question the validity of BDR as a key diagnostic tool for asthma managed in clinical practice or as a standard inclusion criterion for clinical trials of asthma and instead suggest that BDR be considered a treatable trait for chronic airway disease.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Anciano , Broncodilatadores/uso terapéutico , Estudios Prospectivos , Prevalencia , Volumen Espiratorio Forzado , Capacidad Vital , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Asma/diagnóstico , Asma/tratamiento farmacológico , Asma/epidemiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38597717

RESUMEN

RATIONALE: According to GOLD, the ratio of FEV1/FVC is used to confirm airflow obstruction in COPD diagnosis, whereas FEV1% of predicted (FEV1%pred) is used for severity grading. STaging of Airflow obstruction by the FEV1/FVC Ratio (STAR) and its prediction of adverse outcomes has not been evaluated in general populations. OBJECTIVE: To compare the STAR (FEV1/FVC) versus GOLD (FEV1%pred) classification for the severity of airflow limitation in terms of exertional breathlessness and mortality in the general US population. METHODS: Severity stages according to STAR and GOLD were applied to the multi-ethnic National Health and Nutrition Examination Survey (NHANES) 2007-2012 survey including ages 18-80 years, using post-bronchodilatory FEV1/FVC<0.70 to define airflow obstruction in both staging systems. Prevalence of severity stages STAR 1-4 and GOLD 1-4 was calculated and associations with breathlessness and mortality were analyzed by multinomial logistic regression and Cox regression, respectively. RESULTS: STAR versus GOLD severity staging of airflow obstruction showed similar associations with breathlessness and all-cause mortality, regardless of ethnicity/race. In those with airflow obstruction, the correlation between the two classification systems was 0.461 (p<0.001). STAR reclassified 59% of GOLD stage 2 as having mild airflow obstruction (STAR 1). STAR 1 was more clearly differentiated from the non-obstructive compared to GOLD stage 1 in terms of both breathlessness and mortality. CONCLUSIONS: FEV1/FVC and FEV1%pred as measures of severity of airflow limitation show similar prediction of breathlessness and mortality in the adult US population across ethnicity groups. However, stage 1 differed more clearly from non-obstructive based on FEV1/FVC than FEV1%pred. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

3.
Artículo en Inglés | MEDLINE | ID: mdl-38607551

RESUMEN

RATIONALE: The European Respiratory Society (ERS) and the American Thoracic Society (ATS) recommend using z-scores, and the ATS has recommended using Global Lung Initiative (GLI)- "Global" race-neutral reference equations for spirometry interpretation. However, these recommendations have been variably implemented and the impact has not been widely assessed, both in clinical and research settings. OBJECTIVES: We evaluated the ERS/ATS airflow obstruction severity classification. METHODS: In the COPDGene Study (n = 10,108), airflow obstruction has been defined as a forced expiratory volume in one second to forced vital capacity (FEV1/FVC) ratio <0.70, with spirometry severity graded from class 1 to 4 based on race-specific percent predicted (pp) FEV1 cut-points as recommended by the Global Initiative for Chronic Obstructive Lung Disease (GOLD). We compared the GOLD approach, using NHANES III race-specific equations, to the application of GLI-Global equations using the ERS/ATS definition of airflow obstruction as FEV1/FVC ratio < lower limit of normal (LLN) and z-FEV1 cut-points of -1.645, -2.5, and -4 ("zGLI Global"). We tested the four-tier severity scheme for association with COPD outcomes. MEASUREMENTS AND MAIN RESULTS: The lowest agreement between ERS/ATS with zGLI Global and the GOLD classification was observed in individuals with milder disease (56.9% and 42.5% in GOLD 1 and 2) and race was a major determinant of redistribution. After adjustment for relevant covariates, zGLI Global distinguished all-cause mortality risk between normal spirometry and the first grade of COPD (Hazard Ratio 1.23, 95% CI 1.04-1.44, p=0.014), and showed a linear increase in exacerbation rates with increasing disease severity, in comparison to GOLD. CONCLUSIONS: The zGLI Global severity classification outperformed GOLD in the discrimination of survival, exacerbations, and imaging characteristics.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38935874

RESUMEN

Rationale Dysanapsis refers to a mismatch between airway tree caliber and lung size arising early in life. Dysanapsis assessed by computed tomography (CT) is evident by early adulthood and associated with chronic obstructive pulmonary disease (COPD) risk later in life. Objective By examining the genetic factors associated with CT-assessed dysanapsis, we aimed to elucidate its molecular underpinnings and physiological significance across the lifespan. Methods We performed a genome-wide association study (GWAS) of CT-assessed dysanapsis in 11,951 adults, including individuals from two population-based and two COPD-enriched studies. We applied colocalization analysis to integrate GWAS and gene expression data from whole blood and lung. Genetic variants associated with dysanapsis were combined into a genetic risk score that was applied to examine association with lung function in children from a population-based birth cohort (n=1,278) and adults from the UK Biobank (n=369,157). Measurements and Main Results CT-assessed dysanapsis was associated with genetic variants from 21 independent signals in 19 gene regions, implicating HHIP, DSP, and NPNT as potential molecular targets based on colocalization of their expression. Higher dysanapsis genetic risk score was associated with obstructive spirometry among 5 year old children and among adults in the 5th, 6th and 7th decades of life. Conclusions CT-assessed dysanapsis is associated with variation in genes previously implicated in lung development and dysanapsis genetic risk is associated with obstructive lung function from early life through older adulthood. Dysanapsis may represent an endo-phenotype link between the genetic variations associated with lung function and COPD.

5.
Am J Respir Crit Care Med ; 209(10): 1208-1218, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38175920

RESUMEN

Rationale: Chronic obstructive pulmonary disease (COPD) due to tobacco smoking commonly presents when extensive lung damage has occurred. Objectives: We hypothesized that structural change would be detected early in the natural history of COPD and would relate to loss of lung function with time. Methods: We recruited 431 current smokers (median age, 39 yr; 16 pack-years smoked) and recorded symptoms using the COPD Assessment Test (CAT), spirometry, and quantitative thoracic computed tomography (QCT) scans at study entry. These scan results were compared with those from 67 never-smoking control subjects. Three hundred sixty-eight participants were followed every six months with measurement of postbronchodilator spirometry for a median of 32 months. The rate of FEV1 decline, adjusted for current smoking status, age, and sex, was related to the initial QCT appearances and symptoms, measured using the CAT. Measurements and Main Results: There were no material differences in demography or subjective CT appearances between the young smokers and control subjects, but 55.7% of the former had CAT scores greater than 10, and 24.2% reported chronic bronchitis. QCT assessments of disease probability-defined functional small airway disease, ground-glass opacification, bronchovascular prominence, and ratio of small blood vessel volume to total pulmonary vessel volume were increased compared with control subjects and were all associated with a faster FEV1 decline, as was a higher CAT score. Conclusions: Radiological abnormalities on CT are already established in young smokers with normal lung function and are associated with FEV1 loss independently of the impact of symptoms. Structural abnormalities are present early in the natural history of COPD and are markers of disease progression. Clinical trial registered with www.clinicaltrials.gov (NCT03480347).


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Espirometría , Tomografía Computarizada por Rayos X , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Progresión de la Enfermedad , Volumen Espiratorio Forzado/fisiología , Pulmón/fisiopatología , Pulmón/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Fumadores/estadística & datos numéricos , Fumar/efectos adversos , Fumar/fisiopatología , Estudios de Casos y Controles
6.
Artículo en Inglés | MEDLINE | ID: mdl-38507607

RESUMEN

RATIONALE: Individuals with COPD have airflow obstruction and maldistribution of ventilation. For those living at high altitude, any gas exchange abnormality is compounded by reduced partial pressures of inspired oxygen. OBJECTIVES: Does residence at higher-altitude exposure affect COPD outcomes, including lung function, imaging characteristics, symptoms, health status, functional exercise capacity, exacerbations, or mortality? METHODS: From the SPIROMICS cohort, we identified individuals with COPD living below 1,000 ft (305 m) elevation (n= 1,367) versus above 4,000 ft (1,219 m) elevation (n= 288). Multivariable regression models were used to evaluate associations of exposure to high altitude with COPD-related outcomes. MEASUREMENTS AND MAIN RESULTS: Living at higher altitude was associated with reduced functional exercise capacity as defined by 6MWD (-32.3 m, (-55.7 to -28.6)). There were no differences in patient-reported outcomes as defined by symptoms (CAT, mMRC), or health status (SGRQ). Higher altitude was not associated with a different rate of FEV1 decline. Higher altitude was associated with lower odds of severe exacerbations (IRR 0.65, (0.46 to 0.90)). There were no differences in small airway disease, air trapping, or emphysema. In longitudinal analyses, higher altitude was associated with increased mortality (HR 1.25, (1.0 to 1.55)); however, this association was no longer significant when accounting for air pollution. CONCLUSIONS: Chronic altitude exposure is associated with reduced functional exercise capacity in individuals with COPD, but this did not translate into differences in symptoms or health status. Additionally, chronic high-altitude exposure did not affect progression of disease as defined by longitudinal changes in spirometry.

7.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046017

RESUMEN

Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Pulmón/patología , Macrófagos Alveolares/metabolismo , Células Epiteliales Alveolares/metabolismo , Animales , Apoptosis/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico/fisiología , Femenino , Homeostasis , Inflamación , Péptidos y Proteínas de Señalización Intercelular/fisiología , Pulmón/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Fagocitosis/fisiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/metabolismo , Humo/efectos adversos , Fumar/efectos adversos , Nicotiana/efectos adversos
8.
Proc Natl Acad Sci U S A ; 119(46): e2209870119, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36346845

RESUMEN

Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the Hhip gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.


Asunto(s)
Habénula , Enfermedades Pulmonares , Receptores Nicotínicos , Ratones , Animales , Nicotina/farmacología , Nicotina/metabolismo , Habénula/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Receptores Nicotínicos/metabolismo , Neuronas Colinérgicas/metabolismo , Enfermedades Pulmonares/metabolismo
9.
J Infect Dis ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836471

RESUMEN

BACKGROUND: We determined the relationships between cytokine expression in sputum and clinical data to characterise and understand Chronic Obstructive Pulmonary Disease (COPD) exacerbations in COPD patients. METHODS: We measured 30 cytokines in 936 sputum samples, collected at stable state (ST) and exacerbation (EX) visits from 99 participants in the Acute Exacerbation and Respiratory InfectionS in COPD (AERIS) study (NCT01360398, www.clinicaltrials.gov). We determined their longitudinal expression and examined differential expression based on disease status or exacerbation type. RESULTS: Of the cytokines, 17 were suitable for analysis. As for disease states, in EX sputum samples, IL-17A, TNF-α, IL-1ß, and IL-10 were significantly increased compared to ST sputum samples, but a logistic mixed model could not predict disease state. As for exacerbation types, bacteria-associated exacerbations showed higher expression of IL-17A, TNF-α, IL-1ß, and IL-1α. IL-1α, IL-1ß, and TNF-α were identified as suitable biomarkers for bacteria-associated exacerbation. Bacteria-associated exacerbations also formed a cluster separate from other exacerbation types in principal component analysis. CONCLUSIONS: Measurement of cytokines in sputum from COPD patients could help identify bacteria-associated exacerbations based on increased concentrations of IL-1α, IL-1ß, or TNF-α. This finding may provide a point-of-care assessment to distinguish a bacterial exacerbation of COPD from other exacerbation types.

10.
Am J Respir Cell Mol Biol ; 70(3): 193-202, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38029303

RESUMEN

The high mortality rate in patients with chronic obstructive pulmonary disease (COPD) may be due to pulmonary hypertension (PH). These diseases are highly associated with cigarette smoke and its key component nicotine. Here, we created a novel animal model of PH using coexposure to nicotine (or cigarette smoke) and hypoxia. This heretofore unreported model showed significant early-onset pulmonary vasoremodeling and PH. Using newly generated mice with complementary smooth muscle-specific Rieske iron-sulfur protein (RISP) gene knockout and overexpression, we demonstrate that RISP is critically involved in promoting pulmonary vasoremodeling and PH, which are implemented by oxidative ataxia telangiectasia-mutated-mediated DNA damage and NF-κB-dependent inflammation in a reciprocal positive mechanism. Together, our findings establish for the first time an animal model of hypoxia-induced early-onset PH in which mitochondrial RISP-dependent DNA damage and NF-κB inflammation play critical roles in vasoremodeling. Specific therapeutic targets for RISP and related oxidative stress-associated signaling pathways may create unique and effective treatments for PH, chronic obstructive pulmonary disease, and their complications.


Asunto(s)
Complejo III de Transporte de Electrones , Hipertensión Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Nicotina , FN-kappa B , Hipoxia/complicaciones , ADN Mitocondrial , Inflamación
11.
Am J Respir Cell Mol Biol ; 70(4): 239-246, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190723

RESUMEN

The extracellular matrix (ECM) is not just a three-dimensional scaffold that provides stable support for all cells in the lungs, but also an important component of chronic fibrotic airway, vascular, and interstitial diseases. It is a bioactive entity that is dynamically modulated during tissue homeostasis and disease, that controls structural and immune cell functions and drug responses, and that can release fragments that have biological activity and that can be used to monitor disease activity. There is a growing recognition of the importance of considering ECM changes in chronic airway, vascular, and interstitial diseases, including 1) compositional changes, 2) structural and organizational changes, and 3) mechanical changes and how these affect disease pathogenesis. As altered ECM biology is an important component of many lung diseases, disease models must incorporate this factor to fully recapitulate disease-driver pathways and to study potential novel therapeutic interventions. Although novel models are evolving that capture some or all of the elements of the altered ECM microenvironment in lung diseases, opportunities exist to more fully understand cell-ECM interactions that will help devise future therapeutic targets to restore function in chronic lung diseases. In this perspective article, we review evolving knowledge about the ECM's role in homeostasis and disease in the lung.


Asunto(s)
Enfermedades Pulmonares , Humanos , Enfermedades Pulmonares/metabolismo , Matriz Extracelular/metabolismo , Pulmón/patología , Proteínas de la Matriz Extracelular/metabolismo
12.
Am J Respir Cell Mol Biol ; 70(6): 482-492, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38377392

RESUMEN

Cigarette smoking is known to be the leading cause of chronic obstructive pulmonary disease (COPD). However, the detailed mechanisms have not been elucidated. PAF (platelet-activating factor), a potent inflammatory mediator, is involved in the pathogenesis of various respiratory diseases such as bronchial asthma and COPD. We focused on LPLAT9 (lysophospholipid acyltransferase 9), a biosynthetic enzyme of PAF, in the pathogenesis of COPD. LPLAT9 gene expression was observed in excised COPD lungs and single-cell RNA sequencing data of alveolar macrophages (AMs). LPLAT9 was predominant and upregulated in AMs, particularly monocyte-derived AMs, in patients with COPD. To identify the function of LPLAT9/PAF in AMs in the pathogenesis of COPD, we exposed systemic LPLAT9-knockout (LPALT9-/-) mice to cigarette smoke (CS). CS increased the number of AMs, especially the monocyte-derived fraction, which secreted MMP12 (matrix metalloprotease 12). Also, CS augmented LPLAT9 phosphorylation/activation on macrophages and, subsequently, PAF synthesis in the lung. The LPLAT9-/- mouse lung showed reduced PAF production after CS exposure. Intratracheal PAF administration accumulated AMs by increasing MCP1 (monocyte chemoattractant protein-1). After CS exposure, AM accumulation and subsequent pulmonary emphysema, a primary pathologic change of COPD, were reduced in LPALT9-/- mice compared with LPLAT9+/+ mice. Notably, these phenotypes were again worsened by LPLAT9+/+ bone marrow transplantation in LPALT9-/- mice. Thus, CS-induced LPLAT9 activation in monocyte-derived AMs aggravated pulmonary emphysema via PAF-induced further accumulation of AMs. These results suggest that PAF synthesized by LPLAT9 has an important role in the pathogenesis of COPD.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa , Macrófagos Alveolares , Ratones Noqueados , Factor de Activación Plaquetaria , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patología , Enfisema Pulmonar/genética , Factor de Activación Plaquetaria/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Ratones , Masculino , Ratones Endogámicos C57BL , Metaloproteinasa 12 de la Matriz/metabolismo , Metaloproteinasa 12 de la Matriz/genética , Pulmón/metabolismo , Pulmón/patología , Fumar Cigarrillos/efectos adversos , Fumar Cigarrillos/metabolismo , Femenino
13.
J Biol Chem ; 299(8): 105052, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37454739

RESUMEN

Chronic obstructive pulmonary disease (COPD), which includes emphysema and chronic bronchitis, is now the third cause of death worldwide, and COVID-19 infection has been reported as an exacerbation factor of them. In this study, we report that the intratracheal administration of the keratan sulfate-based disaccharide L4 mitigates the symptoms of elastase-induced emphysema in a mouse model. To know the molecular mechanisms, we performed a functional analysis of a C-type lectin receptor, langerin, a molecule that binds L4. Using mouse BMDCs (bone marrow-derived dendritic cells) as langerin-expressing cells, we observed the downregulation of IL-6 and TNFa and the upregulation of IL-10 after incubation with L4. We also identified CapG (a macrophage-capping protein) as a possible molecule that binds langerin by immunoprecipitation combined with a mass spectrometry analysis. We identified a portion of the CapG that was localized in the nucleus and binds to the promoter region of IL-6 and the TNFa gene in BMDCs, suggesting that CapG suppresses the gene expression of IL-6 and TNFa as an inhibitory transcriptional factor. To examine the effects of L4 in vivo, we also generated langerin-knockout mice by means of genome editing technology. In an emphysema mouse model, the administration of L4 did not mitigate the symptoms of emphysema as well as the inflammatory state of the lung in the langerin-knockout mice. These data suggest that the anti-inflammatory effect of L4 through the langerin-CapG axis represents a potential therapeutic target for the treatment of emphysema and COPD.


Asunto(s)
Disacáridos , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Ratones , Disacáridos/farmacología , Modelos Animales de Enfermedad , Interleucina-6/genética , Sulfato de Queratano/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/tratamiento farmacológico , Enfisema Pulmonar/genética , Enfisema Pulmonar/inducido químicamente , Lectinas Tipo C/metabolismo
14.
BMC Genomics ; 25(1): 607, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886662

RESUMEN

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) describes a group of progressive lung diseases causing breathing difficulties. While COPD development typically involves a complex interplay between genetic and environmental factors, genetics play a role in disease susceptibility. This study used genome-wide association studies (GWAS) and polygenic risk score (PRS) to elucidate the genetic basis for COPD in Taiwanese patients. RESULTS: GWAS was performed on a Taiwanese COPD case-control cohort with a sample size of 5,442 cases and 17,681 controls. Additionally, the PRS was calculated and assessed in our target groups. GWAS results indicate that although there were no single nucleotide polymorphisms (SNPs) of genome-wide significance, prominent COPD susceptibility loci on or nearby genes such as WWTR1, EXT1, INTU, MAP3K7CL, MAMDC2, BZW1/CLK1, LINC01197, LINC01894, and CFAP95 (C9orf135) were identified, which had not been reported in previous studies. Thirteen susceptibility loci, such as CHRNA4, AFAP1, and DTWD1, previously reported in other populations were replicated and confirmed to be associated with COPD in Taiwanese populations. The PRS was determined in the target groups using the summary statistics from our base group, yielding an effective association with COPD (odds ratio [OR] 1.09, 95% confidence interval [CI] 1.02-1.17, p = 0.011). Furthermore, replication a previous lung function trait PRS model in our target group, showed a significant association of COPD susceptibility with PRS of Forced Expiratory Volume in one second (FEV1)/Forced Vital Capacity (FCV) (OR 0.89, 95% CI 0.83-0.95, p = 0.001). CONCLUSIONS: Novel COPD-related genes were identified in the studied Taiwanese population. The PRS model, based on COPD or lung function traits, enables disease risk estimation and enhances prediction before suffering. These results offer new perspectives on the genetics of COPD and serve as a basis for future research.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Enfermedad Pulmonar Obstructiva Crónica , Enfermedad Pulmonar Obstructiva Crónica/genética , Humanos , Taiwán , Masculino , Femenino , Anciano , Herencia Multifactorial , Estudios de Casos y Controles , Persona de Mediana Edad , Factores de Riesgo , Sitios Genéticos , Pueblo Asiatico/genética , Puntuación de Riesgo Genético
15.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L98-L110, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38050687

RESUMEN

miR-146a, a microRNA (miRNA) that regulates inflammatory responses, plays an important role in many inflammatory diseases. Although an in vitro study had suggested that miR-146a is involved in abnormal inflammatory response, being a critical factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), in vivo evidence of its pathogenic role in COPD remains limited. Eight-week-old male B6(FVB)-Mir146tm1.1Bal/J [miR-146a knockout (KO)] and C57BL/6J mice were intratracheally administered elastase and evaluated after 28 days or exposed to cigarette smoke (CS) and evaluated after 5 mo. miR-146a expression was significantly increased in C57BL/6J mouse lungs due to elastase administration (P = 0.027) or CS exposure (P = 0.019) compared with that in the control group. Compared with C57BL/6J mice, elastase-administered miR-146a-KO mice had lower average computed tomography (CT) values (P = 0.017) and increased lung volume-to-weight ratio (P = 0.016), mean linear intercept (P < 0.001), and destructive index (P < 0.001). Moreover, total cell (P = 0.006), macrophage (P = 0.001), neutrophil (P = 0.026), chemokine (C-X-C motif) ligand 2/macrophage inflammatory protein-2 [P = 0.045; in bronchoalveolar lavage fluid (BALF)], cyclooxygenase-2, and matrix metalloproteinase-2 levels were all increased (in the lungs). Following long-term CS exposure, miR-146a-KO mice showed a greater degree of emphysema formation in their lungs and inflammatory response in the BALF and lungs than C57BL/6J mice. Collectively, miR-146a protected against emphysema formation and the associated abnormal inflammatory response in two murine models.NEW & NOTEWORTHY This study demonstrates that miR-146a expression is upregulated in mouse lungs because of elastase- and CS-induced emphysema and that the inflammatory response by elastase or CS is enhanced in the lungs of miR-146a-KO mice than in those of control mice, resulting in the promotion of emphysema. This is the first study to evaluate the protective role of miR-146a in emphysema formation and the associated abnormal inflammatory response in different in vivo models.


Asunto(s)
Enfisema , MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Masculino , Ratones , Enfisema/etiología , Inflamación/patología , Pulmón/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Elastasa Pancreática/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/genética
16.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L754-L769, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625125

RESUMEN

Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.


Asunto(s)
Mitocondrias , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Animales , Mucosa Respiratoria/patología , Mucosa Respiratoria/metabolismo , Células Epiteliales/patología , Células Epiteliales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Lab Invest ; 104(3): 100319, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38158123

RESUMEN

Effective inhibition of macrophage activation is critical for resolving inflammation and restoring pulmonary function in patients with chronic obstructive pulmonary disease (COPD). In this study, we identified the dual-enhanced cyclooxygenase-2 (COX-2)/soluble epoxide hydrolase (sEH) as a novel regulator of macrophage activation in COPD. Both COX-2 and sEH were found to be increased in patients and mice with COPD and in macrophages exposed to cigarette smoke extract. Pharmacological reduction of the COX-2 and sEH by 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide (PTUPB) effectively prevented macrophage activation, downregulated inflammation-related genes, and reduced lung injury, thereby improving respiratory function in a mouse model of COPD induced by cigarette smoke and lipopolysaccharide. Mechanistically, enhanced COX-2/sEH triggered the activation of the NACHT, LRR, and PYD domains-containing protein 3 inflammasome, leading to the cleavage of pro-IL-1ß into its active form in macrophages and amplifying inflammatory responses. These findings demonstrate that targeting COX-2/sEH-mediated macrophage activation may be a promising therapeutic strategy for COPD. Importantly, our data support the potential use of the dual COX-2 and sEH inhibitor PTUPB as a therapeutic drug for the treatment of COPD.


Asunto(s)
Activación de Macrófagos , Enfermedad Pulmonar Obstructiva Crónica , Ratones , Humanos , Animales , Ciclooxigenasa 2/metabolismo , Inflamación/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Inflamasomas/metabolismo
18.
Lab Invest ; 104(2): 100307, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38104865

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.


Asunto(s)
Mitocondrias , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Mitocondrias/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Envejecimiento , Mitofagia
19.
J Gene Med ; 26(1): e3607, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37795773

RESUMEN

BACKGROUND: The present study aimed to explore the mechanism of the modified Bushen Yiqi formula (MBYF) in the treatment of chronic obstructive pulmonary disease (COPD) based on network pharmacology and molecular docking. METHODS: First, the active ingredients and corresponding targets in MBYF were mined through the Traditional Chinese Medicine Systems Pharmacology database. Subsequently, Online Mendelian Inheritance in Man, DrugBank, and GeneCard were used to screen COPD-related targets. Cytoscape was used to construct a network of candidate components of MBYF in COPD treatment. The overlapping targets of COPD and MBYF were used to treat COPD, and then CytoHubba and CytoNAC plug-ins in Cytoscape were used for topology analysis to build the core network. In addition, core targets were used for Gene Ontology analysis and enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes. Finally, AutoDock Vina software was used to conduct a molecular docking study on the core active ingredients and core targets to verify the above network pharmacological analysis. RESULTS: Seventy-nine active components of MBYF were screened and 261 corresponding targets were found. At the same time, 1307 related targets corresponding to COPD were screened and 111 overlapping targets were matched. By bioinformatics analysis, 10 core targets were identified, and subsequently, enrichment analysis revealed 385 BP, two CC, eight MF and 78 related signaling pathways. The binding of the core active components in MBYF to the core target was further verified by molecular docking, and all showed good binding. CONCLUSIONS: The active components of MBYF, such as quercetin, kaempferol, luteolin, and baicalein, may be the material basis for the treatment of chronic obstructive pulmonary disease. They affect the expression of inflammatory cells and inflammatory factors, protein phosphorylation, and smooth muscle hyperplasia through tumor necrosis factor, interleukin-17, mitogen-activated protein kinase, nuclear factor-kappa B and other signaling pathways.


Asunto(s)
Farmacología en Red , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Simulación del Acoplamiento Molecular , Biología Computacional , Bases de Datos Genéticas , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
20.
Biochem Biophys Res Commun ; 694: 149419, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38145597

RESUMEN

BACKGROUND: Increasing evidence indicates that bioactive lipid mediators are involved in chronic obstructive pulmonary disease (COPD) pathogenesis. Recently, glycero-lysophospholipids, such as lysophosphatidic acid (LysoPA) and lysophosphatidylserine (LysoPS), have been recognized as significant inflammation-related lipid mediators. However, their association with COPD remains unclear. METHODS: We used an elastase-induced murine emphysema model to analyze the levels of lysophospholipids and diacyl-phospholipids in the lungs. Additionally, we assessed the expression of LysoPS-related genes and published data on smokers. RESULTS: In the early phase of an elastase-induced murine emphysema model, the levels of LysoPS and its precursor (phosphatidylserine [PS]) were significantly reduced, without significant modulations in other glycero-lysophospholipids. Additionally, there was an upregulation in the expression of lysoPS receptors, specifically GPR34, observed in the lungs of a cigarette smoke-exposed mouse model and the alveolar macrophages of human smokers. Elastase stimulation induces GPR34 expression in a human macrophage cell line in vitro. CONCLUSIONS: Elastase-induced lung emphysema affects the LysoPS/PS-GPR34 axis, and cigarette smoking or elastase upregulates GPR34 expression in alveolar macrophages. This novel association may serve as a potential pharmacological target for COPD treatment.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Ratones , Humanos , Animales , Elastasa Pancreática , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema/inducido químicamente , Lisofosfolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA