RESUMEN
BACKGROUND: Gram-negative bacteria are the main bacterial pathogens infecting Chinese giant salamanders (Andrias davidianus; CGS) in captivity and the wild, causing substantial economic losses in the CGS industry. However, the molecular mechanisms underlying pathogenesis following infection remain unclear. RESULTS: Spleen-derived macrophages from healthy CGS were isolated, cultured, and identified using density gradient centrifugation and immunofluorescence. A macrophage transcriptome database was established 0, 6, and 12 h post lipopolysaccharide stimulation using RNA-sequencing. In the final database 76,743 unigenes and 4,698 differentially expressed genes (DEGs) were functionally annotated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results showed that DEGs were concentrated in toll-like receptor-nuclear factor kappa B-related immune pathways. Ten DEGs were validated 12 h after lipopolysaccharide (LPS) stimulation. Although the common LPS recognition receptor toll-like receptor 4 was not activated and the key adaptor protein MyD88 showed no significant response, we observed significant up-regulation of the following adaptors: toll/interleukin-1 receptor domain-containing adaptor inducing interferon-ß, tumour necrosis factor receptor-associated factor 6, and transforming growth factor-ß activated kinase 1, which are located downstream of the non-classical MyD88 pathway. CONCLUSIONS: In contrast to that in other species, macrophage activation in CGS could depend on the non-classical MyD88 pathway in response to bacterial infection. Our study provides insights into the molecular mechanisms regulating CGS antibacterial responses, with implications for disease prevention and understanding immune evolution in amphibians.
Asunto(s)
Perfilación de la Expresión Génica , Lipopolisacáridos , Macrófagos , Factor 88 de Diferenciación Mieloide , Transducción de Señal , Bazo , Urodelos , Animales , Lipopolisacáridos/farmacología , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Macrófagos/metabolismo , Macrófagos/inmunología , Urodelos/genética , Urodelos/microbiología , Bazo/metabolismo , TranscriptomaRESUMEN
OBJECTIVES: Systemic vasculitis is a heterogenous group of autoimmune diseases characterized by enhanced cardiovascular mortality. Endothelial dysfunction is associated with accelerated vascular damage, representing a core pathophysiologic mechanism contributing to excess CV risk. Recent studies have also shown that complement activation holds significant role in the pathogenesis of Anti-Neutrophilic Cytoplasmic Autoantibody (ANCA) -associated vasculitis (AAV). Given the potential crosstalk between the endothelium and complement, we aimed to assess, for the first time simultaneously, easily accessible biomarkers of endothelial dysfunction and complement activation in SV. METHODS: We measured circulating endothelial microvesicles (EMVs) and soluble complement components representative of alternative, classical and terminal activation (C5b-9, C1q, Bb fragments, respectively) in a meticulously selected group of patients with systemic vasculitis, but without cardiovascular disease. Individuals free from systemic diseases, who were matched with patients for cardiovascular risk factors(hypertension, diabetes, smoking, dyslipidemia), comprised the control group. RESULTS: We studied 60 individuals (30 in each group). Patients with systemic vasculitis had elevated EMVs, higher levels of C5b-9 [536.4(463.4) vs 1200.94457.3), p = 0.003] and C1q [136.2(146.5 vs 204.2(232.9), p = 0.0129], compared to controls [232.0 (243.5) vs 139.3(52.1), p < 0.001]. In multivariate analysis both EMVs and C5b-9 were independently associated with disease duration (p = 0.005 and p = 0.004 respectively), yet not with disease activity. CONCLUSION: Patients with systemic vasculitis exhibit impaired endothelial function and complement activation, both assessed by easily accessible biomarkers, even in the absence of cardiovascular disease manifestations. EMVs and soluble complement components such as C5b-9 and C1q could be used as early biomarkers of endothelial dysfunction and complement activation, respectively, in clinical practice during the course of SV, yet their predictive value in terms of future cardiovascular disease warrants further verification in appropriately designed studies.
Asunto(s)
Biomarcadores , Activación de Complemento , Endotelio Vascular , Humanos , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Factores de Tiempo , Endotelio Vascular/fisiopatología , Endotelio Vascular/inmunología , Adulto , Anciano , Estudios de Casos y Controles , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patología , Micropartículas Derivadas de Células/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Complemento C1q/metabolismo , Complemento C1q/inmunología , Células Endoteliales/patología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Vasculitis Sistémica/inmunología , Vasculitis Sistémica/sangre , Vasculitis Sistémica/fisiopatología , Vasculitis Sistémica/diagnósticoRESUMEN
The role of the complement system in schizophrenia (Sz) is inconclusive due to heterogeneity of the disease and study designs. Here, we assessed the levels of complement activation products and functionality of the classical pathway in acutely ill unmedicated Sz patients at baseline and after 6 weeks of treatment versus matched controls. The study included analyses of the terminal complement complex (sTCC) and C5a in plasma from 96 patients and 96 controls by enzyme-linked immunosorbent assay. Sub-group analysis of serum was conducted for measurement of C4 component and activity of the classical pathway (28 and 24 cases per cohort, respectively). We found no differences in levels of C5a, C4 and classical pathway function in patients versus controls. Plasma sTCC was significantly higher in patients [486 (392-659) ng/mL, n = 96] compared to controls [389 (304-612) ng/mL, n = 96] (p = 0.027, δ = 0.185), but not associated with clinical symptom ratings or treatment. The differences in sTCC between Sz and controls were confirmed using an Aligned Rank Transformation model considering the covariates age and sex (p = 0.040). Additional analysis showed that sTCC was significantly associated with C-reactive protein (CRP; p = 0.006). These findings suggest that sTCC plays a role in Sz as a trait marker of non-specific chronic immune activation, as previously described for CRP. Future longitudinal analyses with more sampling time points from early recognition centres for psychoses may be helpful to better understand the temporal dynamics of innate immune system changes during psychosis development.
Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/sangre , Masculino , Femenino , Adulto , Persona de Mediana Edad , Complemento C4/análisis , Complemento C4/metabolismo , Complemento C5a , Adulto Joven , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Complejo de Ataque a Membrana del Sistema Complemento/metabolismoRESUMEN
The renin-angiotensin system (RAS) is a complex homeostatic entity with multiorgan systemic and local effects. Traditionally, RAS works in conjunction with the kidney to control effective arterial circulation, systemic vascular resistance, and electrolyte balance. However, chronic hepatic injury and resulting splanchnic dilation may disrupt this delicate balance. The role of RAS in liver disease, however, is even more extensive, modulating hepatic fibrosis and portal hypertension. Recognition of an alternative RAS pathway in the past few decades has changed our understanding of RAS in liver disease, and the concept of opposing vs. "rebalanced" forces is an ongoing focus of research. Whether RAS inhibition is beneficial in patients with chronic liver disease appears to be context-dependent, but further study is needed to optimize clinical management and reduce organ-specific morbidity and mortality. This review presents the current understanding of RAS in liver disease, acknowledges areas of uncertainty, and describes potential areas of future investigation.
Asunto(s)
Hepatopatías , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiología , Hepatopatías/metabolismo , Hepatopatías/patología , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patologíaRESUMEN
C2 is an attractive therapeutic target for many complement-mediated diseases. We developed Nab1B10, a new anti-C2 nanobody that potently and selectively inhibits both the classical and lectin pathways of complement activation. Mechanistically, Nab1B10 binds to the C2a portion of C2 and inhibits the assembly of C3 convertase C4b2a. Nab1B10 cross-reacts with monkey but not rodent C2 and inhibits classical pathway-mediated hemolysis. Using a new complement humanized mouse model of autoimmune hemolytic anemia (AIHA), we demonstrated that Nab1B10 abolished classical pathway complement activation-mediated hemolysis in vivo. We also developed C2-neutralizing bi- and tetra-valent antibodies based on Nab1B10 and found these antibodies significantly more potent than the other anti-C2 monoclonal antibody that is already in clinical trials. These data suggest that these novel C2-neutralizing nanobodies could be further developed as new therapeutics for many complement-mediated diseases, in which pathogenesis is dependent on the classical and/or lectin pathway of complement activation.
Asunto(s)
Anemia Hemolítica Autoinmune , Complemento C2 , Ratones , Animales , Complemento C2/metabolismo , Hemólisis , Activación de Complemento , Inactivadores del ComplementoRESUMEN
The objective of this study was to characterize the complement-inhibiting activity of SAR445088, a novel monoclonal antibody specific for the active form of C1s. Wieslab® and hemolytic assays were used to demonstrate that SAR445088 is a potent, selective inhibitor of the classical pathway of complement. Specificity for the active form of C1s was confirmed in a ligand binding assay. Finally, TNT010 (a precursor to SAR445088) was assessed in vitro for its ability to inhibit complement activation associated with cold agglutinin disease (CAD). TNT010 inhibited C3b/iC3b deposition on human red blood cells incubated with CAD patient serum and decreased their subsequent phagocytosis by THP-1 cells. In summary, this study identifies SAR445088 as a potential therapeutic for the treatment of classical pathway-driven diseases and supports its continued assessment in clinical trials.
Asunto(s)
Anemia Hemolítica Autoinmune , Complemento C1s , Humanos , Complemento C1s/metabolismo , Activación de Complemento , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Inactivadores del Complemento/uso terapéutico , Vía Clásica del ComplementoRESUMEN
Complement activation is a hallmark of systemic lupus erythematosus (SLE) and can proceed through the classical (CP), lectin (LP), or alternative pathway (AP). When managing SLE patients, pathway-specific complement activation is rarely monitored as clinical assays are unavailable. In this study, we aim to differentiate between CP- or LP-mediated complement activation in SLE patients by quantifying pathway-specific protein complexes, namely C1s/C1-inhibitor (C1-INH) (CP-specific activation) and MASP-1/C1-INH (LP-specific activation). Levels for both complexes were assessed in 156 SLE patients and 50 controls using two newly developed ELISAs. We investigated whether pathway-specific complement activation was associated with disease activity and lupus nephritis (LN). Disease activity stratification was performed using SLEDAI scores assessed at inclusion. C1s/C1-INH concentrations were significantly increased in active SLE patients (SLEDAI ≥6) when compared with SLE patients with low disease activity (SLEDAI <6, P < 0.01) and correlated with SLEDAI score (r = .29, P < 0.01). In active LN, MASP-1/C1-INH plasma concentrations were significantly increased compared with nonactive LN (P = 0.02). No differences in MASP-1/C1-INH plasma concentrations were observed between active SLE patients and patients with low disease activity (P = 0.11) nor did we observe a significant correlation with disease activity (r = 0.12, P = 0.15). Our data suggest that the CP and the LP are activated in SLE. The CP is activated in active SLE disease, whereas activation of the LP might be more specific to disease manifestations like LN. Our results warrant further research into specific complement pathway activation in SLE patients to potentially improve specific-targeted and tailored-treatment approaches.
Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Vía Clásica del Complemento , Lectinas , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Activación de Complemento , Nefritis Lúpica/diagnósticoRESUMEN
Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis.
Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Humanos , Complemento C1q/genética , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/complicaciones , Proteínas del Sistema Complemento/genética , Enfermedades por Deficiencia de Complemento Hereditario/complicaciones , Complemento C4/genética , Complemento C4a/genéticaRESUMEN
BACKGROUND AND AIMS: Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare immune-mediated disease of the peripheral nerves, with significant unmet treatment needs. Clinical trials in CIDP are challenging; thus, new trial designs are needed. We present design of an open-label phase 2 study (NCT04658472) evaluating efficacy and safety of SAR445088, a monoclonal antibody targeting complement C1s, in CIDP. METHODS: This phase 2, proof-of-concept, multicenter, open-label trial will evaluate the efficacy, and safety of SAR445088 in 90 patients with CIDP across three groups: (1) currently treated with standard-of-care (SOC) therapies, including immunoglobulin or corticosteroids (SOC-Treated); (2) refractory to SOC (SOC-Refractory); and (3) naïve to SOC (SOC-Naïve). Enrolled participants undergo a 24-week treatment period (part A), followed by an optional treatment extension for up to an additional 52 weeks (part B). In part A, the primary endpoint for the SOC-Treated group is the percentage of participants with a relapse after switching from SOC to SAR445088. The primary endpoint for the SOC-Refractory and SOC-Naïve groups is the percentage of participants with a response, compared to baseline. Secondary endpoints include safety, tolerability, immunogenicity, and efficacy of SAR445088 during 12-week overlapping period (SOC-Treated). Part B evaluates long-term safety and durability of efficacy. Data analysis will be performed using Bayesian statistics (predefined efficacy thresholds) and historical data-based placebo assumptions to support program decision-making. INTERPRETATION: This innovative trial design based on patient groups and Bayesian statistics provides an efficient paradigm to evaluate new treatment candidates across the CIDP spectrum and can help accelerate development of new therapies.
Asunto(s)
Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Humanos , Corticoesteroides/uso terapéutico , Anticuerpos Monoclonales , Teorema de Bayes , Complemento C1s , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/tratamiento farmacológico , Resultado del Tratamiento , Prueba de Estudio ConceptualRESUMEN
Increased platelet destruction is central in the pathogenesis of immune thrombocytopenia. However, impaired platelet production is also relevant and its significance underlies the rationale for treatment with thrombopoietin receptor agonists (TPO-RAs). Previous studies have associated enhanced complement activation with increased disease severity. Additionally, treatment refractoriness has been demonstrated to resolve by the administration of complement-targeted therapeutics in a subset of patients. The association between complement activation and the platelet response to TPO-RA therapy has previously not been investigated. In this study, blood samples from patients with immune thrombocytopenia (n = 15) were prospectively collected before and two, six and 12 weeks after the initiation of TPO-RA therapy. Plasma levels of complement degradation product C4d and soluble terminal complement complexes were assessed. Patients with significantly elevated baseline levels of terminal complement complexes exhibited more often an inadequate platelet response (p = .04), were exclusively subjected to rescue therapy with intravenous immunoglobulin (p = .02), and did not respond with a significant platelet count increase during the study period. C4d showed a significant (p = .01) ability to distinguish samples with significant terminal complement activation, implying engagement of the classical complement pathway. In conclusion, elevated levels of complement biomarkers were associated with a worse TPO-RA treatment response. Larger studies are needed to confirm these results. Biomarkers of complement activation may prove valuable as a prognostic tool to predict which patients that potentially could benefit from complement-inhibiting therapy in the future.
What is the context?Primary immune thrombocytopenia (ITP) is a potentially serious illness associated with an increased risk of bleeds. Manifestations range from confined skin bruising to life-threatening intracranial hemorrhages.It is an acquired immune disorder characterized by increased destruction and impaired production of platelets.Treatments aim at suppressing the destruction and supporting the production of platelets.Thrombopoietin receptor agonists (TPO-RA) are medically approved platelet growth factors that contribute to the generation of new platelets.The complement system is an evolutionary preserved part of innate immunity.Previous studies have indicated that complement activation may be an important contributor to disease and that the administration of complement-inhibiting therapy improves the platelet count in a subset of patients with primary ITP.What is new? The potential association between complement activation and a poor platelet response to TPO-RA therapy in primary ITP has not been previously studied.In fifteen patients with primary ITP starting TPO-RA therapy, we prospectively followed the platelet response and levels of complement biomarkers for 12 weeks.We showed that patients with high levels of complement biomarkers exhibited a worse treatment response during the study period.What is the impact?Our results suggest that levels of complement biomarkers may be valuable to predict which patients with treatment-refractory ITP that potentially could benefit from complement-inhibiting therapy in the futureLarger studies are needed to confirm our results.
Asunto(s)
Púrpura Trombocitopénica Idiopática , Trombocitopenia , Humanos , Receptores de Trombopoyetina/agonistas , Estudios Prospectivos , Biomarcadores , Activación de Complemento , Trombopoyetina/farmacología , Trombopoyetina/uso terapéutico , Proteínas Recombinantes de FusiónRESUMEN
Although only 0.8-1% of SARS-CoV-2 infections are in the 0-9 age-group, pneumonia is still the leading cause of infant mortality globally. Antibodies specifically directed against SARS-CoV-2 spike protein (S) are produced during severe COVID-19 manifestations. Following vaccination, specific antibodies are also detected in the milk of breastfeeding mothers. Since antibody binding to viral antigens can trigger activation of the complement classical - pathway, we investigated antibody-dependent complement activation by anti-S immunoglobulins (Igs) present in breast milk following SARS-CoV-2 vaccination. This was in view of the fact that complement could play a fundamentally protective role against SARS-CoV-2 infection in newborns. Thus, 22 vaccinated, lactating healthcare and school workers were enrolled, and a sample of serum and milk was collected from each woman. We first tested for the presence of anti-S IgG and IgA in serum and milk of breastfeeding women by ELISA. We then measured the concentration of the first subcomponents of the three complement pathways (i.e., C1q, MBL, and C3) and the ability of anti-S Igs detected in milk to activate the complement in vitro. The current study demonstrated that vaccinated mothers have anti-S IgG in serum as well as in breast milk, which is capable of activating complement and may confer a protective benefit to breastfed newborns.
Asunto(s)
COVID-19 , SARS-CoV-2 , Recién Nacido , Lactante , Femenino , Humanos , Vacunas contra la COVID-19 , Lactancia , Leche Humana , Proteínas del Sistema Complemento , Inmunoglobulina G , Anticuerpos AntiviralesRESUMEN
BACKGROUND: Excessive complement activation has been implicated in the pathogenesis of coronavirus disease 2019 (COVID-19), but the mechanisms leading to this response remain unclear. METHODS: We measured plasma levels of key complement markers, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antibodies against SARS-CoV-2 and seasonal human common cold coronaviruses (CCCs) in hospitalized patients with COVID-19 of moderate (nâ =â 18) and critical severity (nâ =â 37) and in healthy controls (nâ =â 10). RESULTS: We confirmed that complement activation is systemically increased in patients with COVID-19 and is associated with a worse disease outcome. We showed that plasma levels of C1q and circulating immune complexes were markedly increased in patients with severe COVID-19 and correlated with higher immunoglobulin (Ig) G titers, greater complement activation, and higher disease severity score. Additional analyses showed that the classical pathway was the main arm responsible for augmented complement activation in severe patients. In addition, we demonstrated that a rapid IgG response to SARS-CoV-2 and an anamnestic IgG response to the nucleoprotein of the CCCs were strongly correlated with circulating immune complex levels, complement activation, and disease severity. CONCLUSIONS: These findings indicate that early, nonneutralizing IgG responses may play a key role in complement overactivation in severe COVID-19. Our work underscores the urgent need to develop therapeutic strategies to modify complement overactivation in patients with COVID-19.
Asunto(s)
COVID-19 , Anticuerpos Antivirales , Proteínas de la Nucleocápside de Coronavirus , Humanos , Inmunoglobulina G , SARS-CoV-2RESUMEN
The complement system is critical to human health owing to its central role in host defense and innate immunity. During pregnancy, the complement system must be appropriately regulated to allow for immunologic tolerance to the developing fetus and placenta. Although some degree of complement activation can be seen in normal pregnancy, the fetus seems to be protected in part through the placental expression of complement regulatory proteins, which inhibit complement activation at different steps along the complement activation cascade. In women who develop preeclampsia and hemolysis, elevated liver enzymes, and low platelet count syndrome, there is a shift toward increased complement activation and decreased complement regulation. There is an increase in placental deposition of C5b-9, which is the terminal effector of classical, lectin, and alternative complement pathways. C5b-9 deposition stimulates trophoblasts to secrete soluble fms-like tyrosine kinase-1, which sequesters vascular endothelial growth factor and placental growth factor. Pathogenic mutations or deletions in complement regulatory genes, which predispose to increased complement activation, have been detected in women with preeclampsia and hemolysis, elevated liver enzymes, and low platelet count syndrome. Before the disease, biomarkers of alternative complement pathway activation are increased; during active disease, biomarkers of terminal complement pathway activation are increased. Urinary excretion of C5b-9 is associated with preeclampsia with severe features and distinguishes it from other hypertensive disorders of pregnancy. Taken together, existing data link preeclampsia and hemolysis, elevated liver enzymes, and low platelet count syndrome with increased activation of the terminal complement pathway that, in some cases, may be influenced by genetic alterations in complement regulators. These findings suggest that the inhibition of the terminal complement pathway, possibly through C5 blockade, may be an effective strategy to treat preeclampsia and hemolysis, elevated liver enzymes, and low platelet count syndrome, but this strategy warrants further evaluation in clinical trials.
Asunto(s)
Activación de Complemento , Síndrome HELLP/inmunología , Preeclampsia/inmunología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Biomarcadores/sangre , Inactivadores del Complemento/uso terapéutico , Proteínas del Sistema Complemento/análisis , Proteínas del Sistema Complemento/genética , Femenino , Síndrome HELLP/sangre , Síndrome HELLP/tratamiento farmacológico , Humanos , Mutación , Factor de Crecimiento Placentario/sangre , Preeclampsia/sangre , Preeclampsia/tratamiento farmacológico , Embarazo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangreRESUMEN
BACKGROUND: Anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis (AAGN) is the fulminant glomerular diseases with poor renal prognosis. Activation of the complement system has recently been reported in the pathogenesis of AAGN, but it remains to be clarified as to which complement pathway is mainly involved. METHODS: 20 patients with myeloperoxidase (MPO)-AAGN were retrospectively evaluated. Using serum samples, circulating immune-complexes (CICs) were assessed by the monoclonal rheumatoid factor assay, and C5a and C5b-9 were assessed by ELISA. Complement activation through the classical pathway was further evaluated by the WIESLAB® Complement System Classical Pathway kit. The affinities of ANCAs were evaluated by a competitive inhibition method using ELISA, and were classified into the high, and low-affinity group. Deposition of complement components, such as C3, C5, C4d, C5b-9, factor Bb, mannan-binding lectin serine peptidase (MASP)-1, MASP-2, and mannose/mannan-binding lectin (MBL), in frozen renal sections were analyzed by immunofluorescence staining. RESULTS: CICs were found to be positive in 65% of the patients. All CIC-positive patients belonged to the high-affinity group. Furthermore, serum C5a and C5b-9 were significantly increased in MPO-AAGN patients, and these levels positively correlated with CIC levels. A significant negative correlation was also found between levels of WIESLAB® classical pathway kit and CICs. By immunofluorescence staining, glomerular deposition of C4d, C5, and C5b-9 were observed in similar distributions in MPO-AAGN patients, whereas the deposition of MASP-1, MASP-2, MBL, and factor Bb were minimal. CONCLUSIONS: These results suggest the involvement of immune-complex induced complement activation through the classical pathway in the pathogenesis of MPO-AAGN.
Asunto(s)
Glomerulonefritis , Lectina de Unión a Manosa , Anticuerpos Anticitoplasma de Neutrófilos , Activación de Complemento , Complejo de Ataque a Membrana del Sistema Complemento , Femenino , Glomerulonefritis/patología , Humanos , Masculino , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Peroxidasa , Estudios RetrospectivosRESUMEN
The Influenza A virus (IAV) is a severe respiratory pathogen. C1q is the first subcomponent of the complement system's classical pathway. C1q is composed of 18 polypeptide chains. Each of these chains contains a collagen-like region located at the N terminus, and a C-terminal globular head region organized as a heterotrimeric structure (ghA, ghB and ghC). This study was aimed at investigating the complement activation-independent modulation by C1q and its individual recombinant globular heads against IAV infection. The interaction of C1q and its recombinant globular heads with IAV and its purified glycoproteins was examined using direct ELISA and far-Western blotting analysis. The effect of the complement proteins on IAV replication kinetics and immune modulation was assessed by qPCR. The IAV entry inhibitory properties of C1q and its recombinant globular heads were confirmed using cell binding and luciferase reporter assays. C1q bound IAV virions via HA, NA and M1 IAV proteins, and suppressed replication in H1N1, while promoting replication in H3N2-infected A549 cells. C1q treatment further triggered an anti-inflammatory response in H1N1 and pro-inflammatory response in H3N2-infected cells as evident from differential expression of TNF-α, NF-κB, IFN-α, IFN-ß, IL-6, IL-12 and RANTES. Furthermore, C1q treatment was found to reduce luciferase reporter activity of MDCK cells transfected with H1N1 pseudotyped lentiviral particles, indicative of an entry inhibitory role of C1q against infectivity of IAV. These data appear to demonstrate the complement-independent subtype specific modulation of IAV infection by locally produced C1q.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Complemento C1q , Proteínas del Sistema Complemento , Humanos , Subtipo H3N2 del Virus de la Influenza ARESUMEN
BACKGROUND: Involvement of the complement system in the pathogenesis of lupus nephritis (LN) is well accepted, but its exact role remains unclear. The aim of this study was to investigate the relationship of complement activation pathway to clinical and pathological characteristics and renal outcome in patients with LN. MATERIAL AND METHODS: Patients with LN were divided into two groups: those in whom the complement system was mainly activated through the classical pathway (low serum C3 and C4 levels; CP group); and those in whom the complement system was solely activated through the alternative pathway (low serum C3 with normal C4 levels; AP group). Clinical and pathological data and renal outcomes were compared between the two groups. RESULTS: A total of 102 LN patients were enrolled in this study, 63 patients (61.8%) in the CP group and 39 patients (38.2%) in the AP group. LN patients in the CP group had significantly higher SLEDAI (pâ¯< 0.001), more anti-dsDNA (pâ¯= 0.001), higher renal activity index (pâ¯< 0.001), and more class IV LN (pâ¯= 0.008) than LN patients in the AP group. Mean length of follow-up was 50.6⯱ 26.4 months. Renal outcome in the form of progression of kidney disease was significantly poorer in the CP group in the AP group (pâ¯= 0.037). CONCLUSION: Our findings suggest that evaluation of the complement activation pattern may be useful for evaluating disease activity and predicting the prognosis of LN.
Asunto(s)
Nefritis Lúpica , Humanos , Nefritis Lúpica/diagnóstico , Complemento C4/metabolismo , Complemento C3/metabolismo , Activación de Complemento , Riñón , BiomarcadoresRESUMEN
Enterococcus faecalis infections are considered a major public health concern worldwide. The complement system has a crucial role in the protection against different microbial pathogens, including E. faecalis Complement can be activated through three different pathways, including the classical, lectin, and alternative pathways. There is limited information on the role of the classical pathway (CP) in protection against infections caused by E. faecalis In the present study, we generated Fab fragments that successfully block the CP in mouse via inhibition of a key enzyme, C1s-A. Our results showed that anti-C1s-A Fab fragments block CP-mediated C3b and C4b deposition in vitro We further showed that administration of anti-C1s-A Fab fragments significantly impairs the CP functional activity in vivo Moreover, treatment of mice infected with E. faecalis using anti-C1s-A Fab fragments significantly impairs bacterial clearance as determined from the viable bacterial counts recovered from blood, kidneys, spleens, livers, and lungs of infected mice. Overall, this study highlights the essential role of the CP in host defense against E. faecalis.
Asunto(s)
Activación de Complemento/inmunología , Vía Clásica del Complemento , Proteínas del Sistema Complemento/inmunología , Enterococcus faecalis/inmunología , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Interacciones Huésped-Patógeno , Animales , Carga Bacteriana , Susceptibilidad a Enfermedades , Humanos , Ratones , Especificidad de ÓrganosRESUMEN
The multiprotein complex C1 initiates the classical pathway of complement activation on binding to antibody-antigen complexes, pathogen surfaces, apoptotic cells, and polyanionic structures. It is formed from the recognition subcomponent C1q and a tetramer of proteases C1r2C1s2 as a Ca2+-dependent complex. Here we have determined the structure of a complex between the CUB1-EGF-CUB2 fragments of C1r and C1s to reveal the C1r-C1s interaction that forms the core of C1. Both fragments are L-shaped and interlock to form a compact antiparallel heterodimer with a Ca2+ from each subcomponent at the interface. Contacts, involving all three domains of each protease, are more extensive than those of C1r or C1s homodimers, explaining why heterocomplexes form preferentially. The available structural and biophysical data support a model of C1r2C1s2 in which two C1r-C1s dimers are linked via the catalytic domains of C1r. They are incompatible with a recent model in which the N-terminal domains of C1r and C1s form a fixed tetramer. On binding to C1q, the proteases become more compact, with the C1r-C1s dimers at the center and the six collagenous stems of C1q arranged around the perimeter. Activation is likely driven by separation of the C1r-C1s dimer pairs when C1q binds to a surface. Considerable flexibility in C1s likely facilitates C1 complex formation, activation of C1s by C1r, and binding and activation of downstream substrates C4 and C4b-bound C2 to initiate the reaction cascade.
Asunto(s)
Complemento C1r/metabolismo , Complemento C1s/metabolismo , Animales , Células CHO , Cricetulus , Dimerización , Dominios ProteicosRESUMEN
Antibodies capable of activating the complement system (CS) when bound with antigen are referred to as "complement-fixing antibodies" and are involved in protection against Flaviviruses. A complement-fixing antibody test has been used in the past to measure the ability of dengue virus (DENV)-specific serum antibodies to activate the CS. As originally developed, the test is time-consuming, cumbersome, and has limited sensitivity for DENV diagnosis. Here, we developed and characterized a novel multiplex anti-DENV complement-fixing assay based on the Luminex platform to quantitate serum antibodies against all four serotypes (DENV1-4) that activate the CS based on their ability to fix the complement component 1q (C1q). The assay demonstrated good reproducibility and showed equivalent performance to a DENV microneutralization assay that has been used to determine DENV serostatus. In non-human primates, antibodies produced in response to primary DENV1-4 infection induced C1q fixation on homologous and heterologous serotypes. Inter-serotype cross-reactivity was associated with homology of the envelope protein. Interestingly, the antibodies produced following vaccination against Zika virus fixed C1q on DENV. The anti-DENV complement fixing antibody assay represents an alternative approach to determine the quality of functional antibodies produced following DENV natural infection or vaccination and a biomarker for dengue serostatus, while providing insights about immunological cross-reactivity among different Flaviviruses.
Asunto(s)
Anticuerpos Antivirales/inmunología , Complemento C1q/inmunología , Pruebas de Fijación del Complemento/métodos , Virus del Dengue/inmunología , Dengue/inmunología , Animales , Anticuerpos Antivirales/sangre , Bioensayo , Reacciones Cruzadas/inmunología , Dengue/metabolismo , Dengue/virología , Humanos , Macaca , Masculino , Reproducibilidad de los Resultados , SerogrupoRESUMEN
The peripheral zone (PZ) and transition zone (TZ) represent about 70% of the human prostate gland with each zone having differential ability to develop prostate cancer. Androgens and their receptor are the primary driving cause of prostate cancer growth and eventually castration-resistant prostate cancer (CRPC). De novo steroidogenesis has been identified as a key mechanism that develops during CRPC. Currently, there is very limited information available on human prostate tissue steroidogenesis. The purpose of the present study was to investigate steroid metabolism in human prostate cancer tissues with comparison between PZ and TZ. Human prostate cancer tumors were procured from the patients who underwent radical prostatectomy without any neoadjuvant therapy. Human prostate homogenates were used to quantify steroid levels intrinsically present in the tissues as well as formed after incubation with 2 µg/mL of 17-hydroxypregnenolone (17-OH-pregnenolone) or progesterone. A Waters Acquity ultraperformance liquid chromatography coupled to a Quattro Premier XE tandem quadrupole mass spectrometer using a C18 column was used to measure thirteen steroids from the classical and backdoor steroidogenesis pathways. The intrinsic prostate tissue steroid levels were similar between PZ and TZ with dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), pregnenolone and 17-OH-pregnenolone levels higher than the other steroids measured. Interestingly, 5-pregnan-3,20-dione, 5-pregnan-3-ol-20-one, and 5-pregnan-17-ol-3,20-dione formation was significantly higher in both the zones of prostate tissues, whereas, androstenedione, testosterone, DHT, and progesterone levels were significantly lower after 60 min incubation compared to the 0 min control incubations. The incubations with progesterone had a similar outcome with 5-pregnan-3,20-dione and 5-pregnan-3-ol-20-one levels were elevated and the levels of DHT were lower in both PZ and TZ tissues. The net changes in steroid formation after the incubation were more observable with 17-OH-pregnenolone than with progesterone. In our knowledge, this is the first report of comprehensive analyses of intrinsic prostate tissue steroids and precursor-driven steroid metabolism using a sensitive liquid chromatography-mass spectrometry assay. In summary, the PZ and TZ of human prostate exhibited similar steroidogenic ability with distinction in the manner each zone utilizes the steroid precursors to divert the activity towards backdoor pathway through a complex matrix of steroidogenic mechanisms.